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Secrecy Capacity-Memory Tradeoff of Erasure
Broadcast Channels

Sarah Kamel, Mireille Sarkiss, Michèle Wigger, and Ghaya Rekaya-Ben Othman

Abstract—This paper derives upper and lower bounds on the
secrecy capacity-memory tradeoff of a wiretap erasure broadcast
channel (BC) with Kw weak receivers and Ks strong receivers,
where weak receivers, respectively strong receivers, have same
erasure probabilities and cache sizes. The lower bounds are
achieved by schemes that meticulously combine joint cache-
channel coding with wiretap coding and key-aided one-time pads.
The presented upper bound holds more generally for arbitrary
degraded BCs and arbitrary cache sizes. When only weak
receivers have cache memories, upper and lower bounds coincide
for small and large cache memories, thus providing the exact
secrecy capacity-memory tradeoff for this setup. The derived
bounds further allow us to conclude that the secrecy capacity
is positive even when the eavesdropper is stronger than all the
legitimate receivers with cache memories. Moreover, they show
that the secrecy capacity-memory tradeoff can be significantly
smaller than its non-secure counterpart, but it grows much faster
when cache memories are small.

The paper also presents a lower bound on the global secrecy
capacity-memory tradeoff where one is allowed to optimize the
cache assignment subject to a total cache budget. It is close
to the best known lower bound without secrecy constraint. For
small total cache budget, the global secrecy capacity-memory
tradeoff is achieved by assigning all the available cache memory
uniformly over all receivers if the eavesdropper is stronger than
all legitimate receivers, and it is achieved by assigning the
cache memory uniformly only over the weak receivers if the
eavesdropper is weaker than the strong receivers.

I. INTRODUCTION

Traffic load in communication systems varies tremendously
during the day between busy periods where the network is
highly congested causing packet loss, delivery delays and
unsatisfied users and other periods where the network is barely
used. Lately, caching has emerged as a promising technique
to reduce the network load and latency in such dense wireless
networks. In caching, the communication is divided into two
phases: the caching phase and the delivery phase. The caching
phase occurs during the off-peak periods of the network,
where fragments of popular contents are stored in users’ cache
memories or on nearby servers. The delivery phase occurs
when users request specific files during the peak-traffic periods
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of the network and they are served partly from their cache
memories and partly from the server. The technical challenge
in these networks is that in the caching phase the servers
do not know exactly which files the receivers will demand
during the delivery phase. They are thus obliged to store
information about all possibly requested files in the receivers’
cache memories.

Maddah-Ali and Niesen showed in their seminal work [1]
that the delivery (high-traffic) communication can benefit from
the cache memories more than the obvious local caching gain
arising from locally retrieving parts of the requested files.
The additional gain, termed global caching gain, is obtained
through carefully designing the cached contents and applying
a new coding scheme, termed coded caching, which allows
the transmitter to simultaneously serve multiple receivers. In
[1] and in many subsequent works, the delivery phase is
modelled as an error-free broadcast channel and all receivers
have equal cache sizes. Coded caching is straightforwardly
extended to noisy BCs by means of a separate cache-channel
coding architecture where a standard BC code, which ignores
the cache contents, is used to transmit the delivery-messages1

produced by the coded caching algorithm to the receivers.
Improved global caching gains can be achieved by employing
joint cache-channel coding where the encoder and the decoder
simultaneously adapt to the cache contents and the channel
statistics [2]–[5].

A different line of works has addressed secrecy issues in
cache-aided BCs [6]–[8], where delivery communication takes
place over a noiseless link Different secrecy requirements
have been studied. In [6], [8], the entire library of messages
needs to be kept secret from an external eavesdropper that has
access to the outputs of the common bit-pipe but not to the
cache memories. This is achieved by means of securing the
XOR packets produced by coded caching with secret keys,
which have been prestored at the receivers during the caching
phase [6]. This approach has subsequently been extended to
resolvable networks in [9] and to device-to-device communi-
cation models [10]. In [7], each legitimate receiver acts also as
eavesdropper and is thus not allowed to learn anything about
the files requested by the other receivers. In this case, uncoded
fragments of the messages cannot be stored in the users’
caches. Instead, random keys and combinations of messages
XORed with these random keys are cached. In the delivery
phase, messages (or combination of messages) XORed with
random keys are transmitted in a way that each message can be

1Due to the presence of the cache memories the messages conveyed in the
delivery phase, generally differ from the original messages in the library.
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decoded only by its intended receiver. Secret communication
has also been considered for cache-aided heterogeneous and
multiantenna interference networks, see for example [11], [12],
and [13]. A different angle of attack on this problem is
taken in [14], which presents a privacy-preserving protocol
that prevents eavesdroppers from learning which users are
requesting which files as well as the statistical popularities
of the files.

In this paper, we follow the secrecy requirement in [6] where
an external eavesdropper is not allowed to learn anything about
all the files in the library, but here delivery communication
takes place over an erasure BC with one transmitter and K ≥ 2
receivers. The eavesdropper does not have access to the cache
memories but overhears the delivery communication over the
erasure BC. The main interest of this paper is the secrecy
capacity-memory tradeoff under strong secrecy of such a
system, i.e., the largest message rate for which it is possible
to find encoding and decoding functions so that the mutual
information

I(W1, . . . ,WD;Zn) (1)

between all the messages W1, . . . ,WD of the library and the
eavesdropper’s observations Zn vanishes asymptotically for
increasing blocklengths n. In our previous work [15], we
have addressed the weaker secrecy constraint where the eaves-
dropper is not allowed to learn any information about each
of the actually demanded messages individually. Each of the
K mutual informations 1

nI(Wd1 ;Zn), . . . , 1
nI(WdK ;Zn) thus

needs to vanish asymptotically, where Wd1 , . . . ,WdK denoting
the files requested and delivered to Receivers 1, . . . ,K. Our
conference publications [15] and [16] suggest that the ultimate
performance limits under these two secrecy constraints are
close.

There are two basic approaches to render cache-aided BCs
secure: 1) introduce a randomization message to the non-
secure coding schemes so as to transform them into wiretap
codes [17]; and 2) store secret keys into the cache memories
and apply one-time pads [18] to parts of the delivery-messages
which can then serve as secret keys to wiretap codes [19]–[21].
As we will see, in the BC scenarios where different receivers
have different cache sizes, combinations thereof should be
employed. Moreover, by applying superposition coding or joint
cache-channel coding, secret keys stored in caches can even
be used to secure the communication to other receivers. Our
superposition and joint cache-channel coding schemes share
common elements with wiretap coding for broadcast channels
[17], [22], wiretap coding with secret keys [19], [20], and
wiretap coding with receiver side-information [23], [24]. The
performances of our new schemes show that under secrecy
constraints, further global caching gains are thus possible than
the previously reported gains for non-secure communication
[1], [3].

Based on the described coding ideas, we propose lower
bounds on the secrecy capacity-memory tradeoff of the cache-
aided erasure BC in Figure 1. The system consists of Kw weak
receivers 1, . . . ,Kw that have equal erasure probability δw ≥ 0
and cache size Mw, Ks strong receivers Kw + 1, . . . ,K that
have equal erasure probability δs ≥ 0 and cache size Ms, and

a single eavesdropper. (There is no assumption on the strength
of the eavesdropper. It can be weaker than the weak receivers,
stronger than the strong receivers, or between weak and strong
receivers.) We also provide a general upper bound on the
secrecy capacity-memory tradeoff of an arbitrary degraded
BC with receivers having arbitrary cache sizes. Upper and
lower bounds match for the setup in Figure 1 in special cases,
for example, when Ms = 0 and Mw is sufficiently large or
small. The proposed bounds moreover allow us to conclude
the following:
• Secrecy Capacity is Positive even when Eavesdropper

Stronger than Some of the Legitimate Receivers with
Cache Memories. (But it needs to be weaker than the
legitimate receivers without cache memories.)

• Secrecy Constraint Can Significantly Harm Capacity:
The secrecy capacity-memory tradeoff can be
significantly smaller than its non-secure counterpart,
especially when only weak receivers have cache
memories. One explanation is that when only weak
receivers have cache memories, the communication to
the strong receivers needs to be either secured through
a randomization message as in wiretap coding or other
secrecy mechanisms, which both significantly reduce the
rate of communication.

• Caching Gains are More Important under a Secrecy
Constraint: In the regime of small cache memories, the
gains of caching (i.e., the slope of the capacity) are more
pronounced in our system with secrecy constraint than in
the standard non-secure system. Consider for example,
Ms = 0 and Mw sufficiently small. In this regime, when
the eavesdropper’s erasure probability δz is larger than
erasure probability at the strong receivers δs, the slope
γsec of the secrecy capacity-memory tradeoff satisfies (see
Corollary 2)

γsec =
Kw(δz − δs)

Kw(δz − δs) + Ks(δz − δw)+
. (2)

The slope γ of the standard non-secure capacity-memory
tradeoff satisfies (see [2, Theorem 2])

γ ≤ Kw
D
. (3)

This latter slope γ thus deteriorates with increasing
library size D, which is not the case for γsec. The main
reason for this behavior is that in a standard system the
cache memories are filled with data, and intuitively each
stored bit is useful only under some of the demands. In
a secure system, a good option is to store secret keys
in the cache memories of the receivers. These secret
keys are helpful for all possible demands, and therefore
the caching gain does not degrade with the library size D.

• Optimal Cache Assignments for Small Total Cache
Budgets: For small total cache budgets, the global
secrecy capacity-memory tradeoff is achieved by
assigning all of the cache memory uniformly only over
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the weak receivers if the eavesdropper is weaker than
strong receivers, and it is achieved by assigning all
the cache memory uniformly over all receivers, if the
eavesdropper is stronger than all receivers.

Paper Organization: The remainder of this paper is orga-
nized as follows. Section II formally defines the problem.
Section III presents a general upper bound on the secrecy
capacity-memory tradeoff and specializes it to the specific
model of this work. In Sections IV and V, we present our
results for the scenarios when only weak receivers have cache
memories and when all receivers have cache memories, and
we sketch the coding schemes achieving the proposed lower
bounds. Section VI contains our results on the global secrecy
capacity-memory tradeoff. Sections VIII and VII describe and
analyze in detail all the coding schemes proposed in this paper.
Finally, Section IX concludes the paper.

II. PROBLEM DEFINITION

A. Channel Model

We consider a wiretap erasure BC with a single transmitter,
K receivers and one eavesdropper, as shown in Figure 1. The
input alphabet of the BC is

X={0, 1} (4)

and all receivers and the eavesdropper have the same output
alphabet

Z = Y = X ∪∆. (5)

The output erasure symbol ∆ indicates the loss of a bit at
the receiver. Let δk be the erasure probability of Receiver k’s
channel, for k ∈ K := {1, . . . ,K}, and δz be the erasure
probability of the eavesdropper’s channel. Then, for each k ∈
K, the marginal transition law at Receiver k is described by

PYk|X(yk|x) =

 1− δk if yk = x
δk if yk = ∆
0 otherwise,

(6)

and at the eavesdropper by

PZ|X(z|x) =

 1− δz if z = x
δz if z = ∆
0 otherwise,

(7)

for some parameters 0 ≤ δ1, . . . , δK , δz ≤ 1.
The K receivers are partitioned into two sets. The first set

Kw := {1, . . . ,Kw} (8)

is formed by Kw weak receivers, which have bad channel
conditions. The second set

Ks := {Kw + 1, . . . ,K} (9)

is formed by Ks = K−Kw strong receivers, which have good
channel conditions.

In other words, we assume that

δk =

{
δw if k ∈ Kw
δs if k ∈ Ks

(10)

with
0 ≤ δs ≤ δw ≤ 1. (11)

In a standard wiretap erasure BC, reliable communication
with positive rates is only possible when the eavesdropper’s
erasure probability δz is larger than the erasure probabilities
at all legitimate receivers. Here, any configuration of erasure
probabilities is possible, because the legitimate receivers can
prestore information in local cache memories and this infor-
mation is not accessible by the eavesdropper. Specifically, we
assume that each weak receiver has access to a local cache
memory of size nMw bits and each strong receiver has access
to a local cache memory of size nMs bits.

B. Library and Receiver Demands

The transmitter can access a library of D > K independent
messages

W1, . . . ,WD (12)

of rate R ≥ 0 each. So for each d ∈ D,

D := {1, . . . ,D}, (13)

message Wd is uniformly distributed over the set{
1, . . . , b2nRc

}
, where n is the transmission blocklength.

Every receiver k ∈ K demands exactly one message Wdk

from the library. We denote the demand of Receiver k by
dk ∈ D and the demand vector of all receivers by

d := (d1, . . . , dK) ∈ DK. (14)

Communication takes place in two phases: a first caching
phase where the transmitter sends caching information to be
stored in the receivers’ cache memories and the subsequent
delivery phase where the demanded messages Wdk , for k ∈ K,
are conveyed to the receivers.

C. Placement Phase

The placement phase takes place during periods of low
network-traffic. The transmitter therefore has all the available
resources to transmit the cached contents in an error-free and
secure fashion, and this first phase is only restricted by the
storage constraints on the cache memories. However, since
the caching phase takes place before the receivers demand
their files, the cached content cannot depend on the demand
vector d, but only on the library and local randomness θ that
is accessible by the transmitter. The cache content Vk stored
at receiver k ∈ {1, . . . ,K} is thus of the form

Vk = gk (W1, . . . ,WD, θ) , (15)

for some caching function

gk :
{

1, . . . , b2nRc
}D ×Θ→ Vi (16)

where for k ∈ Kw

Vk :=
{

1, . . . , b2nMwc
}
, k ∈ Kw (17)

and for k ∈ Ks

Vk :=
{

1, . . . , b2nMsc
}
, k ∈ Ks. (18)



4

Library
W1,W2, . . . ,WD

θ Tx

Xn

Erasure Broadcast Channel

Y n1 Y nKw
Y nKw+1 Y nK Zn

Rx 1 . . . Rx Kw RxKw+1 . . . Rx K EavesdroppernMw nMw nMs nMs
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Fig. 1. Erasure BC with K = Kw + Ks legitimate receivers and an eavesdropper. The Kw weaker receivers have cache memories of size Mw and the Ks

stronger receivers have cache memories of size Ms. The random variable θ models a source of randomness locally available at the transmitter.

D. Delivery Phase

Prior to the delivery phase, the demand vector d is learned
by the transmitter and the legitimate receivers. The communi-
cation of the demand vector requires zero communication rate
since it takes only K ·

⌈
log(D)

⌉
bits to describe d.

Based on the demand vector d, the transmitter sends

Xn = fd (W1, . . . ,WD, θ) , (19)

for some function

fd :
{

1, . . . , b2nRc
}D ×Θ→ Xn. (20)

Each Receiver k ∈ K, attempts to decode its demanded
message Wdk based on its observed outputs Y nk and its cache
content Vk:

Ŵk := ϕk,d(Y nk , Vk), k ∈ K, (21)

for some function

ϕk,d : Yn × Vk →
{

1, . . . , b2nRc
}
. (22)

E. Secrecy Capacity-Memory Tradeoff

A decoding error occurs whenever Ŵk 6= Wdk , for some
k ∈ K. We consider the worst-case probability of error over
all feasible demand vectors

PWorst
e := max

d∈DK
P

[
K⋃
k=1

{
Ŵk 6= Wdk

}]
. (23)

The communication is considered secure if the eavesdrop-
per’s channel outputs Zn during the delivery phase provide
almost no information about the entire library. The mutual
information I (W1, . . . ,WD;Zn) is considered as a secrecy
measure, i.e., we require:

I (W1, . . . ,WD;Zn) < ε. (24)

Since we assumed earlier that the caching phase is secure,
the eavesdropped observations Zn only concern the delivery
phase.

Definition 1. A rate-memory triple (R,Mw,Ms) is securely
achievable if for every ε > 0 and sufficiently large blocklength
n, there exist caching, encoding, and decoding functions as in
(16), (20), and (22) so that

PWorst
e ≤ ε and I (W1, . . . ,WD;Zn) < ε. (25)

In our previous works [15] and [16], we called this secrecy
constraint a joint secrecy constraint to distinguish it from
the individual secrecy constraint in [15] where the second
inequality in (25) is replaced by 1

nI (Wdk ;Zn) < ε,∀k ∈ K.

Definition 2. Given cache memory sizes (Mw,Ms), the se-
crecy capacity-memory tradeoff Csec(Mw,Ms) is the supre-
mum of all rates R so that the triple (R,Mw,Ms) is securely
achievable:

Csec (Mw,Ms)

:= sup {R : (R,Mw,Ms) securely achievable} . (26)

Remark 1. Without cache memories, i.e., Mw = Ms = 0,
the secrecy capacity-memory tradeoff Csec(Mw,Ms) was de-
termined in [17]:

Csec (Mw = 0,Ms = 0) =

(
K∑
k=1

1

δz − δk

)−1
. (27)

For comparison, we will also be interested in the standard
(non-secure) capacity-memory tradeoff C (Mw,Ms) as defined
in [3], [25]. It is the largest rate R for given cache sizes Mw

and Ms, for which there exist caching, encoding, and decoding
functions as in (16), (20), and (22) so that

PWorst
e ≤ ε. (28)
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F. Preliminaries: A Mapping and A Lemma

We introduce a mapping sec(w, k) that represents the
integers w and k as binary strings, zero-pads the shorter of
the two strings to the length of the longer one, and takes the
component-wise XOR function of the two strings. The output
of the mapping is the integer corresponding to the produced
binary string. Formally, the mapping is defined as follows.
Assume that the positive real numbers n,R′, RKey are fixed
and clear from the context. Then:

sec(w, k) : b2nR
′
c × b2nRKeyc → b2nR

′
c

(w, k) 7→ (w + k) mod b2nR
′
c,
(29)

where mod denotes the modulo operator. Notice that from
sec(w, k) and k it is possible to recover w. Let sec−1k (·)
denote this inverse mapping so that

sec−1k (sec(w, k)) = w. (30)

When R′ = RKey, we also write
⊕

instead of sec:

w1

⊕
w2 := sec

(
w1, w2

)
. (31)

We mostly use sec when one of the arguments is a secret key
and we use

⊕
when both arguments refer to messages.

The following lemma is essential in the secrecy analysis of
our schemes.

