
A Rate-Distortion Approach to Caching
Roy Timo†, Shirin Saeedi Bidokhti∗, Michèle Wigger‡ and Bernhard C. Geiger†

†Institute for Communications Engineering, Technische Universität München
∗Department of Electrical Engineering, Stanford University

‡Communications and Electronics Department, Telecom ParisTech
{roy.timo, bernhard.geiger}@tum.de, saeedi@stanford.edu, michele.wigger@telecom-paristech.fr

Abstract—This paper takes a rate-distortion approach to the
caching problem of Maddah-Ali and Niesen. We characterise
the optimal tradeoffs between compression rate, reconstruction
distortion and cache capacity for a single-user problem and spe-
cial cases of a two-user problem. These tradeoffs illustrate some
interesting connections between optimal caching strategies, Gács-
Körner common information, and Wyner’s common information.

I. INTRODUCTION AND SETUP

We address a communication scenario where users request
files from a server during peak-traffic periods. The server
reduces the peak-traffic by pre-placing information in cache
memories close to the users during prior periods of low
traffic. In these low-traffic periods, communication rate is not
a limiting resource and the amount of pre-placed information
is mainly restricted by the cache memory sizes.

More specifically, in this paper we consider the scenario in
Figure 1. The server has access to a library with L files:

Library X := (Xn
1 , X

n
2 , . . . , X

n
L),

where each file is a sequence of n symbols

Xn
` := (X`,1, X`,2, . . . , X`,n)

taking value in a finite alphabet X`. For simplicity, we assume
that each file is a sequence of independent and identically dis-
tributed (i.i.d.) symbols, where symbols pertaining to different
files can be correlated:

(X1,1, . . . , XL,1), . . . , (X1,n, . . . , XL,n) i.i.d. ∼ PX, (1)

for some given joint law PX over X := X1 × · · · × XL.
Assume that there is a single user, which selects an index

` ∈ L := {1, 2, . . . , L}

arbitrarily and requests the corresponding file Xn
` from the

server. The user has a local cache memory of size nC bits
where the server can pre-place information Mc, and which
the user can access to reconstruct its requested file Xn

` . A
central assumption in our work is that the server has to place
the information in the cache before it learns the user’s request.
The information Mc stored in the cache should thus be chosen
such that it is useful for (or common to) as many files as
possible.

Once the server learns the user’s request ` ∈ L, it sends an
nR-bit delivery message M to the user. Based on this message
M and the cache content Mc, the user attempts to reconstruct
its requested file Xn

` . Hence, the delivery message M should

Library
Server

Cache

User

Mc

M
(Xn

1 , . . . , Xn
L) X̂n

`

Fig. 1. Single-user RD cache problem.

contain all the information about Xn
` that is relevant to the

user and that is not yet stored in the cache memory.
Such a cache-aided setup was first considered by Maddah-

Ali and Niesen in [1, 2] and triggered a series of fruitful
results [3]–[9]. The works in [1]–[7] studied the problem
where independent files Xn

1 , . . . , X
n
L had to be reconstructed

losslessly by multiple users. More specifically, these works
presented various upper and lower bounds on the minimum
required delivery-rate R for given cache capacity C. While we
limit ourselves to a single user with cache memory, we extend
the analysis to lossy reconstruction of potentially correlated
files, cf. (1). We furthermore analyse the problem when a
second user without cache memory is present, see the setup
in Figure 4.

The main problem of interest in this paper is thus the
optimal tradeoff between the delivery rate R, the cache
capacity C, and the user’s reconstruction distortion. Notice
that the delivery rate R is a worst-case rate (or a compound
rate) in the sense that it has to be sufficiently large so that
the user can reconstruct every file Xn

` , ` ∈ L, with desired
accuracy. The problem setup by Wang, Lim and Gastpar [9],
can be considered as an ergodic average-case equivalent of our
worst-case (or compound) setup.

II. SINGLE USER

A. Formal Problem Definition

Let X̂1, . . . , X̂L be given reconstruction sets. A joint rate-
distortion-cache (RDC) code for a given blocklength n con-
sists of (2L+ 1)-mappings:

(i) A cache encoder fc : Xn →Mc, where Mc is finite.
(ii) A file encoder f` : Xn →M for each ` ∈ L, where M

is finite.
(iii) A file decoder g` :M×Mc → X̂n` for each ` ∈ L.
For brevity, we will call the above collection of encoders
and decoders an (n,M,Mc)-code. Given demand ` ∈ L, the
cache content and the delivery message are

Mc := fc(X
n) and M := f`(X

n);



and the user’s reconstruction is

X̂n
` := g`(M,Mc) ∈ X̂n` .