Lemma 1. Consider a blocklength n′, the rates R̃ ≥ R′ > 0,
and the random codebook

C =
{
xn
′
(`) : ` ∈

{
1, . . . , b2n

′R̃c
}}

(32)

with entries drawn i.i.d. according to some distribution PX .
Let the message W ′ be uniform over {1, . . . , b2n′R′c}. To
encode the message W ′ = w′, the transmitter picks uniformly
at random, for example as a function of an independent secret
key, a codeword from a predetermined subset S(w′) ⊆ C
and sends this codeword over the channel. If S(w′) does not
depend on w′ ∈ {1, . . . , b2n′R′c},

S(1) = . . . = S
(
b2n

′R′c
)
, (33)

or if the cardinalities of the subsets {S(w′)} satisfy

1

n′
log2 |S(w′)| ≥ I(X;Z), ∀w′ ∈ {1, . . . , b2n

′R′c}, (34)

where (X,Z) ∼ PXPZ|X , then

I
(
W ′;Zn

′
|C
)
→ 0 as n′ →∞. (35)

Proof: If (33) holds, then the described encoding with
a random choice over S(w′) is equivalent to securing the
message with a one-time pad [18] prior to encoding. In this
case, I(W ′;Zn

′ |C) = 0. If (34) holds, the limit (35) can be
proved following the lines in [21, Theorem 7].

III. UPPER BOUNDS ON SECRECY CAPACITY-MEMORY
TRADEOFF

We start by presenting an upper bound on the secrecy
capacity-memory tradeoff of a general degraded K-user BC
with arbitrary cache sizes M1, . . . ,MK at the receivers. Sub-
sequently, we specialize this bound to the erasure BC studied
in this paper where all weak receivers and all strong receivers
have equal cache sizes.

Consider an arbitrary degraded K-user discrete memo-
ryless BC (not necessarily an erasure BC) with chan-
nel transition law Γ(y1, . . . , yK|x). For simplicity, and be-
cause our result depends only on the conditional marginals
Γ1(y1|x), . . . ,ΓK(yK|x), we assume that the channel is phys-
ically degraded, so the Markov chain

X → YK → YK−1 → . . .→ Y1 (36)

holds. In the same spirit, we also assume that the eavesdropper
is degraded with respect to some of the legitimate receivers,
and all other legitimate receivers are degraded with respect to
the eavesdropper. Three scenarios can be considered:

a) The eavesdropper is degraded with respect to all legiti-
mate receivers:

X → YK → YK−1 → . . .→ Y1 → Z. (37)

b) All legitimate receivers are degraded with respect to the
eavesdropper:

X → Z → YK → YK−1 → . . .→ Y1. (38)

c) The eavesdropper is degraded with respect to the
strongest K − `∗ legitimate receivers, for some `∗ ∈
{1, . . . ,K − 1}, and the remaining legitimate receivers
are degraded with respect to the eavesdropper:

X → YK → YK−1 → . . .→ Y`∗+1

→ Z → Y`∗ → . . .→ Y1 (39)

Let each Receiver k ∈ {1, . . . ,K} have cache size Mk. The
following lemma holds.

Lemma 2 (Upper Bound for Arbitrary Degraded BCs and
Cache Sizes). If a rate-memory tuple (R,M1, . . . ,MK)
is securely achievable, then for each receiver set
S :=

{
j1, . . . , j|S|

}
⊆ K, there exist auxiliaries

(U1, U2, . . . , U|S|, Q) so that for each realization of Q = q
the following Markov chain holds:

U1 → U2 → . . .→ U|S| → X → (Yj1 , . . . , Yj|S| , Z); (40)

and the following |S| inequalities are satisfied:

R ≤
[
I(U1;Yj1 |Q)− I(U1;Z|Q)

]+
+ Mj1 , (41a)

and

kR ≤
k∑
`=1

[
I(U`;Yj` |U`−1, Q)− I(U`;Z|U`−1, Q)

]+
+

k∑
`=1

Mj` , k ∈ {2, . . . , |S|}, (41b)

where (·)+ := max{0, ·}.
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Proof. See Appendix A.

Turn back to the setup with weak and strong receivers in
Figure 1. Based on the previous lemma and the upper bound
on the standard (non-secure) capacity-memory tradeoff in [25,
Theorem 5], the following Theorem 1 presents two upper
bounds (Inequalities (42a) and (42b)) on the secrecy capacity-
memory tradeoff for each choice of kw ∈ {0, 1, . . . ,Kw} and
ks ∈ {0, 1, . . . ,Ks}. Depending on the cache sizes Mw and
Ms, a different choice of the parameters and of the bounds
(42a) or (42b) is tightest.

Theorem 1 (Upper Bound on Csec(Mw,Ms)). For each choice
of kw ∈ {0, 1, . . . ,Kw} and ks ∈ {0, 1, . . . ,Ks}, the secrecy
capacity-memory tradeoff is upper bounded in the following
two ways:2

Csec(Mw,Ms)

≤ max
β∈[0,1]

min

{
β(δz − δw)+

kw
+ Mw,

β(δz − δw)+ + (1− β)(δz − δs)+

kw + ks

+
kwMw + ksMs

kw + ks

}
(42a)

and

Csec(Mw,Ms)

≤ min

{
min

i=1,...,kw
{(1− δw)βi + αi} ,

min
j=1,...,ks

{
(1− δs)βkw+j + αkw+j

}}
(42b)

for some tuple of nonnegative real numbers β1, . . . , βkw+ks ≥
0 summing to 1, where for i ∈ {1, . . . , kw}:

αi

:= min

{
iMw

D− i+ 1
,

1

kw + ks − i+ 1

·

(
(kw + ks)(kwMw + ksMs)

D
−

i−1∑
`=1

α`

)}
,

and for j ∈ {1, . . . , ks}:

αkw+j

:= min

{
kwMw + jMs

D− kw − j + 1
,

1

ks − j + 1

·

(
(kw + ks)(kwMw + ksMs)

D
−
kw+j−1∑
`=1

α`

)}
.

2For any finite numbers a, b, we define min{a/0, b} = b and
min{a/0, b/0} =∞. In the minimization (42b), a minimum over an empty
set is defined as +∞.

Each of the terms in the two upper bounds (42a) and
(42b) is a sum of a first summand that depends only on the
channel parameters and a second summand that depends also
on the cache sizes. In (42a), the second summand equals the
average cache size over a subset of users. In (42b), the second
summand is approximately equal to the ratio between the total
cache size of a subset of users and the total number of files
D. As shown shortly by means of matching lower bounds or
through numerical simulations, the bound in (42a) is tighter
for small cache sizes and the bound in (42b) is tighter for
moderate cache sizes. For large cache sizes, any of the two
bounds can dominate depending on the scenario.

In fact, the results that we shall present shortly show that
small cache memories should be used to exclusively store
secret keys, resulting in a gain that only depends on the local
cache size but not on the cache sizes of the other receivers nor
on the total number of files in the system. This explains the
form of the upper bound in (42a). Larger cache memories
should be used to also store parts of each and every file
in the library. On one hand, such a cache placement results
in a caching gain that decays inversely proportional to the
number of files D in the system. On the other hand, the cache
placement creates multi-cast opportunities to many receivers,
and thus can profit also from the cache sizes at other receivers.
This explains why the upper bound in (42b) decay inversely
proportional to D and depends on the total cache size across
users.

Proof of Theorem 1. The first upper bound in (42a) is ob-
tained by specializing Lemma 2 to the erasure BC in Figure 1.
More specifically, setting βj := I(Uj ;X|Uj−1, Q), constraints
(41) can be rewritten as:

Csec(Mw,Ms) ≤ β1(δz − δj1)+ + Mj1 , (43a)

Csec(Mw,Ms) ≤
1

k

k∑
`=1

[
β`(δz − δj`)+ + Mj`

]
,

∀k ∈ {1, . . . , |S|}. (43b)

By well known properties on the mutual information, one finds
that β1, . . . , β|S| ≥ 0 and

|S|∑
k=1

βk = I(U1, . . . , U|S|;X|Q) ≤ H(X) ≤ 1. (44)

Upper bound (42a) is now obtained by specializing (43) to
one of the subsets

S = {1, . . . , kw,Kw + 1, . . . ,Kw + ks}, kw, ks > 0,
(45a)

or
S = {1, . . . , kw}, (45b)

or
S = {Kw + 1, . . . ,Kw + ks}, (45c)

and by noticing that for the subset in (45a) one can restrict to

β1 = β2 = . . . = βkw =
β

kw
(46)
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and

βKw+1 = βKw+2 = . . . = βKw+ks =
1− β
ks

, (47)

for some β ∈ [0, 1]. For the subset in (45b) one can restrict to

β1 = β2 = . . . = βkw =
1

kw
, (48)

and the subset in (45c) one can restrict to

βKw+1 = βKw+2 = . . . = βKw+ks =
1

ks
. (49)

Constraint (42b) follows by ignoring the secrecy constraint
and specializing [25, Theorem 5] to the erasure BC with weak
and strong receivers considered in this paper.

We simplify this upper bound for the special cases where
only weak receivers have cache memories. More specifically,
we replace the upper bound in (42b), which is obtained from
[25, Theorem 5], by a simpler bound obtained by specializing
the weaker upper bound in [3].

Corollary 1 (Upper Bound on Csec(Mw,Ms = 0)). For each
choice of kw ∈ {0, 1, . . . ,Kw}, the secrecy capacity-memory
tradeoff Csec(Mw,Ms = 0) is upper bounded in the following
two ways:

Csec(Mw,Ms = 0) ≤
(

kw
1− δw

+
Ks

1− δs

)−1
+
kwMw

D
, (50a)

and

Csec(Mw,Ms = 0)

≤ max
β∈[0,1]

min

{
β(δz − δw)+

kw
+ Mw,

β(δz − δw)+ + (1− β)(δz − δs)+

kw + Ks
+

kw
kw + Ks

Mw

}
.

(50b)

Proof. Constraint (50a) follows from [3] and by ignoring the
secrecy constraint. Constraint (50b) is obtained by specializing
(42a) to the case when Ms = 0. We notice that in this case the
constraint that (42a) generates for j = Ks is tighter than any
constraint that it generates for j < Ks. Thus, we can remove
all constraints for j < Ks without affecting the result and we
retain only the constraint in (50b).

IV. CODING SCHEMES AND RESULTS WHEN ONLY WEAK
RECEIVERS HAVE CACHE MEMORIES

Consider the special case where only weak receivers have
cache memories, i.e.

Ms = 0. (51)

In this case, a positive secrecy rate can only be achieved if

δz > δs. (52)

In the remainder of this section we assume that (52) holds.

A. Coding Schemes

We present four coding schemes in the order of increasing
cache requirements. In the first two schemes, only random
keys are placed in the cache memories. The third and fourth
schemes also place parts of the messages in the cache mem-
ories and apply joint cache-channel coding for the delivery
communication where the decoding operations at the receivers
adapt at the same time to the channel statistics and the cache
contents. For simplicity, and because time-sharing is optimal
on an erasure BC to send independent messages to the various
receivers, in some of our schemes communication is divided
into subphases. When applied to general discrete memoryless
BCs, the schemes can be improved by superposing various
subphases on each other.

1) Wiretap and Cached Keys:
Placement phase: Store an independent secret key Ki in

Receiver i’s cache memory, for i ∈ Kw.

Cache at Rx 1

K1

Cache at Rx 2

K2

Cache at RxKw

KKw

Delivery phase: Time-sharing is applied over two sub-
phases, where transmission in the first subphase is to all the
weak receivers and transmission in the second subphase is
to all strong receivers. In Subphase 1, the transmitter uses
a standard (non-secure) broadcast code to send the secured
message tuple

Wsec :=
(

sec
(
Wd1 ,K1

)
, sec

(
Wd2 ,K2

)
,

sec
(
Wd3 ,K3

)
, . . . , sec

(
WdKw

,KKw

))
, (53)

to weak receivers 1, . . . ,Kw, respectively. With the secret key
Ki stored in its cache memory, each weak receiver i ∈ Kw
can then recover a guess of its desired message Wdi . In
Subphase 2, the transmitter uses a wiretap broadcast code [17]
to send messages WdKw+1

, . . . ,WdK to the strong receivers
Kw + 1, . . . ,K, respectively.

For a detailed analysis, see Section VII-A.
2) Cache-Aided Superposition Jamming:
Placement phase: As in the previous subsection, store an

independent secret key Ki in Receiver i’s cache memory, for
i ∈ Kw.

Cache at Rx 1

K1

Cache at Rx 2

K2

Cache at RxKw

KKw

Delivery phase: The transmitter uses a superposition code
to send the secured message tuple

Wsec :=
(
sec
(
Wd1 ,K1

)
, sec

(
Wd2 ,K2

)
,

sec
(
Wd3 ,K3

)
, . . . , sec

(
WdKw

,KKw

))
, (54)

in the cloud center and the non-secure message tuple

Wsat :=
(
WdKw+1

, . . . ,WdK

)
(55)
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in the satellite. The message Wsec sent in the cloud center is
secured by the secret keys K1, . . . ,KKw . If the key rate ex-
ceeds I(X;Z), these secret keys can secure also the message
Wsat sent in the satellite. This holds by Lemma 1 and because
the codeword used to send Wsat is chosen uniformly at random
(depending on the secret keys K1, . . . ,KKw

) over a subset
of the codebook of rate exceeding I(X;Z). If the key rate
is below I(X;Z), then we send an additional randomization
message in the satellite to achieve the desired secrecy. The
code construction in this latter case is depicted in Figure 2.
Weak receivers decode only the cloud center and strong

Cloud center Satellite

Wsec = 2

Wsat = 5

bin
corresponding

to
(Wsec = 2,

Wsat = 5)

Fig. 2. Superposition codebook with randomization messages in the satellites.

receivers the cloud center and the satellite codeword. From
this decoding operation, each strong receiver j ∈ Ks directly
obtains a guess of Wdj . Each weak receiver i ∈ Kw uses the
secret key Ki stored in its cache memory to recover a guess of
its intended message Wdi . Section VII-B presents the details
of the scheme and its analysis.

3) Secure Cache-Aided Piggyback Coding I:

The scheme builds on the nested piggyback coding scheme
in [3], which is rendered secure by applying secret keys to the
produced XOR-messages and by introducing a randomization
message as in wiretap coding. During the placement phase,
each of these secret keys is stored in the cache memories of the
weak receivers that decode the corresponding XOR-message.
We outline the scheme for Kw = 3 weak receivers and Ks = 1
strong receiver.

Divide for each d ∈ D, the message Wd into six submes-
sages

Wd =
(
W

(A)
d,{1},W

(A)
d,{2},W

(A)
d,{3},W

(B)
d,{1,2},W

(B)
d,{1,3},W

(B)
d,{2,3}

)
,

(56)
where the first three are of equal rate and the latter three
are of equal rate. Let K{1,2,3}, K{1,2},K{2,3},K{1,3} be
independent secret keys generated at the transmitter.

Placement phase: Placement is as described in the follow-
ing table:

Cache at Rx 1{
W

(A)
d,{1}

}D
d=1{

W
(B)
d,{1,2},W

(B)
d,{1,3}

}D
d=1

K{1,2,3}

K{1,2},K{1,3}

Cache at Rx 2{
W

(A)
d,{2}

}D
d=1{

W
(B)
d,{1,2},W

(B)
d,{2,3}

}D
d=1

K{1,2,3}

K{1,2},K{2,3}

Cache at Rx 3{
W

(A)
d,{3}

}D
d=1{

W
(B)
d,{1,3},W

(B)
d,{2,3}

}D
d=1

K{1,2,3}

K{1,3},K{2,3}

Delivery phase: Time-sharing is applied over three sub-
phases and Subphase 2 is further divided into 3 periods.

In Subphase 1, the secured message

sec
(
W

(B)
d1,{2,3} ⊕W

(B)
d2,{1,3} ⊕W

(B)
d3,{1,2}, K{1,2,3}

)
(57)

is sent to all three weak receivers using a standard point-to-
point code. With their cache contents, each weak receiver i can
decode the submessage of Wdi sent in this subphase. Commu-
nication is secured when the key K{1,2,3} is sufficiently long.
In Subphase 3, the non-secure message W (A)

d4
is sent to the

strong receiver 4 using a standard wiretap code.
In the first period of Subphase 2, the transmitter uses the

secure piggyback codebook in Figure 3 to transmit the secure
message

W
(A)
sec,{1,2} = sec

(
W

(A)
d1,{2} ⊕W

(A)
d2,{1}, K{1,2}

)
(58)

to Receivers 1 and 2 and the non-secure message W (B)
d4,{1,2} to

Receiver 4. It randomly chooses a codeword in the wiretap
bin indicated by Wsec,{1,2} and W

(B)
d4,{1,2} and sends the

chosen codeword over the channel. Weak receivers 1 and
2 have stored W

(B)
d4,{1,2} in their cache memories and can

decode based on a restricted codebook consisting only of the
bins in the column indicated by W

(B)
d4,{1,2}. Their decoding

performance is thus the same as if this message W
(B)
d4,{1,2}

had not been sent at all. The strong receiver 4 has no cache
memory and decodes both messages based on the entire
codebook. Notice that the secured message Wsec,{1,2} also
acts as randomization message to secure the transmission of
W

(B)
d4,{1,2} to Receiver 4. If this mechanism suffices to secure

W
(B)
d4,{1,2}, then no additional randomization message is needed

in the satellite, i.e., the magenta bin in Figure 3 can be chosen
of size 1.

Similar secure piggyback codebooks are also used during
the second and third periods of Subphase 2 to send messages
sec
(
W

(A)
d1,{3}⊕W

(A)
d3,{1}, K{1,3}

)
and Wd4,{1,3} and messages

sec
(
W

(A)
d2,{3}⊕W

(A)
d3,{2}, K{2,3}

)
and Wd4,{2,3}, respectively.

At the end of the delivery phase, each Receiver k ∈ K
assembles all the guesses pertaining to its desired message
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Wdk and (in case of the weak receivers) all the parts of this
message stored in its cache memory to form the final guess
Ŵk.

W
(A)
sec,{1,2}

W
(B)
d4,{1,2}

Wiretap bin corresponding

to
(
W

(A)
sec,{1,2},W

(B)
d4,{1,2}

)

Fig. 3. Secure piggyback codebook with subcodebooks arranged in an array.
Dots indicate codewords.

Remark 2. The secure piggyback codebook used in Sub-
phase 2 is inspired by the non-secure piggyback coding and
Tuncel coding in [3] and [26], and by the secure coding
scheme for BCs with complementary side-information in [23].
In fact, the main difference to the scheme in [23] is that here
one of the receivers and the transmitter share a common secret
key, which makes it possible to reduce the size of the wiretap
bins or even eliminate them completely.

Interestingly, in this construction, the secret keys
K{1,2},K{1,3},K{2,3} stored at the weak receivers can
be used to “remotely secure” the transmission from the
transmitter to the strong receiver 4.

4) Secure Cache-Aided Piggyback Coding II:
This scheme is similar to the scheme in the previous section,

but simpler. Divide each message Wd into 2 submessages
Wd = (W

(A)
d ,W

(B)
d ) and let K1, . . . ,KKw

be independent
secret keys.

Placement phase: Placement is as depicted in the following.
In particular, each weak receiver i ∈ Kw caches the secret key
Ki and all submessages W (B)

d , for d ∈ D.

Cache at Rx 1{
W

(B)
d

}D
d=1

K1

Cache at Rx 2{
W

(B)
d

}D
d=1

K2

Cache at RxKw{
W

(B)
d

}D
d=1

KKw

Delivery phase: Transmission is in two subphases. In Sub-
phase 1, the secure piggyback codebook is used to send the
secured message tuple

W(A)
sec,w :=

(
sec
(
W

(A)
d1

,K1

)
, . . . , sec

(
W

(A)
dKw

,KKw

))
(59)

to all weak receivers and the non-secure message tuple

W(B)
s :=

(
W

(B)
dKw+1

, . . . , W
(B)
dK

)
(60)

to the strong receivers. The codebook is depicted in Fig-
ure 3 where W

(A)
sec,{1,2} needs to be replaced by W

(A)
sec,w

and W
(B)
d4,{1,2} by W

(B)
s . The weak receivers can reconstruct

W
(B)
s from their cache contents, and thus decode their desired

message tuple W
(A)
sec,w based on the single column of the

codebook indicated by W
(B)
s . From this decoded tuple and

the secret key Ki stored in its cache memory, each weak
receiver i ∈ Kw can then produce a guess of its desired
message part W (A)

di
. The strong receivers decode both message

tuples W
(A)
sec,w and W

(B)
s . Strong receiver j ∈ Ks keeps only

its guess of W (B)
dj

and discards the rest.
Communication in this first subphase is secured because

messages W (A)
d1

, . . . ,W
(A)
dKw

are perfectly secured by one-time
pads and these one-time pads act as random bin indices to
protect the messages W (B)

dKw+1
, . . . ,W

(B)
dK

as in wiretap coding.
In Subphase 2, the message tuple

W(A)
s =

(
W

(A)
dKw+1

, . . . , W
(A)
dK

)
(61)

is sent to all the strong receivers using a point-to-point wiretap
code.

The choice of the rates and the lengths of the subphases are
explained in Section VII-D, where the scheme is also analyzed.

B. Results on the Secrecy Capacity-Memory Tradeoff

Consider the following four rate-memory pairs:

• R(0) :=
(δz − δs)(δz − δw)+

Kw(δz − δs) + Ks(δz − δw)+
, (62a)

M(0) := 0; (62b)

• R(1) :=
(1− δw)(δz − δs)

Ks(1− δw) + Kw(δz − δs)
, (62c)

M(1) :=
(δz − δs) min

{
1− δz, 1− δw

}
Ks(1− δw) + Kw(δz − δs)

; (62d)

• R(2) := min

{
(1− δw)(1− δs)

Ks(1− δw) + Kw(1− δs)
,

(1− δw)(δz − δs)
Ks(1− δw) + Kw(δw − δs)

}
, (62e)

M(2) := min

{
1− δz
Kw

,
(1− δw)(δz − δs)

Ks(1− δw) + Kw(δw − δs)

}
;

(62f)

• R(Kw+2) :=
δz − δs
Ks

, (62g)

M(Kw+2) :=
D · Kw(δz − δs)2

K2
s min{1− δz, 1− δw}+ KsKw(δz − δs)

+
Ks(δz − δs) min {1− δz, 1− δw}

K2
s min{1− δz, 1− δw}+ KsKw(δz − δs)

;
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(62h)

• R(Kw+3) :=
δz − δs
Ks

, (62i)

M(Kw+3) :=
D · (δz − δs)

Ks
, (62j)

and the Kw rate-memory pairs
{

(R(t+2),M(t+2)) : t ∈
{1, . . . ,Kw − 1}

}
defined in (62k) and (62l) on top of the

next page.

Theorem 2 (Lower Bound on Csec(Mw,Ms = 0)).

Csec (Mw,Ms = 0)

≥ upper hull
{(
R(`),M(`)

)
: ` ∈ {0, . . . ,Kw + 3}

}
. (63)

Proof. It suffices to prove achievability of the Kw + 4 rate-
memory pairs {(R(`),M(`)) : ` = 0, . . . ,Kw + 3}. Achiev-
ability of the upper convex hull follows by time/memory
sharing arguments as in [1]. The pair (R(0),M(0)) is achiev-
able by Remark 1. The pair (R(1),M(1)) is achieved by
the “wiretap and cached keys” scheme described and ana-
lyzed in Sections IV-A1 and VII-A. The pair (R(2),M(2)) is
achieved by the “cache-aided superposition jamming” scheme
described and analyzed in Sections IV-A2 and VII-B. The
pairs (R(t+2),M(t+2)), for t ∈ {1, . . . ,Kw − 1}, are achieved
by the “secure cache-aided piggyback coding I” scheme
described and analyzed in Sections IV-A3 and VII-C. The
pair (R(Kw+2),M(Kw+2)) is achieved by the “secure cache-
aided piggyback coding II” scheme described and analyzed
in Sections IV-A4 and VII-D. The pair (R(Kw+3),M(Kw+3))
is achieved by storing the entire library in the cache memory
of each weak receiver and by applying a standard wiretap
BC code [17] to send the requested messages to the strong
receivers.

Interestingly, upper and lower bounds in Corollary 1 and
Theorem 2 match for small and large Mw irrespective of the
number of weak and strong receivers Kw and Ks. In the
absence of a secrecy constraint, the best upper and lower
bounds for small Mw match only when Kw = 1, irrespective
of the value of Ks [3], [5].

Corollary 2. For small cache memories Mw ∈ [0,M(1)]

Csec (Mw,Ms = 0)

= R(0) +
Kw(δz − δs)

Kw(δz − δs) + Ks(δz − δw)+
Mw, (64)

where R(0) is defined in (62a) and M(1) is defined in (62d).

Proof: Achievability follows from the two achievable
rate-memory pairs (R(0),M(0)) and (R(1),M(1)) in (62a)–
(62d) and by time/memory-sharing arguments. The converse
follows from upper bound (50b) in Corollary 1 when spe-
cialized to kw = Kw. In fact, for kw = Kw and cache size
Mw ∈ [0,M(1)], the maximizing β is:

β =
(δz − δs)− KsMw

Kw(δz − δs) + Ks(δz − δw)+
Kw. (65)

This choice of β makes the two terms in the minimization
(50b) equal.

Notice that when δz ≤ δw, then (64) specializes to

Csec (Mw,Ms = 0) = Mw, 0 ≤ Mw ≤ M(1). (66)

The secrecy capacity thus grows in the same way as the cache
size at weak receivers. This is achieved with the “Wiretap and
Cached Keys” scheme of Subsection VII-A.

Notice that in this case the secrecy capacity-memory trade-
off Csec (Mw,Ms = 0) grows much faster in the cache size
Mw than its non-secure counterpart C(Mw,Ms = 0). In fact,
by the upper bound in [3], the maximum slope of the standard
capacity-memory tradeoff

γ := max
m≥0

{
dC(Mw,Ms = 0)

dMw

∣∣∣∣∣
Mw=m

}
(67)

is at most
γ ≤ KwMw

D
. (68)

By the above Corollary 2 and the concavity of
Csec(Mw,Ms = 0) in Mw, the maximum slope of the secrecy
capacity-memory tradeoff

γsec := max
m≥0

{
dCsec(Mw,Ms = 0)

dMw

∣∣∣∣∣
Mw=m

}
(69)

is

γsec = lim
m→0

{
dCsec(Mw,Ms = 0)

dMw

∣∣∣∣∣
Mw=m

}

=
Kw(δz − δs)

Kw(δz − δs) + Ks(δz − δw)+
Mw. (70)

So in contrast to the maximum slope of the standard capacity-
memory tradeoff γ, the maximum slope of the secrecy
capacity-memory tradeoff γsec does not deteriorate with the
size of the library D. The reason for this discrepancy is that
in the setup with secrecy constraint an optimal strategy for
small cache memories is to exclusively place secret keys in
the cache memories. In this case, each bit of the cache content
is useful irrespective of the specifically demanded files. In a
setup without secrecy constraint, only data is placed in the
cache memories. So, at least on an intuitive level, each bit of
cache memory is useful only under some of the demands.

We turn to the regime of large cache memories.

Corollary 3. When the cache memory Mw is large:

Csec (Mw,Ms = 0) =
δz − δs
Ks

, Mw ≥ M(Kw+2), (71)

where M(Kw+2) is defined in (62h).

The rate-memory pairs (62k)–(62h) are attained by means of
joint cache-channel coding where the decoders simultaneously
adapt to the cache contents and the channel statistics. To
emphasize the strength of the joint coding approach, we
characterize the rates that are securely achievable under a
separate cache-channel coding approach.

Define the following rate-memory pair:

R(1)
sep := min

{
(1− δw)(1− δs)

Ks(1− δw) + Kw(1− δs)
,



11

R(t+2) :=
(t+ 1)(1− δw)(δz − δs)

[
Kst(1− δw) + (Kw − t+ 1) min {δw − δs, δz − δs}

]
(Kw− t+ 1)(δz − δs)

[
Ks(t+ 1)(1− δw)+(Kw− t) min {δw − δs, δz − δs}

]
+ K2

st(t+ 1)(1− δw)2
, (62k)

M(t+2) :=
D · t(t+ 1)(1− δw)(δz − δs)

[
Ks(t− 1)(1− δw) + (Kw − t+ 1) min {δw − δs, δz − δs}

]
Kw
[
(Kw− t+ 1)(δz − δs)[Ks(t+ 1)(1− δw)+(Kw− t) min {δw − δs, δz − δs}]+ K2

st(t+ 1)(1− δw)2
]

+
(t+ 1)(Kw − t+ 1)(δz − δs) min {1− δz, 1− δw}

[
Kst(1− δw) + (Kw − t) min {δw − δs, δz − δs}

]
Kw
[
(Kw− t+ 1)(δz − δs)[Ks(t+ 1)(1− δw)+(Kw− t) min {δw − δs, δz − δs}]+ K2

st(t+ 1)(1− δw)2
] (62l)

(1− δw)(δz − δs)
Ks(1− δw) + Kw(δw − δs)

}
, (72a)

M(1)
sep := min

{
(1− δw)(1− δs)

Ks(1− δw) + Kw(δw − δs)
,

(1− δw)(δz − δs)
Ks(1− δw) + Kw(δw − δs)

}
, (72b)

and for t ∈ {0, 1, . . . ,Kw − 1}, define the following rate-
memory pairs:

R(t+2)
sep :=

(t+ 1)(1− δw)(δz − δs)
Ks(t+ 1)(1− δw) + (Kw − t)(δz − δs)

, (72c)

M(t+2)
sep :=

Dt+ (Kw − t)
Kw

· (t+ 1)(1− δw)(δz − δs)
Ks(t+ 1)(1− δw) + (Kw − t)(δz − δs)

] . (72d)

Proposition 1. Any rate R > 0 is achievable by means of
separate cache-channel coding, if it satisfies

R ≤ upper hull
{{(

R(0),M(0)
)
,
(
R(Kw+3),M(Kw+3)

)}
⋃ {(

R(j)
sep ,M

(j)
sep

)}Kw+1

j=1

}
. (73)

Proof: The rate-memory tuples
{

(R(`),M(`)) : ` =
0,Kw + 3

}
in (62a)–(62b) and (62i)–(62j) correspond to

the capacity-memory tradeoffs without cache memory and
the capacity-memory tradeoffs when the entire library is
stored in each weak receiver’s cache memory, respectively.
It can be verified that these schemes apply a separate cache-
channel coding architecture. Rate-memory pair

(
R

(1)
sep ,M

(1)
sep
)

is
achieved by the “cache-aided superposition jamming” scheme
in Subsection VII-B, but with a key size equal to the message
rate R. The key size here is larger than in the scheme
in Subsection VII-B, because we insist on separate cache-
channel coding where keys stored in cache memories can-
not be combined with wiretap coding. Rate-memory pairs{(
R

(t+2)
sep ,M

(t+2)
sep

)
: t = 0, 1, . . . ,Kw − 1

}
are achieved by

a scheme that communicates to weak and strong receivers
in two independent phases: in the first phase the Sengupta-
Clancy-Tandon secure coded caching scheme [6] is combined
with a standard optimal BC code to communicate to the weak
receivers, and in the second phase a standard wiretap BC code
is used to communicate to the strong receivers.

Mw

C
se

c(
M

w
,M

s
=

0
)

0
0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1

UB on Csec(Mw, 0)

LB on Csec(Mw, 0) using joint coding
LB on Csec(Mw, 0) using separate coding
LB on C(Mw, 0)(a)

(b)
(c)

(d) (e)

Fig. 4. Upper and lower bounds on Csec(Mw,Ms = 0) for δw = 0.7,
δs = 0.3, δz = 0.8, D = 30, Kw = 5, and Ks = 15. For the upper bound,
the bound in (50a) dominates over (50b) only when 0.03 ≤ Mw ≤ 0.04. For
other values of Mw , the bound in (50b) dominates over (50a). Notice that the
eavesdropper is weaker than all legitimate receivers.

We notice from this Proposition 1 and from Theorem 2
that for certain channel parameters and cache sizes, separate
cache-channel coding achieves the same performance as our
joint source-channel coding schemes. For example, when each
of the six minimizations in (62c)–(62f) and in (72a)–(72b) is
attained by the second term (which is the case, e.g., when
δz < δw), then

R(1) = R(2)
sep (74)

M(1) = M(2)
sep (75)

and

R(2) = R(1)
sep (76)

M(2) = M(1)
sep , (77)

and thus for all Mw ≤ max{M(1),M(2)} separate cache-
channel coding achieves the performance of our joint cache-
channel coding schemes. For all other cache sizes Mw >
max{M(1),M(2)}, the rates achieved by our joint cache-
channel coding schemes of Theorem 2 are generally higher
than the rates in Proposition 1.

C. Numerical Comparisons

In Figure 4, we compare the presented bounds at hand of
an example with 5 weak and 15 strong receivers and where
the eavesdropper is degraded with respect to all receivers.
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The figure shows the upper and lower bounds on the secrecy
capacity-memory tradeoff Csec(Mw,Ms = 0) in Corollary 1
and Theorem 2. It also shows the rates achieved by the separate
cache-channel coding scheme leading to Proposition 1. Finally,
the figure presents the lower bound on the standard capacity-
memory tradeoff in [3].

The presented lower bound of Theorem 2 (see the black
solid line in Figure 4) is piece-wise linear with the end points
of the pieces corresponding to the points in (62). The left-
most point (a) corresponds to the capacity in the absence of
cache memories. The second and third left-most points (b)
and (c) are obtained by storing only secret keys in the cache
memories. The right-most point (e) corresponds to the point
where the messages can be sent at the same rate as if only
strong receivers were present in the system. This performance
is trivially achieved by storing all messages in each of the
weak receivers’ cache memories and holding the delivery
communication only to strong receivers. After this point, the
capacity cannot be increased further because strong receivers
do not have cache memories. Through coding, the same rate
can also be achieved without storing the entire library at each
weak receiver, see the second right-most point (d).

For small and large cache memories, our upper and lower
bounds are exact. This shows that in the regime of small
cache memories, it is optimal to place only secret keys in
the weak receivers’ cache memories. In this regime, the slope
of Csec(Mw,Ms = 0) in Mw is steep (see Corollary 2
and Equation (70)) because the secret keys stored in the
cache memories are always helpful, irrespective of the specific
demands d. In particular, the slope is not divided by the library
size D as is the case in the traditional caching setup without
secrecy constraint.

In the regime of moderate or large cache memories, the
proposed placement strategies also store information about the
messages in the cache memories. In this regime, the slope Csec
is smaller and proportional to 1

D , because only a fraction of
the cache content is effectively helpful for a specific demand
d.

In the presented example, the proposed separate cache-
channel coding performs strictly worse than joint cache-
channel coding except for the single rate-memory pair (c).
(To see that equality holds in (c), notice that for the present
example, the second term in the min is active in all four
expressions (62e), (62f), (72a), and (72b).)

Figure 5 shows the bounds for an example where the
eavesdropper is stronger than the weak receivers but not the
strong receivers:

δs < δz < δw. (78)

It shows that positive rates can be achieved even if δz ≤ δw,
because messages sent to weak receivers can be specially
secured by means of one-time pads using the secret keys
stored in their cache memories. In this case, our separate and
joint cache-channel coding schemes achieve the same rates
for small cache memories. (See also the paragraph following
Proposition 1.)

Mw

C
se

c(
M

w
,M

s
=

0
)

0
0

0.02

0.015

0.01

0.005

0.1 0.2 0.3 0.4 0.5 0.6

UB on Csec(Mw, 0)

LB on Csec(Mw, 0) using joint coding
LB on Csec(Mw, 0) using separate coding

Fig. 5. Upper and lower bounds on Csec(Mw,Ms = 0) for δw = 0.8,
δs = 0.3, δz = 0.6, D = 30, Kw = 5, and Ks = 15. For the upper bound,
the bound in (50b) dominates over (50a) for all values of Mw . Notice that
the eavesdropper is stronger than weak receivers.

V. CODING SCHEMES AND RESULTS WHEN ALL
RECEIVERS HAVE CACHE MEMORIES

We turn to the case where all receivers have cache mem-
ories, so Mw,Ms > 0. In this case, we do not impose any
constraint on the eavesdropper’s channel, so δz can be larger
or smaller than δs, δw.

A. Coding Schemes

We present four coding schemes. The first one only stores
secret keys in all the cache memories, the second one stores
keys in all cache memories and data at weak receivers, and
the last two schemes store keys and data at all the receivers.

1) Cached Keys:
Placement phase: Store independent secret keys

K1, . . . ,KK in the cache memories of Receivers 1, . . . ,K:

Cache at Rx 1

K1

Cache at Rx 2

K2

Cache at RxKw

KKw

Delivery phase: Apply a standard (non-secure) broadcast
code to send the secured message tuple

Wsec :=
(
sec
(
Wd1 ,K1

)
, sec

(
Wd2 ,K2

)
,

sec
(
Wd3 ,K3

)
, . . . , sec

(
WdKw

,KKw

))
, (79)

to Receivers 1, . . . ,K, respectively. With the secret key Kk

stored in its cache memory, each Receiver k ∈ K recovers a
guess of its desired message Wdk . See Section VIII-A on how
to choose the parameters of the scheme.

2) Secure Cache-Aided Piggyback Coding with Keys at All
Receivers:

The difference between this scheme and the secure cache-
aided piggyback coding scheme of Sections IV-A3 and VII-C
is that additional secret keys are placed in the cache memories
of weak and strong receivers so that communications in
Subphases 2 and 3 can entirely be secured with these keys,
i.e., no wiretap binning is required.
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We outline the scheme for Kw = 3 weak receivers and
Ks = 1 strong receiver. For a detailed description and an
analysis in the general case, see Section VIII-B.
Divide for each d ∈ D the message Wd into six submessages

Wd =
(
W

(A)
d,{1},W

(A)
d,{2},W

(A)
d,{3},W

(B)
d,{1,2},W

(B)
d,{1,3},W

(B)
d,{2,3}

)
,

(80)
where the first three are of equal rate and the latter three are
of equal rate.