As per the usual rate-distortion (RD) paradigm, let us
assume that the quality of X̂n

` can be meaningfully mea-
sured using average per-letter distortions. Specifically, for each
` ∈ L, let

δ` : X̂` ×X` → [0,∞)

be a bounded distortion function. For simplicity, we assume
that for each symbol x` ∈ X` there always exists an x̂` in X̂`
such that δ`(x̂`, x`) = 0.

Definition 1: Let D := (D1, D2, . . . , DL) and C be arbi-
trary nonnegative reals. We say that a delivery rate R ≥ 0 is
(D, C)-admissible if for every ε > 0 there exists a sufficiently
large blocklength n and an (n,M,Mc)-code such that

∀ ` ∈ L: E

[
1

n

n∑
i=1

δ`(X̂`,i, X`,i)

]
≤ D` + ε,

and
|Mc| ≤ 2n(C+ε) and |M| ≤ 2n(R+ε). (2)

We call C the cache capacity and D the distortion con-
straints. The optimal RDC tradeoff for blocklengths n → ∞
is characterised by the following function.

Definition 2: The RDC function is

R(D, C) := inf
{
R ≥ 0 : R is (D, C)-admissible

}
.

B. Main Results

The RDC function has the following properties:

Proposition 1:

(i) R(D, C) is jointly convex and non-increasing in D and
C.

(ii) If C ≥ H(X), then R(D, C) = 0 for all D.
(iii) If C = 0, then

R(D, 0) = max
`∈L

RX`
(D`),

where RX`
(D`) is the usual RD function for X`,

RX`
(D`) := min

pX̂`|X`
: X`→X̂`

s.t. E[δ`(X̂`,X`)]≤D`

I(X`; X̂`).

Let
R∗(D, C) := minmax

`
I(X`; X̂`|U), (3)

where the minimum is taken over all (U, X̂1, X̂2, . . . , X̂L)
jointly distributed with X such that I(X;U) ≤ C and
E[δ`(X̂`, X`)] ≤ D` for all ` ∈ L.

Theorem 1:

R(D, C) = R∗(D, C).

Transmitter

Receiver 1

Receiver 2

Rc

R1

R2

(Xn
1 , Xn

2 )

X̂n
2

X̂1

Fig. 2. Lossy Source Coding for a Simple Network.

C. Connections to the Gray-Wyner Network

For the case of L = 2 files, Xn = (Xn
1 , X

n
2 ), there is a close

connection between the RDC function and Gray and Wyner’s
classic “source coding for a simple network” problem [10].
The Gray-Wyner network is illustrated in Figure 2: A trans-
mitter is connected to two different receivers via a common
link of rate Rc and two private links of rates R1 and R2.
The set of all achievable rate tuples (Rc, R1, R2) for which
receivers 1 and 2 can respectively reconstruct Xn

1 and Xn
2 to

within distortions D1 and D2 is given by [10, Thm. 8]

RGW(D1, D2) :=
⋃(Rc, R1, R2) :

Rc ≥ I(X1, X2;U)

R1 ≥ I(X1; X̂1|U)

R2 ≥ I(X2; X̂2|U)

 ,

where the union is over all tuples (X1, X2, U, X̂1, X̂2) satisfy-
ing E[δ`(X̂`, X`)] ≤ D`, for ` ∈ {1, 2}. The next proposition
can be proved by associating the common rate Rc of the
Gray-Wyner problem with the rate of the caching message
Mc, and the two private rates R1 and R2 of the Gray-Wyner
problem with the rates of our delivery message M when the
user demands Xn

1 and Xn
2 , respectively.

Proposition 2:

R((D1, D2), C) = min
(C,R1,R2)∈RGW(D1,D2)

max
{
R1, R2

}
.

D. Almost Lossless Compression

Let us now restrict attention to the case where the user wants
to reconstruct Xn

` (almost) losslessy. Specifically, suppose that
X̂` = X` and δ`(x̂`, x`) = 1{x̂` 6= x`} for all ` ∈ L are
Hamming distortion functions; and 0 := (0, . . . , 0) is a tuple
of L zeros. Given these assumptions, define the rate-cache
(RC) function

R0(C) := R(0, C).

From Theorem 1 we have the next corollary.
Corollary 1.1:

R0(C) = R∗(0, C) = min
U

max
`
H(X`|U),

where the minimum is taken over all auxiliary random vari-
ables U , jointly distributed with X, satisfying I(X;U) ≤ C.