Placement phase: Placement is as described in the follow-
ing table, where K{1,2,3}, K{1,2}, K{2,3}, K{1,3}, K4,{1,2},
K4,{2,3}, K4,{1,3}, K{4} denote independent secret keys.

Cache at Rx 1{
W

(A)
d,{1}

}D
d=1{

W
(B)
d,{1,2},W

(B)
d,{1,3}

}D
d=1

K{1,2,3}

K{1,2},K{1,3}

K4,{1,2},K4,{1,3}

Cache at Rx 2{
W

(A)
d,{2}

}D
d=1{

W
(B)
d,{1,2},W

(B)
d,{2,3}

}D
d=1

K{1,2,3}

K{1,2},K{2,3}

K4,{1,2},K4,{2,3}

Cache at Rx 3{
W

(A)
d,{3}

}D
d=1{

W
(B)
d,{1,3},W

(B)
d,{2,3}

}D
d=1

K{1,2,3}

K{1,3},K{2,3}

K4,{1,3},K4,{2,3}

Cache at Rx 4

K4

K4,{1,2}

K4,{1,3}

K4,{2,3}

Delivery phase: Time-sharing is applied over three sub-
phases and Subphase 2 is further divided into 3 periods.
Transmission in Subphase 1 is as described in Section IV-A3.
In Subphase 3, the secured message sec

(
W

(A)
d4

,K4

)
is sent

to the strong receiver 4 using a standard point-to-point code.
This transmission is secure if the key K4 is chosen sufficiently
long.

In the first period of Subphase 2, the transmitter uses the
standard piggyback codebook in Figure 6 to transmit the
secure message

W
(A)
sec,{1,2} = sec

(
W

(A)
d1,{2} ⊕W

(A)
d2,{1}, K{1,2}

)
(81)

to Receivers 1 and 2 and the secure message

W
(B)
sec,{4} = sec

(
W

(B)
d4,{1,2},K4,{1,2}

)
(82)

to Receiver 4. Receivers 1 and 2 can reconstruct W (B)
sec,{4}

from their cache contents, and thus decode message W(A)
sec,{1,2}

based solely on the column of the codebook that corresponds
to W

(B)
sec,{4}. Receiver 4 decodes both messages W

(A)
sec,{1,2}

and W
(B)
sec,{4}. From the decoded secured messages and the

keys stored in their cache memories, Receivers 1, 2, and 4

can recover their desired message parts W (A)
d1,{2},W

(A)
d2,{1} and

W
(B)
d4,{1,2}.

W
(A)
sec,{1,2}

W
(B)
sec,{4}

Codeword corresponding

to
(
W

(A)
sec,{1,2},W

(B)
sec,{4}

)

Fig. 6. Standard piggyback codebook where only a single codeword (indicated
by a single dot) is assigned to each pair of messages.

In the same way, using a standard piggyback codebook,
the secured messages sec

(
W

(A)
d1,{3} ⊕ W

(A)
d3,{1}, K{1,3}

)
and

sec
(
W

(B)
d4,{1,3},K4,{1,3}

)
are transmitted in Period 2 to Re-

ceivers 1, 3, and 4, and the secured messages sec
(
W

(A)
d2,{3} ⊕

W
(A)
d3,{2}, K{2,3}

)
and sec

(
W

(B)
d4,{2,3},K4,{2,3}

)
are transmit-

ted in Period 3 to Receivers 2, 3, and 4.
3) Symmetric Secure Piggyback Coding:
Each message is split into two submessages Wd =

(W
(A)
d ,W

(B)
d ), and communication is in three subphases.

Submessages of {W (A)
d } and corresponding secret keys are

placed in weak receivers’ cache memories according to the
Sengupta et al. secure coded caching placement algorithm [6].
Submessages of {W (B)

d } and corresponding secret keys are
placed in strong receivers’ cache memories according to the
same placement algorithm. In Subphase 1, the Sengupta et al.
delivery scheme for submessages {W (A)

d } is combined with
a standard BC code to transmit only to weak receivers and
in Subphase 3 it is combined with a standard BC code to
transmit only to strong receivers. Transmission in Subphase 2
is divided into into KwKs periods, each dedicated to a pair of
weak and strong receivers i ∈ Kw and j ∈ Ks. A standard
piggyback codebook is used in each of these periods to send
secured messages to the corresponding pair of receivers. The
secret keys securing these messages have been pre-placed in
the appropriate cache memories.

We now describe the scheme in more detail for the special
case Kw = 3 and Ks = 2, and for parameters tw = 2 and
ts = 1. The general scheme is described and analyzed in
Section VIII-C.

Divide each Wd into six submessages

Wd =
(
W

(A)
d,{1,2},W

(A)
d,{1,3},W

(A)
d,{2,3},W

(B)
d,{4},W

(B)
d,{5}

)
, d ∈ D,

(83)
where the first three are of equal rate and the latter two are
of equal rate.
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Placement phase: Generate independent secret keys
K{1,2,3}, Kw,{1,4}, Kw,{1,5}, Kw,{2,4}, Kw,{2,5}, Kw,{3,4},
Kw,{3,5}, Ks,{1,4}, Ks,{1,5}, Ks,{2,4}, Ks,{2,5}, Ks,{3,4},
Ks,{3,5}, K{4,5}.

Placement of information in the cache memories is as
indicated in the following table.

Cache at Rx 1{
W

(A)
d,{1,2},W

(A)
d,{1,3}

}D

d=1

K{1,2,3}

Kw,{1,4},Kw,{1,5}

Ks,{1,4},Ks,{1,5}

Cache at Rx 2{
W

(A)
d,{1,2},W

(A)
d,{2,3}

}D

d=1

K{1,2,3}

Kw,{2,4},Kw,{2,5}

Ks,{2,4},Ks,{2,5}

Cache at Rx 3{
W

(A)
d,{1,3},W

(A)
d,{2,3}

}D

d=1

K{1,2,3}

Kw,{3,4},Kw,{3,5}

Ks,{3,4},Ks,{3,5}

Cache at Rx 4{
W

(B)
d,{4}

}D

d=1

Kw,{1,4},Kw,{2,4},Kw,{3,4}

Ks,{1,4},Ks,{2,4},Ks,{3,4}

K{4,5}

Cache at Rx 5{
W

(B)
d,{5}

}D

d=1

Kw,{1,5},Kw,{2,5},Kw,{3,5}

Ks,{1,5},Ks,{2,5},Ks,{3,5}

K{4,5}

Delivery phase: The delivery phase is divided into three
subphases, where Subphase 2 is further divided into 6 periods.

Subphase 1 is intended only for weak receivers. The trans-
mitter sends the secured message

W
(A)
sec,{1,2,3}

= sec
(
W

(A)
d1,{2,3} ⊕W

(A)
d2,{1,3} ⊕W

(A)
d3,{1,2}, K{1,2,3}

)
(84)

using a capacity-achieving code to the weak receivers 1, 2, and
3. With their cache contents, each of these weak receivers can
decode its desired submessage.

The first period of Subphase 2 is dedicated to Receivers 1
and 4. The transmitter sends the secured messages

W
(B)
sec,1,4 = sec

(
W

(B)
d1,{4},Kw,{1,4}

)
(85)

and
W

(A)
sec,4,1 = sec

(
W

(A)
d4,{1,2},Ks,{1,4}

)
(86)

using a standard piggyback codebook where rows encode
W

(B)
sec,1,4 and columns encode W (A)

sec,4,1. (This corresponds to
the piggyback codebook in Figure 6 where W

(A)
sec,{1,2} needs

to be replaced by W
(B)
sec,1,4 and W

(B)
sec,{4}by W

(A)
sec,4,1.) Since

Receiver 1 can reconstruct W (A)
sec,4,1 from its cache content, it

decodes W (B)
sec,1,4 based on the single column of the piggyback

codebook indicated by W
(A)
sec,4,1. Similarly, since Receiver 4

can reconstruct W (B)
sec,1,4 from its cache content, it decodes

W
(A)
sec,4,1 based on the single row corresponding to W

(B)
sec,1,4.

With their decoded secure messages and the secret keys in
their cache memories, Receiver 1 can recover W (B)

d1,{4} and

Receiver 4 can recover W (A)
d4,{1,2}.

A similar scheme is used in the subsequent periods to
convey the parts W (B)

d1
,W

(B)
d2

, W (B)
d3

, W (A)
d4

, W (A)
d5

that are
not stored in their cache memories to Receivers 1–5. Table I
shows the concerned receivers, the conveyed messages and the
keys used in each period of Subphase 2. (Notice that there are
different choices on how to fill in the last row. For example, a
cyclic shift (to the right) between the first three elements and
a cyclic shift (to the right) between the last three elements,
is possible as well. The performance of the scheme would be
unchanged. The important aspect is that for each column, the
element indicated in the last row is stored in the cache memory
of the weak receiver indicated in the first row.)

In Subphase 3, the transmitter sends

W
(B)
sec,{4,5} = sec

(
W

(B)
d4,{5} ⊕W

(B)
d5,{4}, K{4,5}

)
(87)

using a capacity-achieving code to the strong receivers 4 and 5.
With their cache contents, each receiver can decode its desired
submessage sent in this subphase.

Choosing all keys sufficiently long ensures that the delivery
communication satisfies the secrecy constraint (24).

4) Secure Generalized Coded Caching:
The scheme is based on the generalized coded caching

algorithms of [25], but where the produced zero-padded XORs
are secured with independent secret keys and these keys are
placed in the cache memories of the receivers that decode the
XORs. Choosing the secret keys sufficient long, ensures than
the secrecy constraint (24) is satisfied.

B. Results on the Secrecy Capacity-Memory Tradeoff

Consider the following K+Kw+KwKs rate-memory tuples.
Let R̃(0) = R(0) and M̃

(0)
w = M̃

(0)
s = 0.

• Let

R̃(1) :=
(1− δs)(1− δw)

Kw(1− δs) + Ks(1− δw)
, (88a)

M̃(1)
w :=

(1− δs) min
{

1− δz, 1− δw
}

Kw(1− δs) + Ks(1− δw)
, (88b)

M̃(1)
s :=

(1− δw) min
{

1− δz, 1− δs
}

Kw(1− δs) + Ks(1− δw)
; (88c)

• For t ∈ {1, . . . ,Kw − 1}, let R̃(t+1), M̃(t+1)
w and M̃

(t+1)
s

defined in (88d), (88e) and (88f) on top of the next page.
• For each pair tw ∈ {1, . . . ,Kw} and ts ∈
{1, . . . ,Ks}, let R̃(Kw+(tw−1)Ks+ts) , M̃(Kw+(tw−1)Ks+ts)

w

and M̃
(Kw+(tw−1)Ks+ts)
s be defined as in (88g), (88h) and

(88i) on top of the next page.
• For t ∈ {1, . . . ,K − 1}, let R̃(Kw+KwKs+t) ,
M̃

(Kw+KwKs+t)
w and M̃

(Kw+KwKs+t)
s be defined as in (88j),

(88k) and (88l) on top of the next page.
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TABLE I
MESSAGES SENT AND KEYS USED IN THE SIX PERIODS OF SUBPHASE 2 FOR THE EXAMPLE WITH Kw = 3 WEAK RECEIVERS AND Ks = 2 STRONG

RECEIVERS.

Subphase 2

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

Receivers 1, 4 2, 4 3, 4 1, 5 2, 5 3, 5

Keys Kw,{1,4},Ks,{1,4} Kw,{2,4},Ks,{2,4} Kw,{3,4},Ks,{3,4} Kw,{1,5},Ks,{1,5} Kw,{2,5},Ks,{2,5} Kw,{3,5},Ks,{3,5}

Messages for
weak receivers

W
(B)
d1,{4}

W
(B)
d2,{4}

W
(B)
d3,{4}

W
(B)
d1,{5}

W
(B)
d2,{5}

W
(B)
d3,{5}

Messages for
strong receivers

W
(A)
d4,{1,2}

W
(A)
d4,{2,3}

W
(A)
d4,{1,3}

W
(A)
d5,{1,2}

W
(A)
d5,{2,3}

W
(A)
d5,{1,3}

Theorem 3 (Lower bound on Csec(Mw,Ms)).

Csec (Mw,Ms)

≥ upper hull
{(

R̃(`), M̃(`)
w , M̃(`)

s

)
:

` ∈ {0, 1, . . . ,K + Kw + KwKs − 1}
}
. (89)

Proof. By time/memory-sharing arguments, it suffices
to prove the achievability of the rate-memory triples{

(R̃(`), M̃
(`)
w , M̃

(`)
s ) : ` ∈ {0, 1, . . . ,K + Kw + KwKs − 1}

}
.

The triple {(R̃(1), M̃
(1)
w , M̃

(1)
s ) is achieved by the “cached

keys” scheme, see Subsections V-A1 and VIII-A. The triples
(R̃(`), M̃

(`)
w , M̃

(`)
s ), for ` ∈ {2, . . . ,Kw}

}
, are achieved

by the “secure piggyback coding scheme with keys at all
receivers”, see Subsections V-A2 and VIII-B. The triples
(R̃(`), M̃

(`)
w , M̃

(`)
s ), for ` ∈ {Kw + 1, . . . ,Kw + KwKs}

}
,

are achieved by the “symmetric secure piggyback
coding” scheme, see Subsections V-A3 and
VIII-C. Finally, the triples (R̃(`), M̃

(`)
w , M̃

(`)
s ), for

` ∈ {Kw + KwKs + 1, . . . ,K + Kw + KwKs − 1}, are
achieved by the “secure generalized coded caching” scheme
sketched in Section V-A4.

Corollary 4. The rate-memory tradeoff
(
R̃(1), M̃

(1)
w , M̃

(1)
s

)
is

optimal, i.e.,

Csec

(
Mw = M̃(1)

w ,Ms = M̃(1)
s

)
= R̃(1). (90)

Proof: Achievability follows from the two achievable
rate-memory triples (R̃(0), M̃

(0)
w = 0, M̃

(0)
s = 0) and

(R̃(1), M̃
(1)
w , M̃

(1)
s ) in (88a)–(88c) and by time/memory-sharing

arguments. The converse follows by specializing upper bound
(42a) in Theorem 1 to kw = Kw and ks = Ks. In fact,
for kw = Kw, ks = Ks, and cache sizes Mw = M̃

(1)
w and

Ms = M̃
(1)
s , the maximizing β equals

β =
Kw(1− δs)

Kw(1− δs) + Ks(1− δw)
(91)

when δz < δw, and it equals β = 0 when δz ≥ δw.
Notice that when δz ≤ δs, then

R̃(1) = M̃(1)
w = M̃(1)

s . (92)

This rate is achieved by XORing the messages with secret keys
stored in the cache memories, and by sending the resulting bits
using a traditional non-secure code for the erasure BC.

VI. GLOBAL SECRECY CAPACITY-MEMORY TRADEOFF

In the preceding sections, we considered scenarios with
unequal cache sizes at the receivers and showed that in these
scenarios joint cache-channel coding schemes can significantly
improve over the traditional separation-based schemes with
their typical uniform cache assignment. In this section, we
emphasize the importance of unequal cache sizes that depend
on the receivers’ channel conditions by focusing on the global
secrecy capacity-memory tradeoff Csec,glob, which is the largest
secrecy capacity-memory tradeoff that is possible given a total
cache budget

KwMw + KsMs ≤ Mtot. (93)

We assign the same cache memory size Mw to all weak
receivers and the same cache memory size Ms to all strong
receivers. Using simple time/memory-sharing arguments, it
can be shown that this assumption is without loss in optimality.

So, the main quantity of interest in this section is

Csec,glob(Mtot) := max
Mw,Ms≥0:

KwMw+KsMs≤Mtot

Csec(Mw,Ms). (94)

A. Results

Using the achievability results in Theorems 2 and 3 com-
bined with an appropriate cache assignment and time/memory-
sharing arguments, yields the following lower bound on
Csec,glob(Mtot).

Corollary 5. (Lower bound on Csec,glob(Mtot)) The global
secrecy capacity-memory tradeoff Csec,glob is lower bounded
as

Csec,glob(Mtot)

≥ upper hull
{{(

R(`),Mtot = KwM
(`)
s

)}Kw+3

`=0
,

⋃ {(
R̃(`′),M`′

tot

)}K+Kw+KwKs−1

`′=1

}
, (95)
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R̃(t+1) :=
(t+ 1)(1− δw)(1− δs)

[
Kst(1− δw) + (Kw − t+ 1)(δw − δs)

]
(Kw − t+ 1)(1− δs)

[
Ks(t+ 1)(1− δw) + (Kw − t)(δw − δs)

]
+ K2

st(t+ 1)(1− δw)2
, (88d)

M̃(t+1)
w :=

D · t(t+ 1)(1− δw)(1− δs)
[
Ks(t− 1)(1− δw) + (Kw − t+ 1)(δw − δs)

]
Kw
[
(Kw − t+ 1)(1− δs)[Ks(t+ 1)(1− δw) + (Kw − t)(δw − δs)] + K2

st(t+ 1)(1− δw)2
]

+
Kst(t+ 1)(Kw − t+ 1)(1− δw)(1− δs) min{1− δz, 1− δs}

Kw
[
(Kw − t+ 1)(1− δs)[Ks(t+ 1)(1− δw) + (Kw − t)(δw − δs)] + K2

st(t+ 1)(1− δw)2
]

+
(t+ 1)(Kw − t)(Kw − t+ 1)(1− δs)(δw − δs) min {1− δz, 1− δw}

]
Kw
[
(Kw − t+ 1)(1− δs)[Ks(t+ 1)(1− δw) + (Kw − t)(δw − δs)] + K2

st(t+ 1)(1− δw)2
] , (88e)

M̃(t+1)
s :=

Kst(t+ 1)(1− δw)2 min {1− δz, 1− δs}
(Kw − t+ 1)(1− δs)

[
Ks(t+ 1)(1− δw) + (Kw − t)(δw − δs)

]
+ K2

st(t+ 1)(1− δw)2

+
(t+ 1)(Kw − t+ 1)(1− δw)(1− δs) min {(δw − δz)+, δw − δs}

(Kw − t+ 1)(1− δs)
[
Ks(t+ 1)(1− δw) + (Kw − t)(δw − δs)

]
+ K2

st(t+ 1)(1− δw)2
; (88f)

R̃(Kw+(tw−1)Ks+ts) :=
(tw + 1)(ts + 1)(1− δw)(1− δs)

[
Ks(1− δw) + Kw(1− δs)

]
Kw(Kw− tw)(ts+ 1)(1− δs)2+Ks(tw+ 1)(1− δw)

[
(Ks− ts)(1− δw)+Kw(ts+ 1)(1− δs)

] ,
(88g)

M̃(Kw+(tw−1)Ks+ts)
w :=

(tw + 1)(ts + 1)(1− δs)2
[
D · tw(1− δw) + (Kw − tw) min {1− δz, 1− δw}

]
Kw(Kw− tw)(ts+ 1)(1− δs)2+Ks(tw+ 1)(1− δw)

[
(Ks− ts)(1− δw)+Kw(ts+ 1)(1− δs)

]
+

Ks(tw + 1)(ts + 1)(1− δw)(1− δs) min {1− δz, 2− δw − δs}
Kw(Kw− tw)(ts+ 1)(1− δs)2+Ks(tw+ 1)(1− δw)

[
(Ks− ts)(1− δw)+Kw(ts+ 1)(1− δs)

] ,
(88h)

M̃(Kw+(tw−1)Ks+ts)
s :=

(tw + 1)(ts + 1)(1− δw)2
[
D · ts(1− δs) + (Ks − ts) min {1− δz, 1− δs}

]
Kw(Kw− tw)(ts+ 1)(1− δs)2+Ks(tw+ 1)(1− δw)

[
(Ks− ts)(1− δw)+Kw(ts+ 1)(1− δs)

]
+

Kw(tw + 1)(ts + 1)(1− δw)(1− δs) min {1− δz, 2− δw − δs}
Kw(Kw− tw)(ts+ 1)(1− δs)2+Ks(tw+ 1)(1− δw)

[
(Ks− ts)(1− δw)+Kw(ts+ 1)(1− δs)

] ;
(88i)

R̃(Kw+KwKs+t) :=

∑min{t,Kw}
tw=max{0,t−Ks}

(
Kw

tw

)(
Ks

t−tw

)
(1− δw)−tw(1− δs)tw∑min{t+1,Kw}

tw=max{0,t+1−Ks}
(
Kw

tw

)(
Ks

t+1−tw

)
(1− δw)−tw(1− δs)tw−1

, (88j)

M̃(Kw+KwKs+t)
w :=

D ·
∑min{t,Kw}
tw=max{1,t−Ks}

(
Kw−1
tw−1

)(
Ks

t−tw

)
(1− δw)−tw(1− δs)tw∑min{t+1,Kw}

tw=max{0,t+1−Ks}
(
Kw

tw

)(
Ks

t+1−tw

)
(1− δw)−tw(1− δs)tw−1

+ min

 (t+ 1)(1− δz)
K

,
(1− δw)−tw(1− δs)tw

[(
K−1
t

)
(1− δs)−

(
Kw−1
t

)
(δw − δs)

]
∑min{t+1,Kw}
tw=max{0,t+1−Ks}

(
Kw

tw

)(
Ks

t+1−tw

)
(1− δw)−tw(1− δs)tw

 , (88k)

M̃(Kw+KwKs+t)
s :=

D ·
∑min{t−1,Kw}
tw=max{0,t−Ks}

(
Kw

tw

)(
Ks−1
t−tw−1

)
(1− δw)−tw(1− δs)tw∑min{t+1,Kw}

tw=max{0,t+1−Ks}
(
Kw

tw

)(
Ks

t+1−tw

)
(1− δw)−tw(1− δs)tw−1

+ min

 (t+ 1)(1− δz)
K

,

(
K−1
t

)
(1− δw)−tw(1− δs)tw+1∑min{t+1,Kw}

tw=max{0,t+1−Ks}
(
Kw

tw

)(
Ks

t+1−tw

)
(1− δw)−tw(1− δs)tw

 . (88l)

where M− tot`
′

:= KwM̃
(`′)
w + KsM̃

(`′)
s .

Proposition 2. If the eavesdropper is weaker than the strong
receivers, i.e.,

δz > δs, (96)

then for small cache sizes Mtot ∈ [0,KwM
(1)]:

Csec,glob(Mtot) = R(0) +
(δz − δs)+

Kw(δz − δs)+ + Ks(δz − δw)+
Mtot.

(97)

If the eavesdropper is at least as strong as the strong receivers,
i.e.,

δz ≤ δs, (98)

then for small cache sizes Mtot ∈
[
0,K · (1−δw)(1−δs)

Kw(1−δs)+Ks(1−δw)

]
:

Csec,glob(Mtot) =
Mtot

K
. (99)

Proof: Achievability of (97) follows from Corollary 2
and by assigning all available cache memory uniformly across
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weak receivers, so Mw = Mtot
Kw

and Ms = 0. The converse to
(97) can be proved by specializing Lemma 2 to the set of all
users S = K. For a given choice of the cache assignment
Mw,Ms ≥ 0, Lemma 2 yields (amongst others) that for some
β ∈ [0, 1], the secrecy capacity-memory tradeoff is upper
bounded as

KwCsec,glob(Mtot) ≤ β(δz − δw)+ + KwMw (100)

and

KCsec,glob(Mtot) ≤ β(δz − δw)+ + (1− β)(δz − δs)+ + Mtot.

(101)

Upper bounding now KwMw by Mtot and combining (100) and
(101) into a single bound yields:

Csec,glob(Mtot)

≤ max
β∈[0,1]

min

{
β(δz − δw)+ + Mtot

Kw
,

β(δz − δw)+ + (1− β)(δz − δs)+

K
+

Mtot

K

}
.

(102)

If δz > δw, then the maximizing β in the above upper
bound is as in (65) when Mw is replaced by Mtot; otherwise
the maximizing β equals 0. Plugging these values into (102)
establishes the desired upper bound.

Achievability of (99) follows from time/memory-sharing
arguments and from the achievability of the rate-memory
triple (R̃(1), M̃

(1)
w , M̃

(1)
s ) in (88a)–(88c), which under (98)

specializes to the rate-memory triple:

R̃(1) = M̃(1)
w = M̃(1)

s =
(1− δw)(1− δs)

Kw(1− δs) + Ks(1− δw)
. (103)

In fact, the rate-memory triples under consideration are
achieved by storing an independent secret key at each receiver
and securing the messages with these keys by means of one-
time pads. This requires a uniform cache assignment across
all receivers, i.e., Mw = Ms = Mtot

K . The converse to (99)
follows from upper bound (101), which under (98) specializes
to Csec,glob(Mtot) ≤ Mtot/K.

Figure 7 illustrates our choices of the cache contents when
δz > δs in the order of increasing total cache memory Mtot.
When the total cache budget Mtot is small, all of it is assigned
to the weak receivers and it is solely used to store secret keys.
For a slightly larger cache budget Mtot, it is assigned to all
receivers and secret keys are stored in the cache memories.
When the total cache budget Mtot exceeds the size required
to store the keys for securing the entire communication, the
additional space is used to store data at weak receivers.
Once the cached data renders the weak receivers equally
powerful (in terms of their decoding performance) as the
strong receivers, data is also stored in strong receivers’ cache
memories. When δz ≤ δs, then our choice is similar, but we
start with placing secret keys directly at all the receivers.

0

Cache at
weak receivers

Cache at
strong receivers Empty

Keys

Keys

Keys

Keys

Keys + Data

Keys + Data

Keys + Data

Total cache budget Mtot

Fig. 7. Cache content at weak and strong receivers in order of increasing
total cache budget.

B. Results under Uniform Cache Assignment

For comparison, we also propose a lower bound on
Csec,glob(Mtot) when the cache memory is uniformly assigned
over all receivers, i.e.

Mw = Ms =
Mtot

K
. (104)

Consider the following K + 2 rate-memory pairs:

• R(0)
sym :=

(δz − δs)+ · (δz − δw)+

Kw(δz − δs) + Ks(δz − δw)
, (105a)

M(0)
sym := 0; (105b)

• R(1)
sym :=

(1− δw)(1− δs)
Kw(1− δs) + Ks(1− δw)

, (105c)

M(1)
sym :=

(1− δs) min {1− δz, 1− δw}
Kw(1− δs) + Ks(1− δw)

; (105d)

• For t ∈ {1, . . . ,Ks − 1}

R(t+1)
sym :=

(
K
t

)
(1− δw)(1− δs)(

K
t+1

)
(1− δs)−

(
Ks

t+1

)
(δw − δs)

, (105e)

M(t+1)
sym :=

D · t
(
K
t

)
(1− δw)(1− δs)

K
[(

K
t+1

)
(1− δs)−

(
Ks

t+1

)
(δw − δs)

]
+

(K− t)
(
K
t

)
(1− δs) min {1− δz, 1− δw}

K
[(

K
t+1

)
(1− δs)−

(
Ks

t+1

)
(δw − δs)

] ;

(105f)

• For t ∈ {Ks, . . . ,K}

R(t+1)
sym :=

(t+ 1)(1− δw)

(K− t)
, (105g)

M(t+1)
sym :=

D · t(t+ 1)(1− δw)

K(K− t)

+
(t+ 1)

K
min {1− δz, 1− δw} . (105h)

Proposition 3 (Lower Bound with Symmetric Caches).

Csec (Mw = Msym,Ms = Msym) ≥

upper hull
{(
R(`)

sym,M
(`)
sym

)
: ` ∈ {0, . . . ,K + 1}

}
. (106)

Proof. It suffices to prove the achievability of the K + 2

rate-memory pairs {(R(`)
sym,M

(`)
sym) : ` = 0, . . . ,K + 1}. The

rate-memory pair (R
(0)
sym,M

(0)
sym) is achievable by Remark 1.

The rate-memory pair (R
(1)
sym,M

(1)
sym) is achievable because,
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Mtot = KwMw + KsMs

C
se

c(
M

to
t)

0
0

0.02

0.04

0.06

0.08

5 10 15 20 25

LB on Csec,glob(Mtot)

LB on Csec(Mw = Mtot/Kw,Ms = 0)

LB on Csec(Mw = Mtot/K,Ms = Mtot/K)
LB on Cglob(Mtot)

Fig. 8. Lower bounds on Csec,glob(Mtot) for δw = 0.7, δs = 0.2, δz = 0.8,
D = 50, Kw = 20, and Ks = 10. Notice that the eavesdropper is weaker
than all users.

by Theorem 3, rate R̃(1) = R
(1)
sym is achievable with cache

size M̃
(1)
w at weak receivers and cache size M̃

(1)
s at strong

receivers, and because M
(1)
sym = max

{
M̃

(1)
w , M̃

(1)
s

}
. For each

t ∈ {1, . . . ,K}, the rate-memory pair (R
(t+1)
sym ,M

(t+1)
sym ) is

achieved by a scheme that combines the Sengupta et al. secure
coded caching scheme [6] with a standard BC code. Notice
that when t ≥ Ks, then each of the secured XORs produced
by the Sengupta et al. scheme is intended for at least one weak
receiver, and communication is limited by this weak receiver.
Each secured XOR, which is of rate

(
K
t

)−1
Rsym, thus requires

slightly more than
(
K
t

)−1 nRsym

1−δw channel uses to be transmitted
reliably. When t < Ks, then

(
Ks

t+1

)
of the secured XOR are only

sent to strong receivers and can thus be sent reliably by using
slightly more than

(
K
t

)−1 nRsym

1−δs channel uses. The remaining(
K
t+1

)
−
(
Ks

t+1

)
secured XORs are sent to at least one weak

receiver, and can thus be sent reliably by using slightly more
than

(
K
t

)−1 nRsym

1−δw channel uses.

C. Numerical Comparison

Figure 8 plots the lower bound on Csec,glob(Mtot) in Corol-
lary 5 (black line) for an example with Kw = 20 weak
receivers an Ks = 10 strong receivers. The eavesdropper is
degraded with respect to all legitimate receivers. For com-
parison, the figure also shows our lower bound on the secrecy
capacity-memory tradeoff for the scenarios where the available
cache memory is uniformly assigned over all weak receivers ,
i.e., Mw = Mtot/Kw and Ms = 0, and where it is uniformly as-
signed over all receivers (blue line), i.e., Mw = Ms = Mtot/K.
Finally, the red line depicts the lower bound on the standard
(non-secure) global capacity-memory tradeoff obtained from
[25] and [5]. One observes that our lower bound on the global
secrecy capacity-memory tradeoff is close to the currently
best known lower bound on the non-secure capacity-memory
tradeoff. Moreover, similarly to [25], for the global secrecy
capacity-memory tradeoff it is suboptimal to assign the cache
memories uniformly across users (unless the eavesdropper is
stronger than all other receivers). In particular, as Proposition 3

shows, for small cache memories all of it should be assigned
uniformly over the weak receivers only.

VII. CODING SCHEMES WHEN ONLY WEAK RECEIVERS
HAVE CACHE MEMORIES

This section describes in more detail the coding schemes
proposed for the setup when only weak receivers have cache
memories. The schemes are also briefly analyzed.

A. Wiretap and Cached Keys

Let Subphase 1 comprise the first βn channel uses and
Subphase 2 the last (1 − β)n channel uses, with β chosen
as

β =
Kw(δz − δs)

Kw(δz − δs) + Ks(1− δw)
. (107)

Fix a small ε > 0. Let the secret keys K1, . . . ,KKw
be

independent of each other and of rate

RKey = min

{
β(1− δz)

Kw
, R

}
, (108)

where the message rate R is chosen as

R =
(δz − δs)(1− δw)

Kw(δz − δs) + Ks(1− δw)
− ε. (109)

The scheme requires a cache size at weak receivers equal to

Mw = RKey = min

{
(δz − δs)(1− δz)

Kw(δz − δs) + Ks(1− δw)
,

(δz − δs)(1− δw)

Kw(δz − δs) + Ks(1− δw)
− ε
}
. (110)

We analyze the scheme when averaged over the choice
of the random code construction C. By the joint typicality
lemma, the average probability of a decoding error at the weak
receivers tends to 0 as n→∞, because

R <
β(1− δw)

Kw
. (111)

The probability of error of the wiretap decoding at the strong
receivers tends to 0 as n→∞, because

R <
(1− β)(δz − δs)

Ks
. (112)

Notice that by the choice of β in (107), the two constraints
(111) and (112) coincide.

We conclude this analysis by verifying the secrecy con-
straint averaged over the choice of the codebooks C. Since
communication in the two phases is independent:

I(W1, . . . ,WD;Zn|C)
= I(W1, . . . ,WD;Zβn1 |C) + I(W1, . . . ,WD;Znβn+1|C)
= I(Wd1 , . . . ,WdKw

;Zβn1 |C)
+ I(WdKw+1

, . . . ,WdK ;Znβn+1|C). (113)

The first term in (113) tends to 0 as n→∞, by Lemma 1
and because the key rate (108) is chosen so that the transmitted
codeword is either uniformly distributed over all codewords of
a random codebook of rate equal to the message rate or over a
subset of codewords that is of rate equal to the eavesdropper’s
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capacity (1 − δz). The second term in (113) tends to 0 as
n→∞ because of the properties of a wiretap BC code.

From the analysis we conclude that the average over all
choices of the codebooks satisfies the desired properties. There
must thus exist at least one good codebook. Letting ε → 0
concludes the achievability proof of the rate-memory pair R =
R(1) and Mw = M(1) in (62c) and (62d).

B. Cache-Aided Superposition-Jamming

Let

µ := min

{
Kw(1− δs)

Ks(1− δw) + Kw(1− δs)
,

Kw(δz − δs)
Ks(1− δw) + Kw(δw − δs)

}
, (114)

and set the rate
R =

µ(1− δw)

Kw
− ε. (115)

Let further p ∈ [0, 1/2] be so that its binary entropy-function
hb(p) = 1− µ. Choose a key rate

RKey = min

{
1− δz
Kw

, R

}
(116)

and a wiretap binning rate of

Rbin = {(1− δz)− µ(1− δw)}+. (117)

In what follows, we will construct a superposition code where:
• The cloud center codewords encode the Kw messages

to the weak receivers and their entries are drawn i.i.d.
according to PU ∼ Ber(1/2).

• The satellite codewords encode the Ks messages to the
strong receivers together with an additional randomiza-
tion message of rate Rbin, and their entries are drawn
conditionally independent according to the conditional
distribution PX|U ∼ Ber(p).

Notice that the parameter µ is so that

R+ ε =
µ(1− δw)

Kw
=

(1− µ)(1− δs)−Rbin

Ks
. (118)

Defining (U,X, Y1, YKw
) ∼ PUPX|UPY1YKw |X , above equali-

ties are equivalently expressed as

R+ ε =
I(U ;Y1)

Kw
=
I(X;YKw+1|U)−Rbin

Ks
, (119)

and thus show that our choice of µ makes the decoding
constraints at the weak and strong receivers equally stringent.

Placement phase: Generate independent random keys
K1, . . . ,Kw of rate RKey. Store each key Ki in the cache
memory of Receiver i, for i ∈ Kw.

Delivery phase: Fix a small ε > 0, and generate a cloud
center codebook

Ccenter =
{
un(1), . . . , un(b2nRc)

}
Kw , (120)

by picking all entries of all codewords i.i.d. according to a
Bernoulli-1/2 distribution. Then, superposition on each code-
word un(w), for w ∈ {1, . . . , b2nRc}Kw , a satellite codebook

Csat(w) =
{
xn(v, b|w) : v ∈

{
1, . . . , b2nRc

}
Kw ,

b ∈
{

1, . . . b2nRbinc
}}
, (121)

by picking the t-th entry of each codeword xn(v, b|w) equal
to the t-th entry of codeword un(w) with probability 1 − p
and equal to its binary inverse with probability p.

The transmitter generates the tuples

Wsec :=
(
sec
(
Wd1 ,K1

)
, sec

(
Wd2 ,K2

)
,

sec
(
Wd3 ,K3

)
, . . . , sec

(
WdKw

,KKw

))
, (122)

and
Wsat :=

(
WdKw+1

, . . . ,WdK

)
, (123)

and draws B uniformly at random over {1, . . . , b2nRbinc}. It
then sends the codeword

xn
(
Wsat, B

∣∣Wsec

)
(124)

over the channel. Each weak receiver i ∈ Kw decodes the mes-
sage Wsec in the cloud center, and with the key Ki retrieved
from its cache memory, it produces a guess of its desired
message Wdi . Each strong receiver j ∈ Ks decodes both
messages Wsec,Wsat as well as the randomization message
B and extracts the guess of its desired message Wdj .

Analysis: The scheme requires cache memories at the weak
receivers of size

Mw = RKey = min

{
1− δz
Kw

,

(δz − δs)(1− δw)

Ks(1− δw) + Kw(δw − δs)
− ε
}
.