Figure 3 shows the typical behaviour of R0(C). To obtain
better understanding, we propose two lower bounds and study
conditions when they are tight.



max
`2L

H(X`)

Cgen
ie

Csup
er

R ⇤
genie (C

)

R⇤
super(C)

H(X
)

1

L
H(X)

max
`2L

H(X`)
C

R0(C)

Fig. 3. An illustration of a typical RC function R0(C) and the lower bounds
in Propositions 3 and 6.

1) Lower Bound R∗0,Genie(C) on R0(C): Imagine that, be-
fore the caching phase, a genie tells the server which ` ∈ L the
user will select in the future. The optimal caching strategy for
this hypothetical genie-aided problem is obvious, because for
each ` ∈ L we have a standard RD problem: The server uses
an optimal code to losslessly compress the source Xn

` , stores
the first nC bits produced by this code in the user’s cache
memory, and sends the remaining bits as the delivery message.
The user assembles the bits from the cache memory and the
delivery message and reconstructs the requested file. The RC
function of this genie-aided system, R0,Genie(C), hence equals1

R0,Genie(C) = R∗0,Genie(C) := max
{
0, max

`∈L
H(X`)− C

}
.

Since the server can always choose to ignore the genie-
information, the RC function of the genie-aided system cannot
exceed the RC function of the original scenario:

Proposition 3:

R0(C) ≥ R0,Genie(C).

For degraded file sets, above lower bound is tight.
Example 1: Let the DMS X be given by X` := (A1, . . . ,

A`) for all ` ∈ L, where (A1, . . . , AL) have an arbitrary joint
distribution. Then,

R0(C) = R∗0,Genie(C) = max{0, H(XL)− C}.

2) Connection to the Gács-Körner Common Information:
The lower bound R∗0,Genie(C) is also trivially tight at zero
cache capacity, C = 0; for example, see Assertion (ii) in
Proposition 1. It is therefore natural to define

CGenie := sup
{
C ≤ H(X) : R0(C) = R∗0,Genie(C)

}
to be the largest cache capacity for which there is no rate loss
with respect to the optimal genie-aided system.

Define the subset L∗ ⊆ L as

L∗ := arg max
`∈L

H(X`).

1The maximum over ` ∈ L is needed because we again consider a worst-
case (compound) setup over all possible demands ` ∈ L.

Further, let
C∗Genie := max

U
I(X;U),

where the maximum is taken over all auxiliary random vari-
ables U jointly distributed with X for which the following
statements hold:

(i) For every `∗ ∈ L∗, we have U ↔ X`∗ ↔ XL\`∗ , where
XL\`∗ :=

(
X1, X2, . . . , X`∗−1, X`∗+1, . . . , XL

)
.

(ii) For every `∗ ∈ L∗,

H(X`∗ |U) = max
`∈L

H(X`|U),

(iii) U is defined on an alphabet U with |U| ≤ |X |+ |L∗|+L.
Proposition 4:

CGenie = C∗Genie.

The critical cache capacity C∗Genie is related to the natural
L-variable generalisation [12] of Gács and Körner’s common
information:

K∗GK := max
U : H(U |X`)=0, ∀ `∈L

H(U).

Proposition 5:
C∗Genie ≥ K∗GK. (4)

If H(X1) = · · · = H(XL), then (4) holds with equality.

3) Lower Bound R∗0,Super(C) on R0(C): Now imagine a
situation where we have a superuser that requests all the L
sources Xn

1 , . . . , X
n
L and that obtains L delivery messages of

rate R each. Moreover, suppose that as before this superuser
has a local cache memory of size nC bits that can be filled by
the server. The optimal strategy for this superuser problem is
again obvious, since it is equivalent to a standard RD problem
with a single compression message of rate LR+C: The server
takes an optimal code to compress the entire library Xn and
distributes the produced bits in the cache memory and over
the L delivery messages. The RC function of this superuser
system, R0,Super(C), hence is:

R0,Super(C) = R∗0,Super(C) := max

{
0,

1

L

(
H(X)− C

)}
.

If one limits the superuser to reconstruct each source Xn
` ,

` ∈ L, solely based on the content in the cache memory and
the `-th delivery message, one obtains our original setup. The
RC function of the superuser system thus can not exceed the
RC function of the original setup:

Proposition 6:

R0(C) ≥ R0,Super(C).

For independent and identically distributed files, above lower
bound is tight:

Example 2: Let the DMS X follow the product distribution
PX =

∏L
`=1 PX . In this case,

R0(C) = R∗0,Super(C) = max

{
0, H(X)− C

L

}
.



Library
Server

Cache

User 1
Mc

M(Xn
1 , . . . , Xn

L)

User 2

X̂
(1)n
`1

X̂
(2)n
`2

Fig. 4. Two-user RD cache problem.