(125)

We analyze the scheme on average over the random choice
of the codebook C. The average probability of decoding error
at a weak receiver tends to 0 as n→∞, because by (115):

KwR < µ(1− δw). (126a)

Similarly, the average probability of decoding error at a strong
receiver tends to 0 as n→∞, because

Rbin + KsR < (1− µ)(1− δs). (126b)

We turn to the secrecy analysis of the scheme. We have:

I(W1, . . . ,WD;Zn|C)
= I(Wd1 , . . . ,WdK ;Zn|C) (127)
= I(Wd1 , . . . ,WdKw

;Zn|C)
+ I(WdKw+1

, . . . ,WdK ;Zn|Wd1 , . . . ,WdKw
, C) (128)

≤ I(Wd1 , . . . ,WdKw
;Zn,WdKw+1

, . . . ,WdK , B|C)
+ I(WdKw+1

, . . . ,WdK ;Zn|Wd1 , . . . ,WdKw
, C) (129)

= I(Wd1 , . . . ,WdKw
;Zn|WdKw+1

, . . . ,WdK , B, C)
+ I(WdKw+1

, . . . ,WdK ;Zn|Wd1 , . . . ,WdKw
, C), (130)

where the last equality holds by the independence of the
messages W1, . . . ,WdK , the randomization message B, and
the codebook C.

Both terms on the right-hand side of (130) tend to 0 as n→
∞, by Lemma 1 and the choice of the key-rate RKey in (116)
and the binning rate Rbin in (117). To see more specifically that
the second term vanishes asymptotically, notice that for any
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fixed message tuple Wd1 = w1,Wd2 = w2, . . . ,WdKw
= wKw ,

the following two statements apply.
1) The entries of the set (codebook) of satellite codewords
Csat(w1, . . . , wKw

) defined in (131) on top of the next
page are i.i.d. Bernoulli-1/2.

2) The codeword used to encode a given message tuple
WdKw+1

= wKw+1, . . . ,WdK = wK is chosen uniformly
at random (depending on the realizations of the secret
keys K1, . . . ,KKw

and the randomization message B)
over the subcodebook S(wKw+1, . . . , wK) (defined on top
of the next page), is of rate

1

n
log2

(
S(wKw+1, . . . , wK)

)
≥ Rbin + KwRKey

= (1− δz)
= I(X;Z), (133)

for X ∼ Bernoulli-1/2.
The sets S(wKw+1, . . . , wK) thus all satisfy Condition (34)
of Lemma 1, from which follows that for each tuple Wd1 =
w1,Wd2 = w2, . . . ,WdKw

= wKw , the mutual information

I(WdKw+1
, . . . ,WdK ;Zn|Wd1 = w1, . . . ,WdKw

= wKw
, C)

→ 0 as n→∞. (134)

Averaging this last statement over all realizations of the
messages (W1, . . . ,WKw

) proves that the second term in (130)
vanishes as n→∞.

In a similar way, for each realization of the tuple (WdKw+1
=

wKw+1, . . . ,WdK = wK, B = b) the codeword transmitted to
convey the tuple (W1 = w1, . . . ,WdKw

= wKw) is chosen uni-
formly at random (depending on the secret keys K1, . . . ,KKw )
over a subset S(w1, . . . , wKw

) of an i.i.d. Bernoulli-1/2 code-
book. If RKey = R, then this subset S(w1, . . . , wKw

) is
identical for all realizations (W1 = w1, . . . ,WdKw

= wKw
)

and thus satisfies Condition (33) of Lemma 1. Otherwise,
KwRKey = (1 − δz) and the subset S(w1, . . . , wKw) is of
rate equal to I(X;Z) = (1 − δz). In this case it satisfies
Condition (34) of Lemma 1. We conclude that in any case by
Lemma 1, the mutual information

I(Wd1 , . . . ,WdKw
;Zn|WdKw+1

=wKw+1, . . . ,WdK =wK, B, C)
→ 0 as n→∞, (135)

and hence also the first term in (130) vanishes as n→∞.
By standard arguments, one can then conclude that there

must exist at least one deterministic codebook such that the
probability of decoding error vanishes for n → ∞ and the
secrecy constraint (24) constraint holds.

Since R→ R(2) and Mw → M(2) as ε→ 0, this establishes
achievability of the rate-memory pair (R(2),M

(2)
w ) in (62e) and

(62f).

C. Secure Cache-Aided Piggyback Coding I

Delivery transmission will be partitioned into three sub-
phases, whose lengths are determined by the parameters
β1, β2, β3 given on top of the next page. Notice that β1 +
β2 + β3 = 1.

Message splitting: Fix a small ε > 0. Divide each message
into two independent submessages

Wd =
[
W

(A)
d ,W

(B)
d

]
, d ∈ D, (136)

that are of rates R(A) and R(B) defined in (138) and (139) on
top of the next page.

Denote the
(
Kw

t−1
)

subsets of {1, . . . ,Kw} of size t − 1 by
G

(t−1)
1 , . . . , G

(t−1)
( Kw
t−1)

; the
(
Kw

t

)
subsets of {1, . . . ,Kw} of size t

by G(t)
1 , . . . , G

(t)

(Kw
t )

; and the
(
Kw

t+1

)
subsets of {1, . . . ,Kw} of

size t+ 1 by G(t+1)
1 , . . . , G

(t+1)

(Kw
t+1)

.

Divide each message W (A)
d into

(
Kw

t−1
)

submessages

W
(A)
d =

{
W

(A)

d,G
(t−1)
`

: ` ∈
{

1, . . . ,

(
Kw
t− 1

)}}
, (140)

of rate

r(A) = R(A)

(
Kw
t− 1

)−1
, (141)

and divide each message W (B)
d into

(
Kw

t

)
submessages

W
(B)
d =

{
W

(B)

d,G
(t)
`

: ` ∈
{

1, . . . ,

(
Kw
t

)}}
, (142)

of rate

r(B) = R(B)

(
Kw
t

)−1
. (143)

Key generation:

• For each ` ∈
{

1, . . . ,
(
Kw

t+1

)}
, generate an independent

random key K
G

(t+1)
`

of rate

RKey,1 =

(
Kw
t+ 1

)−1
· β1 ·min {1− δz, 1− δw} . (144)

• For each ` ∈
{

1, . . . ,
(
Kw

t

)}
, generate an independent

random key K
G

(t)
`

of rate

RKey,2 =

(
Kw
t

)−1
· β2 ·min {1− δz, 1− δw} . (145)

Define the binning rate

Rbin =

(
Kw
t

)−1
· β2 ·min {max {0, δw − δz} , δw − δs} .

(146)
Placement phase: Placement is as indicated in the following

table.

Cache at weak receiver i{{
W

(A)

d,G
(t−1)
`

}
` : i∈G(t−1)

`

,

{
W

(B)

d,G
(t)
`

}
` : i∈G(t)

`

}D

d=1{
K
G

(t+1)
`

}
` : i∈G(t+1)

`

,
{
K
G

(t)
`

}
` : i∈G(t)

`

Delivery phase: Is divided into three subphases of lengths
β1n, β2n, and β3n.
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Csat(w1, . . . , wKw
)

:=

{
xn
(
wKw+1, . . . , wK, b

∣∣sec
(
w1, k1

)
, . . . , sec

(
wKw

, kKw

))
:

(wKw+1, . . . , wK) ∈
{

1, . . . ,
⌊
2nR

⌋}Kw
, b ∈

{
1, . . . ,

⌊
2nRbin

⌋}
, (k1, . . . , kKw) ∈

{
1, . . . ,

⌊
2nRKey

⌋}Kw

}
(131)

S(wKw+1, . . . , wK)

:=

{
xn
(
wKw+1, . . . , wK, b

∣∣sec
(
w1, k1

)
, . . . , sec

(
wKw

, kKw

))
: b ∈

{
1, . . . ,

⌊
2nRbin

⌋}
, (k1, . . . , kKw

) ∈
{

1, . . . ,
⌊
2nRKey

⌋}Kw

}
(132)

β1 =
(Kw − t)(Kw − t+ 1)(δz − δs) min{δw − δs, δz − δs}

(Kw− t+ 1)(δz − δs)
[
Ks(t+ 1)(1− δw)+(Kw− t) min {δw − δs, δz − δs}

]
+ K2

st(t+ 1)(1− δw)2
, (137a)

β2 =
Ks(Kw − t+ 1)(t+ 1)(1− δw)(δz − δs)

(Kw− t+ 1)(δz − δs)
[
Ks(t+ 1)(1− δw)+(Kw− t) min {δw − δs, δz − δs}

]
+ K2

st(t+ 1)(1− δw)2
, (137b)

β3 =
K2
st(t+ 1)(1− δw)2

(Kw − t+ 1)(1− δs)
[
(Kw − t)(δw − δs) + Ks(t+ 1)(1− δw)

]
+ K2

st(t+ 1)(1− δw)2
. (137c)

R(A) =
Kst(t+ 1)(1− δw)2(δz − δs)

(Kw− t+ 1)(δz − δs)
[
Ks(t+ 1)(1− δw)+(Kw− t) min {δw − δs, δz − δs}

]
+ K2

st(t+ 1)(1− δw)2
− ε/2, (138)

R(B) =
(Kw − t+ 1)(t+ 1)(1− δw)(δz − δs) min{δw − δs, δz − δs}

(Kw− t+ 1)(δz − δs)
[
Ks(t+ 1)(1− δw)+(Kw− t) min {δw − δs, δz − δs}

]
+ K2

st(t+ 1)(1− δw)2
− ε/2. (139)

Subphase 1: This subphase is dedicated to the transmission
of the parts of W (B)

d1
, . . . ,W

(B)
dKw

that are not stored in the
cache memories of the respective weak receivers. For each
` ∈ {1, . . . ,

(
Kw

t+1

)
}, the transmitter first calculates the XOR-

message

W
(B)

XOR,G(t+1)
`

:=
⊕

i∈G(t+1)
`

W
(B)

di,G
(t+1)
` \{i}

, (147)

and its secured version

W
(B)

sec,G
(t+1)
`

= sec
(
W

(B)

XOR,G(t+1)
`

, K
G

(t+1)
`

)
. (148)

It then sends the secured message tuple

W(B)
sec,w := (W

(B)

sec,G
(t+1)
1

, . . . ,W
(B)

sec,G
(t+1)

(Kw
t+1)

) (149)

using a capacity achieving point-to-point code to all weak
receivers. After decoding the message tuple (149), each weak
receiver i retrieves the secret key K

G
(t+1)
`

from its cache

memory, for ` ∈ {1, . . . ,
(
Kw

t+1

)
} so that i ∈ G

(t+1)
` , and

produces Ŵ (B)

XOR,G(t+1)
`

. Then, it also retrieves the submessages

{
W

(B)

dk,G
(t+1)
` \{k}

}
k∈G(t+1)

` \{i}
(150)

from its cache memory, and guesses the desired submessage
as:

Ŵ
(B)

dk,G
(t+1)
` \{i}

= Ŵ
(B)

XOR,G(t+1)
`

⊕
k∈G(t+1)

` \{i}

W
(B)

dk,G
(t+1)
` \{k}

.

(151)
At the end of Subphase 1, each weak receiver i ∈ Kw
assembles the guesses produced in (151) with the parts of
W

(B)
di

it has stored in its cache memory to form a guess Ŵ (B)
di

.
Subphase 2: This subphase is dedicated to the transmission

of the parts of W (A)
di

that are not stored in weak receiver i’s
cache memory, for i ∈ Kw, and messages W (B)

dj
, for j ∈ Ks.

Time-sharing is applied over
(
Kw

t

)
periods, each of length

n2 =

(
Kw
t

)−1
· β2n.

The periods are labeled G(t)
1 , . . . , G

(t)

(Kw
t )

. For Period G(t)
` , ` ∈{

1, . . . ,
(
Kw

t

)}
, the transmitter calculates the XOR-message

W
(A)

XOR,G(t)
`

:=
⊕
i∈G(t)

`

W
(A)

di,G
(t)
` \{i}

(152a)

and its secured version

W
(A)

sec,G
(t)
`

:= sec
(
W

(A)

XOR,G(t)
`

,K
G

(t)
`

)
(152b)
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It also forms the tuple of non-secured messages

W
(B)

s,G
(t)
`

:=
(
W

(B)

dKw+1,G
(t)
`

, . . . ,W
(B)

dK,G
(t)
`

)
(152c)

which it sends to the strong receivers. To this end, generate
for each period G

(t)
` a secure piggyback codebook [23], see

Figure 3,

Cspg,G(t)
`

=
{
xn2

G
(t)
`

(
`row; `col; b

)
: `row ∈

{
1, . . . ,

⌊
2nr

(A)⌋}
,

`col ∈
{

1, . . . ,
⌊
2nr

(B)⌋}
, b ∈

{
1, . . . , b2nRbinc

}}
, (153)

by drawing each entry of each codeword i.i.d. according to a
Bernoulli-1/2 distribution. The rates r(A), r(B), and Rbin are
defined in (141), (143), and (146).

The transmitter draws an index B uniformly at random over
{1, . . . , b2nRbinc}, and sends the codeword

xn2

G
(t)
`

(
W

(A)

sec,G
(t)
`

; W
(B)

s,G
(t)
`

; B
)

(154)

over the channel.
We now describe the decoding, starting with the decoding

at the weak receivers. For each i ∈ Kw and each ` ∈{
1, . . . ,

(
Kw

t

)}
so that i ∈ G(t)

` , Receiver i decodes message
W

(A)

di,G
(t)
` \{i}

sent in Period G(t)
` by performing the following

steps:
1) It retrieves the secret key K

G
(t)
`

and the messages

W
(B)

dKw+1,G
(t)
`

, . . . ,W
(B)

dK,G
(t)
`

from its cache memory.

2) It extracts the subcodebook

C̃spg,G(t)
`

(
W

(B)

s,G
(t)
`

)
:={

xn2

G
(t)
`

(
`row; W

(B)

s,G
(t)
`

; b
)

: `row ∈
{

1, . . . ,
⌊
2n2r

(A)⌋}
,

b ∈
{

1, . . . , b2nRbinc
}}
.

(155)

3) Based on the reduced codebook C̃spg,G(t)
`

(
W

(B)

s,G
(t)
`

)
, it

decodes the secured message W (A)

sec,G
(t)
`

from its channel

outputs in this period G(t)
` .

4) It applies the inverse mapping sec−1K
G

(t)
`

to the message

decoded in step 3) to obtain the guess Ŵ (A)

XOR,G(t)
`

.

5) Finally, it produces the guess

Ŵ
(A)

di,G
(t)
` \{i}

= Ŵ
(A)

XOR,G(t)
`

⊕
k∈G(t)

` \{i}

W
(A)

dk,G
(t)
` \{k}

.

(156)
Strong receivers treat the secure piggyback codebook as a

simple wiretap codebook and decode all transmitted messages
as well as the bin indices.

At the end of Subphase 2, each weak receiver i ∈ Kw
assembles the parts of submessage W (A)

di
that it decoded or

that are stored in its cache memory to form the guess Ŵ (A)
di

.
Similarly, each strong receiver j ∈ Ks assembles the decoded
parts of W (B)

dj
to form the guess Ŵ (B)

dj
.

Subphase 3: A wiretap code is used to send the message
tuple

W
(A)
dKw+1

, . . . ,W
(A)
dK

(157)

to all the strong receivers Kw + 1, . . . ,K.
After the last subphase, each Receiver k ∈ K assembles its

guesses produced for the two submessages W (A)
dk

and W
(B)
dk

to the final guess Ŵk.
Analysis: Analysis is performed averaged over the random

choice of the codebooks. We first verify that in each of the
three subphases the probability of decoding error tends to 0 as
n→∞. Only weak receivers decode during the first subphase.
Probability of decoding error vanishes asymptotically as n→
∞, because(

Kw

t+1

)(
Kw

t

)−1
R(B)

(1− δw)
=

Kw−t
t+1 R

(B)

(1− δw)
< β1. (158)

Only strong receivers decode during the third subphase. Proba-
bility of decoding error in Subphase 3 vanishes asymptotically,
because

KsR
(A)

(δz − δs)
< β3. (159)

Probability of decoding error at the weak receivers in Subphase
2 vanishes asymptotically, because

Kw−t+1
t R(A)

(1− δw)
< β2. (160)

Probability of decoding error at the strong receivers in Sub-
phase 2 vanishes asymptotically, because

Kw−t+1
t R(A) + KsR

(B) +
(
Kw

t

)
Rbin

(1− δs)
< β2. (161)

Whenever the decodings in all subphases are successful, all
receivers correctly guess their desired messages. Since the
decoding error for each subphase vanishes asymptotically, we
conclude that also the average overall probability of error
vanishes.

We verify the secrecy constraint averaged over the choice
of the code construction. For fixed blocklength n:

I (W1, . . . ,WD;Zn|C)
= I
(
W

(B)
d1

, . . . ,W
(B)
dKw

;Zβ1n
1

∣∣C)
+ I
(
W

(A)
d1

, . . . ,W
(A)
dKw

,W
(B)
dKw+1

, . . . ,W
(B)
dK

;Z
(β1+β2)n
β1n+1

∣∣C)
+ I
(
W

(A)
dKw+1

, . . . ,W
(A)
dK

;Zn(β1+β2)n+1

∣∣C), (162)

because of the independence of the communications in the
three subphases. By Lemma 1, all of the three summands can
be bounded by ε/3 for sufficiently large n. This holds in partic-
ular for the second summand because from the eavesdropper’s
point of view, the structure of the piggyback codebook is
meaningless and for each message tuple

(
W

(A)

sec,G
(t)
`

; W
(B)

s,G
(t)
`

)
,

the transmitted codeword is chosen uniformly at random
(depending on B and K

G
(t)
`

) over a set of 2n2rs i.i.d. random
codewords where rs = RKey,2 +Rbin = min{1− δz, 1− δs}.
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Since averaged over the random codebooks, the probabil-
ity of decoding error and the average mutual information
I (W1, . . . ,WD;Zn|C) both vanish as n → ∞, there must
exist at least one choice of the codebooks so that for this choice
PWorst
e and I (W1, . . . ,WD;Zn) both vanish asymptotically.
Notice that for each t ∈ {1, . . . ,Kw − 1}, the rate of

communication satisfies

R = R(A) +R(B) = R(t+2) − ε, (163)

and weak receivers require a cache memory of

Mw = D
(t− 1)

Kw
R(A) + D

t

Kw
R(B) +

(
Kw − 1

t

)
RKey,1

+

(
Kw − 1

t− 1

)
RKey,2

= M(t+2) − D · t− 1/2

Kw
ε. (164)

Letting ε → 0 thus concludes the achievability proof of the
rate-memory pairs (R(t+2),M

(t+2)
w ), for t = 1, . . . ,Kw−1, as

defined in (62k)–(62l).

D. Secure Cache-Aided Piggyback Coding II

Let

β =
Kw(δz − δs)

Ks min{1− δz, 1− δw}+ Kw(δz − δs)
(165)

Subphase 1 is of length βn and Subphase 2 of length (1−β)n.
Submessages {W (A)

d } are of rate

R(A) =
(δz − δs) min{1− δz, 1− δw}

Ks min{1− δz, 1− δw}+ Kw(δz − δs)
− ε/2,

(166)
and submessages {W (B)

d } are of rate

R(B) =
Kw(δz − δs)2

Ks[Ks min{1− δz, 1− δw}+ Kw(δz − δs)]
− ε/2.

(167)
The key rate is chosen as

RKey = R(A). (168)

We analyze the scheme averaged over the random choice
of the codebooks C. Probability of decoding error at the weak
receivers in Subphase 1 vanishes asymptotically as n → ∞,
because

KwR
(A)

(1− δw)
< β. (169)

Probability of decoding error at the strong receivers in Sub-
phase 1 vanishes asymptotically, because

KwR
(A) + KsR

(B)

(1− δs)
< β. (170)

Probability of decoding error in Subphase 2 vanishes asymp-
totically, because

KsR
(A)

(δz − δs)
< (1− β). (171)

As a consequence, also the overall probability of error (av-
eraged over the random choice of the codebooks C) vanishes

as n → ∞. Following a similar secrecy analysis as in the
previous Subsection VII-C, it can be shown that also the
averaged mutual information I(W1, . . . ,WD;Zn|C) vanishes
as n → ∞. This implies that there must exist at least one
choice of the codebooks so that for this choice PWorst

e → 0
and I(W1, . . . ,WD;Zn)→ 0 as n→∞.

Notice now that

R = R(A) +R(B) =
δz − δs
Ks

− ε. (172)

Moreover, the required cache size at each weak receiver is

Mw = DR(B) +RKey = M(Kw+2)
w − Dε/2. (173)

Taking ε→ 0, this concludes the proof of achievability of the
rate-memory pair R(Kw+2),M

(Kw+2)
w in (62g) and (62h).

VIII. CODING SCHEMES WHEN ALL RECEIVERS HAVE
CACHE MEMORIES

A. Cached Keys

Fix a small ε > 0 and let

β =
Kw(1− δs)

Kw(1− δs) + Ks(1− δw)
, (174)

and the message rate be

R =
β(1− δw)

Kw
− ε. (175)

Notice that by the choice of the parameter β, also

R =
(1− β)(1− δs)

Ks
− ε. (176)

Choose key rates

RKey,w =
β

Kw
·min

{
1− δz, 1− δw

}
, (177)

RKey,s =
1− β
Ks

·min
{

1− δz, 1− δs
}
, (178)

and let secret keys K1, . . . ,KKw
be of rate RKey,w and secret

keys KKw+1, . . . ,KK be of rate RKey,s.
The cache requirement at weak receivers is

Mw = RKey,w (179)

=
(1− δs)

Kw(1− δs) + Ks(1− δw)
min

{
1− δz, 1− δw

}
(180)

and the cache requirement at strong receivers is

Ms = RKey,s (181)

=
(1− δw)

Kw(1− δs) + Ks(1− δw)
min

{
1− δz, 1− δs

}
(182)

Analysis of the probability of error and of the secrecy
constraint (24) are standard and omitted. Letting ε→ 0 proves
achievability of the rate-memory par (R̃(1), M̃

(1)
w , M̃

(1)
s ).
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B. Secure Cache-Aided Piggyback Coding with Keys at All
Receivers

The scheme follows closely the secure cache-aided piggy-
back coding I in Subsection VII-C, but for a different choice
of rates and time-sharings and with additional secret keys for
Subphases 2 and 3, which render wiretap binning useless.

The time-sharing parameters β1, β2, β3 and the rates R(A)

and R(B) used here are defined on top of the next page.
The following keys are generated:

• For each ` ∈
{

1, . . . ,
(
Kw

t+1

)}
, generate an independent

secret key K
G

(t+1)
`

of rate

RKey,1 =

(
Kw
t+ 1

)−1
· β1 ·min {1− δz, 1− δw} . (186)

• For each ` ∈
{

1, . . . ,
(
Kw

t

)}
, generate an independent

secret key K
G

(t)
`

of rate

RKey,2 =

(
Kw
t

)−1
· β2 ·min {1− δz, 1− δw} (187)

and Ks independent secret keys K
Kw+1,G

(t)
`

, . . . ,K
K,G

(t)
`

of rate

RKey,3 =

(
Kw
t

)−1
· β2
Ks
·min {max {0, δw − δz} , δw − δs} .

(188)
• For j ∈ Ks, generate an independent secret key Kj of

rate

RKey,4 =
β3
Ks
·min {1− δz, 1− δs} . (189)

Placement phase: For each weak receiver i ∈ Kw, cache

Vi =

{
W

(A)

d,G
(t−1)
`

: d ∈ D and i ∈ G(t−1)
`

}
⋃ {

W
(B)

d,G
(t)
`

: d ∈ D and i ∈ G(t)
`

}
⋃ {

K
G

(t+1)
`

: i ∈ G(t+1)
`

} ⋃ {
K
G

(t)
`

: i ∈ G(t)
`

}
⋃ {

K
j,G

(t)
`

: i ∈ G(t)
` and j ∈ Ks

}
. (190)

For each strong receiver j ∈ Ks, cache

Vj = Kj

⋃ {
K
j,G

(t)
`

: ` ∈
{

1, . . . ,

(
Kw
t

)}}
. (191)

Delivery phase: Is divided into three subphases of lengths
n1 = β1n, n2 = β2n, and n3 = β3n, where β1, β2, and β3
are defined in (183) on the next page.

Subphase 1: Is as described in Subsection VII-C.
Subphase 2: Similar to Subsection VII-C, but with extra

keys. As in Subsection VII-C, this subphase is split into
(
Kw

t

)
equally-long periods, which we label by all t-user subsets of
Kw i.e., by G

(t)
1 , . . . , G

(t)

(Kw
t )

. For the transmission in Period

G
(t)
` , for ` ∈ {1, . . . ,

(
Kw

t

)
}, a standard piggyback codebook

Cpg,G(t)
`

=
{
xn2

G
(t)
`

(
`row; `col

)
: `row ∈

{
1, . . . ,

⌊
2nr

(A)⌋}
,

`col ∈
{

1, . . . ,
⌊
2nr

(B)⌋}}
,

(192)

is generated by drawing all entries i.i.d. Bernoulli-1/2. The
codebooks are revealed to the transmitter and all receivers,
and the rates r(A) and r(B) are chosen as

r(A) = R(A)

(
Kw
t− 1

)−1
(193)

r(B) = R(B)

(
Kw
t

)−1
. (194)

At the beginning of Period G(t)
` , the transmitter computes

W
(A)

sec,w,G
(t)
`

= sec
( ⊕
i∈G(t)

`

W
(A)

di,G
(t)
` \{i}

, K
G

(t)
`

)
. (195)

and

W(B)

sec,s,G
(t)
`

:=
(

sec
(
W

(B)

dKw+1,G
(t)
`

, K
Kw+1,G

(t)
`

)
,

. . . , sec
(
W

(B)

dK,G
(t)
`

, K
K,G

(t)
`

))
, (196)

and sends the codeword

xn2

G
(t)
`

(
W

(A)

sec,w,G
(t)
`

; W
(B)

sec,s,G
(t)
`

)
(197)

over the channel. Decoding of Period G
(t)
` is performed as

follows. All weak receivers i ∈ G
(t)
` compute the message

tuple to the strong receivers W
(B)

sec,s,G
(t)
`

and perform their
decoding steps as described in Subsection VII-C. Strong
receivers decode both secured message tuples transmitted in
this period. Any given strong receiver j ∈ Ks can then recover
its desired message

W
(B)

dj ,G
(t)
`

(198)

using the secret key K
j,G

(t)
`

stored in its cache memory.
At the end of the subphase, each weak receiver i ∈ Kw

assembles the parts of submessage W (A)
di

that it decoded or it
has stored in its cache memory, and forms the guess Ŵ (A)

di
.

Similarly, each strong receiver j ∈ Ks assembles the decoded
parts and forms Ŵ (B)

dj
.

Subphase 3: A capacity-achieving code is used to send the
secured message tuple

sec
(
W

(A)
dKw+1

,KKw+1

)
, . . . , sec

(
W

(A)
dK

,KK

)
(199)

to the strong receivers Kw + 1, . . . ,K. Each strong receiver
j ∈ Ks obtains its desired guess Ŵ (A)

dj
with the help of the

secret key Kj stored in its cache memory.
At the end of the entire delivery phase, each Receiver k ∈ K

assembles its guesses of W (A)
dk

and W (B)
dk

to produce the final
guess Ŵk.

Analysis: The scheme is analyzed by averaging over the
random code constructions C. We first verify that in each of
the three subphases the average probability of decoding error
tends to 0 as n → ∞. Only weak receivers decode during
the first subphase. Probability of decoding error in Subphase
1 vanishes asymptotically as n→∞, because(

Kw

t+1

)(
Kw

t

)−1
R(B)

(1− δw)
=

Kw−t
t+1 R

(B)

(1− δw)
< β1. (200)
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β1 =
(Kw − t+ 1)(Kw − t)(1− δs)(δw − δs)

(Kw − t+ 1)(1− δs)
[
(Kw − t)(δw − δs) + Ks(t+ 1)(1− δw)

]
+ K2

st(t+ 1)(1− δw)2
, (183a)

β2 =
Ks(Kw − t+ 1)(t+ 1)(1− δw)(1− δs)

(Kw − t+ 1)(1− δs)
[
(Kw − t)(δw − δs) + Ks(t+ 1)(1− δw)

]
+ K2

st(t+ 1)(1− δw)2
, (183b)

β3 =
K2
st(t+ 1)(1− δw)2

(Kw − t+ 1)(1− δs)
[
(Kw − t)(δw − δs) + Ks(t+ 1)(1− δw)

]
+ K2

st(t+ 1)(1− δw)2
. (183c)

R(A) =
Kst(t+ 1)(1− δw)2(1− δs)

(Kw − t+ 1)(1− δs)
[
(Kw − t)(δw − δs) + Ks(t+ 1)(1− δw)

]
+ K2

st(t+ 1)(1− δw)2
− ε/2, (184)

R(B) =
(Kw − t+ 1)(t+ 1)(1− δw)(1− δs)(δw − δs)

(Kw − t+ 1)(1− δs)
[
(Kw − t)(δw − δs) + Ks(t+ 1)(1− δw)

]
+ K2

st(t+ 1)(1− δw)2
− ε/2 (185)

Only strong receivers decode during the third subphase. Proba-
bility of decoding error in Subphase 3 vanishes asymptotically,
because

KsR
(A)

(1− δs)
< β3. (201)

In Subphase 2, probability of decoding error at weak receivers
vanishes asymptotically, because

Kw−t+1
t R(A)

(1− δw)
< β2. (202)

Probability of decoding error at strong receivers in Subphase
2 vanishes asymptotically, because

Kw−t+1
t R(A) + KsR

(B)

(1− δs)
< β2. (203)

Whenever the decodings in all subphases are successful, all
receivers guess their desired messages correctly. As a conse-
quence, also the average of the overall probability of error
vanishes as n→∞.

We analyze the secrecy constraint. For fixed blocklength n:

I
(
W1, . . . ,WD;Zn

∣∣C)
= I
(
W

(B)
d1

, . . . ,W
(B)
dKw

;Zβ1n
1

∣∣C)
+ I
(
W

(A)
d1

, . . . ,W
(A)
dKw

,W
(B)
dKw+1

, . . . ,W
(B)
dK

;Z
(β1+β2)n
β1n+1

∣∣C)
+ I
(
W

(A)
dKw+1

, . . . ,W
(A)
dK

;Zn(β1+β2)n+1

∣∣C), (204)

because of the independence of the communications in the
three subphases. The sizes of the secret keys have been chosen
so that the codewords to be sent in each of the three subphases
are chosen uniformly at random over a subset of the random
codebooks that are equal to the minimum between (1 − δz)
and the rates of communication. By Lemma 1 this proves that
I
(
W1, . . . ,WD;Zn

∣∣C) tends to 0 as n→∞.

We can conclude that there must exist at least one choice
of the codebooks so that for this choice both PWorst

e → 0 and
I
(
W1, . . . ,WD;Zn

)
vanish asymptotically.

For each choice of the parameter t ∈ {1, . . . ,Kw − 1}:

R = R(A) +R(B) = R̃(t+1) − ε. (205)

Moreover, each weak receiver requires a cache size of

Mw =
D
[
tR(A) + (t− 1)R(B)

]
Kw

+

(
Kw − 1

t

)
RKey,1

+

(
Kw − 1

t− 1

)
RKey,2 +

(
Kw − 1

t− 1

)
KsRKey,3

= M̃(t+1)
w − D(t− 1/2)

Kw
ε, (206)

and each strong receiver a cache size of

Ms = RKey,4 +

(
Kw
t

)
RKey,3 = M̃(t+1)

s . (207)

Taking ε → 0 thus proves achievability of the rate-memory
triples (R̃(t+1), M̃

(t+1)
w , M̃

(t+1)
s ), for t ∈ {1, . . . ,Kw − 1}, in

(88d)–(88f).

C. Symmetric Secure Cache-Aided Piggyback Coding

Fix ε > 0 and define the time-sharing parameters as on top
of the next page. Notice that β1 + β2 + β3 = 1.

Choose two positive integers tw ∈ {1, . . . ,Kw} and ts ∈
{1, . . . ,Ks}.

Message splitting: Divide each message into two submes-
sages,

Wd =
[
W

(A)
d ,W

(B)
d

]
, d ∈ D, (208)

so that the submessages are of rates defined in (210) and (211)
on top of the next page.

Denote the
(
Kw

tw

)
subsets of {1, . . . ,Kw} of size tw by

G
(tw)
1 , . . . , G

(tw)

(Kw
tw

)
and the

(
Ks

ts

)
subsets of {1, . . . ,Ks} of size

ts by G(ts)
1 , . . . , G

(ts)

(Ks
ts

)
. Divide every message W (A)

d into
(
Kw

tw

)
submessages and every message W (B)

d into
(
Ks

ts

)
submessages:

W
(A)
d =

{
W

(A)

d,G
(tw)
`

: ` ∈
{

1, . . . ,

(
Kw
tw

)}}
, (212a)

W
(B)
d =

{
W

(B)

d,G
(ts)
`

: ` ∈
{

1, . . . ,

(
Ks
ts

)}}
. (212b)

Key generation:
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β1 :=
Kw(Kw − tw)(ts + 1)(1− δs)2

Kw(Kw − tw)(ts + 1)(1− δs)2 + Ks(tw + 1)(1− δw)
[
(Ks − ts)(1− δw) + Kw(ts + 1)(1− δs)

] , (209a)

β2 :=
KwKs(tw + 1)(ts + 1)(1− δw)(1− δs)

Kw(Kw − tw)(ts + 1)(1− δs)2 + Ks(tw + 1)(1− δw)
[
(Ks − ts)(1− δw) + Kw(ts + 1)(1− δs)

] , (209b)

β3 :=
Ks(Ks − ts)(tw + 1)(1− δw)2

Kw(Kw − tw)(ts + 1)(1− δs)2 + Ks(tw + 1)(1− δw)
[
(Ks − ts)(1− δw) + Kw(ts + 1)(1− δs)

] (209c)

R(A) =
Kw(tw + 1)(ts + 1)(1− δw)(1− δs)2

Kw(Kw − tw)(ts + 1)(1− δs)2 + Ks(tw + 1)(1− δw)
[
(Ks − ts)(1− δw) + Kw(ts + 1)(1− δs)

] − ε/2, (210)

R(B) =
Ks(tw + 1)(ts + 1)(1− δw)2(1− δs)

Kw(Kw − tw)(ts + 1)(1− δs)2 + Ks(tw + 1)(1− δw)
[
(Ks − ts)(1− δw) + Kw(ts + 1)(1− δs)

] − ε/2 (211)

• For each ` ∈
{

1, . . . ,
(

Kw

tw+1

)}
, generate an independent

random key K
G

(tw+1)
`

of rate

RKey,1 =

(
Kw

tw + 1

)−1
· β1 min {1− δz, 1− δw} .

• For each ` ∈
{

1, . . . ,
(

Ks

ts+1

)}
, generate an independent

random key K
G

(ts+1)
`

of rate

RKey,2 =

(
Ks

ts + 1

)−1
· β3 min {1− δz, 1− δs} .

• For each i ∈ Kw and j ∈ Ks, generate an independent
random key Kw,{i,j} of rate

RKey,3 =
β2

KwKs
min {1− δz, 1− δw} ,

and an independent random key Ks,{i,j} of rate

RKey,4 =
β2

KwKs
min

{
(δw − δz)+, 1− δs

}
.

Placement phase: Place the cache contents as shown in the
following table.

Cache at weak receiver i{{
W

(A)

d,G
(tw)
`

}
i∈G(tw)

`

}D

d=1{
K
G

(tw+1)
`

}
i∈G(tw+1)

`

Kw,{i,Kw+1}, . . .Kw,{i,K}

Ks,{i,Kw+1}, . . .Ks,{i,K}

Cache at strong receiver j{{
W

(B)

d,G
(ts)
`

}
j∈G(ts)

`

}D

d=1{
K
G

(ts+1)
`

}
j∈G(ts+1)

`

Kw,{1,j}, . . .Kw,{Kw,j}

Ks,{1,j}, . . .Ks,{Kw,j}

Delivery phase: The delivery phase is divided into three
subphases of lengths β1n, β2n and β3n.

Subphase 1: This phase conveys to each weak receiver i ∈
Kw, the parts of W (A)

di
that are not stored in its cache memory.

Time-sharing is applied over
(

Kw

tw+1

)
equally-long peri-

ods of length n1 = β1n
(

Kw

tw+1

)−1
. Label the periods

G
(t+1)
1 , . . . , G

(t+1)

(Kw
t+1)

.

In Period G
(t+1)
` , for ` ∈

{
1, . . . ,

(
Kw

tw+1

)}
, the secured

XOR-message

sec
( ⊕
i∈G(tw+1)

`

W
(A)

di,G
(tw+1)
` \{i}

, K
G

(tw+1)
`

)
(213)

is sent to the subset of receivers G(tw+1)
` . Each receiver i ∈

G
(tw+1)
` retrieves the content

K
G

(tw+1)
`

and
{
W

(A)

dk,G
(tw+1)
` \{k}

}
k∈G(tw+1)

` \{i}
(214)

from its cache memory. It then decodes the secured message
in (213), and with the retrieved cache content (214) it recovers
the desired message W (A)

di,G
(tw+1)
` \{i}

.

Subphase 2: Submessages W
(B)
d1

, . . . ,W
(B)
dKw

are
sent to weak receivers 1, . . . ,Kw and submessages
W

(A)
dKw+1

, . . . ,W
(A)
dK

to strong receivers Kw + 1, . . . ,K.
Time-sharing is applied over Kw ·Ks periods, each of length

n2 = β2n
KwKs

. The periods are labeled {i, j}, for i ∈ Kw and
j ∈ Ks. Divide each submessage W (B)

d into Ks parts

W
(B)
d =

(
W

(B)
d,Kw+1, . . . ,W

(B)
d,K

)
(215a)

so that each part is of equal rate r(B) = R(B)/Ks and for all
j ∈ Ks and d ∈ D, part W (B)

d,j is stored in strong receiver j’s
cache memory. Similarly, divide each submessage W (A)

d into
Kw parts

W
(A)
d =

(
W

(A)
d,1 , . . . ,W

(A)
d,Kw

)
, (215b)

of equal rate r(A) = R(A)/Kw so that for each i ∈ Kw and
d ∈ D, part W (A)

d,i is stored in weak receiver i’s cache memory.
We describe the encoding and decoding operations in a

period {i, j}, for i ∈ Kw and j ∈ Ks. In this period, the
transmitter sends the codeword

xn2

{i,j}

(
sec
(
W

(B)
di,j

,Kw,{i,j}
)
; sec

(
W

(A)
dj ,i

,Ks,{i,j}
))

(216)
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over the channel. At the end of the period, Receiver i first
retrieves the cache content

Ks,{i,j}, W
(A)
dj ,i

, (217)

and forms the subcodebook

Crow
pg,{i,j}

(
sec
(
W

(A)
dj ,i

,Ks,{i,j}
))

=
{
xn2

{i,j}
(
`row; sec

(
W

(A)
dj ,i

,Ks,{i,j}
))

:

`row ∈
{

1, . . . ,
⌊
2nr

(B)⌋}}
. (218)

Based on this subcodebook, it then decodes the secured mes-
sage sec

(
W

(B)
di,j

,Kw,{i,j}
)
, and recovers its desired message

W
(B)
di,j

with the secret key Kw,{i,j} stored in its cache memory.
Receiver j proceeds analogously, except that it retrieves the
cache content

Kw,{i,j}, W
(B)
di,j

, (219)

and forms the subcodebook

Ccol
pg,{i,j}

(
sec
(
W

(B)
di,j

,Kw,{i,j}
))

=
{
xn2

{i,j}
(
sec
(
W

(B)
di,j

,Kw,{i,j}
)
; `col

)
:

`col ∈
{

1, . . . ,
⌊
2nr

(A)⌋}}
. (220)

It then decodes the secured message sec
(
W

(A)
dj ,i

,Ks,{i,j}
)
, and

recovers W (A)
dj ,i

using the secret key Ks,{i,j} from its cache
memory.

Subphase 3: This subphase conveys to each strong receiver
j ∈ Ks, the parts of submessage W (B)

dj
that are not stored in

its cache memory. Encoding/decoding operations are obtained
from the encoding/decoding operations for Subphase 1 if in
the latter the subscript w is replaced by the subscript s and
the superscript (A) is replaced by the superscript (B).

Analysis: We analyze the average (over the random choice
of the codebooks) probability of decoding error and the
average leakage I(W1, . . . ,WD;Zn|C).

We start by showing that the probability of decoding error
vanishes in each of the three subphases. Only weak receivers
perform decoding operations in the first subphase. Probability
of error in this subphase thus tends to 0 as n→∞, because

Kw−tw
tw+1 R

(A)

(1− δw)
< β1 (221)

In the second subphase, both weak and strong receivers per-
form decoding operations. The probability of decoding error
at weak receivers tends to 0 as n→∞, because

KwR
(B)

(1− δw)
< β2 (222)

The probability of decoding error at strong receivers tends to
0 as n→∞, because

KsR
(A)

(1− δs)
< β2. (223)

(Notice that by our choice of the subrates R(A) and R(B),
the two decoding constraints of Subphase 2, (222) and (223)
are equally strong.) Only strong receivers perform decoding

operations in the third subphase. The probability of error of
these decoding operations tends to 0 as n→∞, because

Ks−ts
ts+1 R

(B)

(1− δs)
< β3 (224)

Since all receivers correctly recover their demanded messages
when all decoding operations tend to 0, when averaged over
the random code construction, the total probability of error
tends to 0 as n→∞.

Communication is secured because the secret keys have
been chosen sufficiently long. In fact, following the arguments
given in the previous Subsection VIII-B, it can be shown that
the average leakage term I(W1, . . . ,WD;Zn|C) tends to 0 as
n → ∞. By standard arguments, it can then be concluded
that there must exist a choice of the codebooks so that for
this choice the probability of error PWorst

e and the leakage
I(W1, . . . ,WD;Zn) both vanish asymptotically as n→∞.

The presented scheme requires weak receivers to have a
cache of size

Mw =
Dtw
Kw

R(A) +
(tw + 1)β1 min {1− δz, 1− δw}

Kw

+
β2 min {1− δz, 2− δw − δs}

Kw

= M̃(Kw+tw(Ks+1)+ts)
w − Dtw

2Kw
ε, (225)

and strong receivers a cache of size

Ms =
Dts
Ks

R(B) +
(ts + 1)β3 min {1− δz, 1− δs}

Ks

+
β2 min {1− δz, 2− δw − δs}

Ks

= M̃(Kw+tw(Ks+1)+ts)
s − Dts

2Ks
ε. (226)

The rate of the messages is

R = R(A) +R(B) = R̃(Kw+tw(Ks+1)+ts) − ε. (227)

Thus, letting ε→ 0 establishes achievability of the desired
rate-memory triples in (88g)–(88i).

IX. SUMMARY

We have studied secrecy of cache-aided wiretap erasure
BCs with Kw weak receivers, Ks strong receivers and one
eavesdropper. We have provided a general upper bound on the
secrecy capacity-memory tradeoff for the case when receivers
have arbitrary erasure probabilities and arbitrary cache sizes.
We have also proposed lower bounds on the secrecy capacity-
memory tradeoff for different cache sizes. For some cache
arrangements, e.g., for zero cache sizes at strong receivers
Ms = 0, our upper and lower bounds coincide for small
cache sizes. For Ms = 0, they also match for large cache
sizes. These bounds show that the secrecy constraint can
induce a significant loss in capacity compared to the standard
non-secure system, especially when Ms = 0. They also
exhibit that in a secure system, the caching gain with small
cache memories is much more important than its non-secure
counterpart. This is due to the fact that secret keys can be
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stored in the caches, which are more useful than cached data.
For larger cache sizes, data has to be stored as well and the
caching gains of the secure system are similar to the gains
in a standard system. We also present a lower bound on the
capacity of a scenario where the cache assignment across
receivers can be optimized subject to a total cache budget
Mtot. The lower bound is exact for small cache budgets Mtot.
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APPENDIX A
PROOF OF LEMMA 2

For each blocklength n, we fix caching, encoding and
decoding functions as in (16), (20) and (22) so that both the
probability of worst-case error and the secrecy leakage satisfy:
3

PWorst
e −−−−→

n→∞
0, (228a)

I(W1, . . . ,WD;Zn) −−−−→
n→∞

0. (228b)

We only prove the lemma for the set S = {1, . . . , k}. For
other sets S ⊆ {1, . . . ,K} the proof is similar.

By Fano’s inequality and because conditioning can only re-
duce entropy, there exists a sequence of real numbers {εn}∞n=1

with
εn
n
−−−−→
n→∞

0,

such that

H(Wd1 |Y n1 , V1) ≤ εn
2K

,

H(Wd2 |Y n2 , V1, V2,Wd1) ≤ εn
2K

,

...

H(Wdk |Y nk , V1, . . . , Vk,Wd1 , . . . ,Wdk−1
) ≤ εn

2K
.

Thus,

nR = H(Wd1)

= H(Wd1 |Zn) + I(Wd1 ;Zn)

≤ H(Wd1 |Zn) +
εn
2

≤ I(Wd1 ;Y n1 , V1)− I(Wd1 ;Zn) +H(Wd1 |Y n1 , V1) +
εn
2

≤ I(Wd1 ;Y n1 , V1)− I(Wd1 ;Zn) + εn

≤ I(Wd1 ;Y n1 |V1)− I(Wd1 ;Zn|V1) + I(Wd1 ;V1|Zn) + εn

(a)
=

n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y i−11 )− I(Wd1 ;Zi|V1, Zni+1)

]
+ nM1 + εn

3This convere proof remains valid if the strong secrecy constraint in (228b)
is replaced by the weaker constraint 1

n
I(W1, . . . ,WD;Zn) −−−−→

n→∞
0.

(b)
=

n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y i−11 )− I(Wd1 ;Zi|V1, Zni+1)

]
+ nM1 + εn

+

n∑
i=1

[
I(Zni+1;Y1,i|Y i−11 , V1,Wd1)

− I(Y i−11 ;Zi|Zni+1, V1,Wd1)
]

=

n∑
i=1

[
I(Wd1 , Z

n
i+1;Y1,i|V1, Y i−11 )

− I(Wd1 , Y
i−1
1 ;Zi|V1, Zni+1)

]
+ nM1 + εn

(c)
=

n∑
i=1

[
I(Wd1 , Z

n
i+1;Y1,i|V1, Y i−11 )

− I(Wd1 , Y
i−1
1 ;Zi|V1, Zni+1)

]
+ nM1 + εn

−
n∑
i=1

[
I(Zni+1;Y1,i|Y i−11 , V1)

− I(Y i−11 ;Zi|Zni+1, V1)
]

=

n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y i−11 , Zni+1)

− I(Wd1 ;Zi|V1, Y i−11 , Zni+1)
]

+ nM1 + εn

(d)

≤
n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y i−11 , Zni+1)

− I(Wd1 ;Zi|V1, Y i−11 , Zni+1)
]+

+ nM1 + εn

+

n∑
i=1

[
I(V1, Y

i−1
1 , Zni+1;Y1,i)

− I(V1, Y
i−1
1 , Zni+1;Zi)

]+
(e)
=

n∑
i=1

[
I(Wd1 , V1, Y

i−1
1 , Zni+1;Y1,i)

− I(Wd1 , V1, Y
i−1
1 , Zni+1;Zi)

]+
+ nM1 + εn

(f)

≤
n∑
i=1

[
I(Wd1 , V1, Y

i−1
1 , Zni+1;Y1,i)

− I(Wd1 , V1, Y
i−1
1 , Zni+1;Zi)

]+
+ nM1 + εn

+

n∑
i=1

[
I(Y i−12 ;Y1,i|Wd1 , V1, Y

i−1
1 , Zni+1)

− I(Y i−12 ;Zi|Wd1 , V1, Y
i−1
1 , Zni+1)

]+
(g)
=

n∑
i=1

[
I(Wd1 , V1, Y

i−1
1 , Y i−12 , Zni+1;Y1,i)

− I(Wd1 , V1, Y
i−1
1 , Y i−12 , Zni+1;Zi)

]+
+ nM1 + εn
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(h)
=

n∑
i=1

[
I(Wd1 , V1, Y

i−1
2 , Zni+1;Y1,i)

− I(Wd1 , V1, Y
i−1
2 , Zni+1;Zi)

]+
+ nM1 + εn, (229)

where (a) holds because I(Wd1 ;V1|Zn) is limited by the
entropy of V1, which cannot exceed nM1; (b) and (c) follow
by the chain rule of mutual information and by applying
Csiszar’s sum-identity [27, pp. 25]; (d) holds because for all
values of x we have: x ≤ x+ and 0 ≤ x+; (e) and (g)
hold because if the eavesdropper is degraded with respect to
Receiver 1, then all [·]+ terms are positive and if Receiver 1
is degraded with respect to the eavesdropper then all these
terms are zero; (f) holds because 0 ≤ x+ for all values of x;
and (g) holds because Receiver 1 is degraded with respect to
Receiver 2 and thus the following Markov chain holds:

(V1,Wd1 , Z
n
i+1, Y1,i, Zi)→ Y i−12 → Y i−11 .

Let Q be a random variable uniform over {1, . . . , n} and
independent of all the previously defined random variables.
We define the following random variables:

U1 :=
(
Wd1 , V1, Y

Q−1
2 , ZnQ+1

)
, (230)

Y1 := Y1,Q, (231)
Z := ZQ. (232)

Dividing by n, we can now rewrite (229) as

R ≤
[
I(U1;Y1|Q)− I(U1;Z|Q)

]+
+ M1 +

εn
n
. (233)

We now derive a similar bound as before, but involving
Receivers 1, . . . , k. Consider

kR ≤ 1

n
H(Wd1 , . . . ,Wdk)

=
1

n
H(Wd1 , . . . ,Wdk |Zn) +

1

n
I(Wd1 , . . . ,Wdk ;Zn)

≤ 1

n
H(Wd1 , . . . ,Wdk |Zn) +

εn
2n

(a)

≤ 1

n

[
H(Wd1) +H(Wd2 |Wd1) + . . .

+H(Wdk |Wdk−1
, . . . ,Wd1)

− I(Wd1 , . . . ,Wdk ;Zn)
]

+
εn
2n

(b)

≤ 1

n

[
I(Wd1 ;Y n1 , V1) + I(Wd2 ;Y n2 , V1, V2|Wd1) + . . .

+ I(Wdk ;Y nk , V1, . . . , Vk|Wd1 , . . . ,Wdk−1
)

− I(Wd1 , . . . ,Wdk ;Zn)
]

+
εn
n

(c)
=

1

n

[
I(Wd1 ;Y n1 , V1)− I(Wd1 ;Zn)

]
+

1

n

k∑
`=2

[
I(Wd` ;Y

n
` , V1, . . . , V`|Wd1 , . . . ,Wd`−1

)

− I(Wd` ;Z
n|Wd1 , . . . ,Wd`−1

)
]

+
εn
n

=
1

n

[
I(Wd1 ;Y n1 |V1)− I(Wd1 ;Zn|V1) + I(Wd1 ;V1|Zn)

]
+

1

n

k∑
`=2

[
I(Wd` ;Y

n
` |V1, . . . , V`,Wd1 , . . . ,Wd`−1

)

− I(Wd` ;Z
n|V1, . . . , V`,Wd1 , . . . ,Wd`−1

)

+ I(Wd` ;V1, . . . , V`|Wd1 , . . . ,Wd`−1
, Zn)

]
+
εn
n
, (234)

where (a) follows from the chain rule of mutual information;
(b) follows from Fano’s inequality; and (c) follows from the
chain rule of mutual information.
In a similar way to (233), we can prove that

1

n

[
I(Wd1 ;Y n1 |V1)−I(Wd1 ;Zn|V1)

]
≤[

I(U1;Y1|Q)− I(U1;Z|Q)
]+
. (235)

Then, we prove that for each ` ∈ {2, . . . , k}, the following set
of inequalities holds:

I(Wd` ;Y
n
` |V1, . . . , V`,Wd1 , . . . ,Wd`−1

)

− I(Wd` ;Z
n|V1, . . . , V`,Wd1 , . . . ,W`−1)

(a)
=

n∑
i=1

[
I(Wd` ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd`−1

, Y i−1` , Zni+1)

− I(Wd` ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd`−1
, Y i−1` , Zni+1)

]
(b)
=

n∑
i=1

[
I(Wd` ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd`−1

,

Y i−12 , . . . , Y i−1` , Zni+1)

− I(Wd` ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd`−1
,

Y i−12 , . . . , Y i−1` , Zni+1)
]

(c)

≤
n∑
i=1

[
I(Wd` ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd`−1

,

Y i−12 , . . . , Y i−1` , Zni+1)

− I(Wd` ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd`−1
,

Y i−12 , . . . , Y i−1` , Zni+1)
]+

+

n∑
i=1

[
I(V`;Y`,i|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1

,

Y i−12 , . . . , Y i−1` , Zni+1)

− I(V`;Zi|V1, . . . ,V`−1,Wd1 , . . . ,Wd`−1
,

Y i−12 , . . . , Y i−1` , Zni+1)
]+

(d)

≤
n∑
i=1

[
I(Wd` , V`;Y`,i|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1

,

Y i−12 , . . . , Y i−1` , Zni+1)

− I(Wd` , V`;Zi|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1
,

Y i−12 , . . . , Y i−1` , Zni+1)
]+

+

n∑
i=1

[
I(Y i−1`+1 ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd` ,
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Y i−12 , . . . , Y i−1` , Zni+1)

− I(Y i−1`+1 ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd` ,

Y i−12 , . . . , Y i−1` , Zni+1)
]+

=

n∑
i=1

[
I(Wd` , V`, Y

i−1
`+1 ;Y`,i|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1

,

Y i−12 , . . . , Y i−1` , Zni+1)

− I(Wd` , V`, Y
i−1
`+1 ;Zi|V1, . . . , V`−1,Wd1 , . . . ,

Wd`−1
, Y i−12 , . . . , Y i−1` , Zni+1)

]+
,

(236)

where (a) follows from the chain rule of mutual information
and by applying Csiszar’s sum-identity; (b) because Receivers
1, . . . , ` − 1 are degraded with respect to Receiver `, and so
the following Markov chain holds:

(Wd` , Y`,i, V1, . . . , Vk,Wd1 , . . . ,Wd`−1
, Zni+1)→ Y i−1`

→ (Y i−11 , . . . , Y i−1`−1 ); (237)

(c) holds because for all values of x we have: x ≤ x+ and
0 ≤ x+; (d) holds because if the eavesdropper is degraded
with respect to Receiver `, then all [·]+ terms are positive and
if Receiver ` is degraded with respect to the eavesdropper than
all these terms are zero.

We define for each k ∈ {2, . . . ,K} the random variables

Yk := Yk,Q (238)

Uk := (Wdk , Vk, Y
Q−1
k+1 , Uk−1). (239)

Dividing by n, we can rewrite constraint (236) as
1

n

[
I(W`;Y

n
` |V1, . . . , V`,Wd1 , . . . ,Wd`−1

)

− I(W`;Z
n|V1, . . . , V`,Wd1 , . . . ,Wd`−1

)
]

≤
k∑
`=1

[
I(U`;Y`|U`−1, Q)− I(U`;Z|U`−1, Q)

]+
.

(240)

Finally, we bound the following sum:

I(Wd1 ;V1|Zn) +

k∑
`=2

I(Wd` ;V1, . . . , V`|Wd1 , . . . ,Wd`−1, Z
n)

≤ I(Wd1 ;V1 . . . , Vk|Zn)

+

k∑
`=2

I(Wd` ;V1, . . . , Vk|Wd1 , . . . ,Wd`−1, Z
n)

= I(Wd1 , . . . ,Wdk ;V1, . . . , Vk|Zn)

≤ n
k∑
`=1

M`. (241)

Taking into consideration constraints (235), (240) and (241),
we can rewrite constraint (234) as:

kR ≤
k∑
`=1

[
I(U`;Y`|U`−1, Q)− I(U`;Z|U`−1, Q)

]+
+

k∑
`=1

M` +
εn
n
, (242)

where U0 is a constant.
Letting n → ∞, from constraints (233) and (242), we

conclude that Lemma 2 holds.
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