4) Connection to Wyner’s Common Information: The supe-
ruser lower bound is trivially tight when C ≥ H(X). So it is
natural to consider the smallest cache capacity for which there
is no rate loss with respect to the optimal superuser system,

CSuper := inf
{
C ≥ 0 : R0(C) = R0,Super(C)

}
.

Let
C∗Super := min

U
I(X;U),

where the minimum is taken over all auxiliary random vari-
ables U jointly distributed with X such that

(i) X` ↔ U ↔ XL\` for all ` ∈ L;
(ii) H(X1|U) = · · · = H(XL|U); and

(iii) U is defined on U with |U| ≤ |X |+ 2L.
Proposition 7:

CSuper = C∗Super.

The critical cache capacity C∗Super is related to the natural L-
variable generalisation [11] of Wyner’s common information:

K∗W(X) := min
U

I(X;U),

where the minimum is taken over all U jointly distributed with
X for which

(i) X` ↔ U ↔ XL\` for all ` ∈ L; and
(ii) U is defined on an alphabet U with |U| ≤ |X |+ L.

Proposition 8:
C∗Super ≥ K∗W.

If the source X is sufficiently symmetric, above inequality
holds with equality.

III. TWO-USERS WITH ONE CACHE

A. Setup

We now consider a two-user extension of the problem in
Section II. Let us assume that user 1 has a cache with capacity
C, while user 2 does not have a cache; see Figure 4. The
library consists of the same L files Xn := (Xn

1 , . . . , X
n
L)

used in Section II, and communication again takes place in two
phases — a caching phase and a delivery phase. Let L1,L2 ⊆
L denote those indices that can be potentially selected by users
1 and 2, respectively. That is, user k (for k = 1, 2) will request
a file from

{
Xn
`k
: `k ∈ Lk

}
. Let L1 := |L1| and L2 := |L2|.

A two-user joint RDC code with blocklength n consists of
(i) A cache encoder

fc : Xn →Mc.

(ii) A file encoder

f(`1,`2) : X
n →M, (`1, `2) ∈ L1 × L2.

(iii) A user-1 file decoder

g
(1)
`1,`2

:M×Mc → X̂ (1),n
`1

, (`1, `2) ∈ L1 × L2.

(iv) A user-2 file decoder

g
(2)
`1,`2

:M→ X̂ (2),n
`2

, (`1, `2) ∈ L1 × L2.

Notice that we allow the decoders to depend on the demands
of both users. We call the above collection of encoders and
decoders an (n,M,Mc)-two-user-code.

During the caching phase, the server pre-places the message
Mc := fc(X

n) in the cache of user 1. After the demands
(`1, `2) ∈ L1 × L2 are revealed to the server and both users,
the server sends the message M := f(`1,`2)(X

n) to both users.
Users 1 and 2 respectively output

X̂
(1),n
`1

:= g
(1)
`1,`2

(M,Mc) and X̂
(2),n
`2

:= g
(2)
`1,`2

(M).

For convenience, we index user 1’s reconstruction sequence
only with its own demand `1; it can however also depend on
user 2’s demand `2. Similarly, for user 2’s reconstruction.

The users might have differing exigencies regarding the files
in the library. To account for this, we admit both users to
measure reconstruction accuracy with different bounded per-
letter distortion functions δ

(1)
`1

: X̂ (1)
`1
× X`1 → [0,∞) and

δ
(2)
`2

: X̂ (2)
`2
×X`2 → [0,∞) (for indices `1 ∈ L1 and `2 ∈ L2).

Definition 3: Let C be a nonnegative real number, and let
D(1) :=

{
D

(1)
`1

}
`1∈L1

and D(2) :=
{
D

(2)
`2

}
`2∈L2

be L1- and
L2-tuples of nonnegative real numbers.

We say that a compression rate R ≥ 0 is (D(1),D(2), C)-
admissible if for any ε > 0 there exists a sufficiently large
blocklength n and an (n,M,Mc)-code satisfying (2) and

∀ k ∈ {1, 2}: ∀ ` ∈ Lk:

E

[
1

n

n∑
i=1

δ
(k)
`k

(
X̂

(k)
`,i , X`,i

)]
≤ D(k)

` + ε. (5)

Definition 4: The two-user RDC function is

R2user(D
(1),D(2), C)

:= inf
{
R ≥ 0 : R is

(
D(1),D(2), C

)
-admissible

}
.

B. Genie-Aided Lower Bound on the RDC Function

If both users’ demands were revealed by a genie to the
server even before the caching phase, our setup would coin-
cide with a “worst-case” (or compound) successive-refinement
setup. The rate-distortions function of this worst-demands
successive refinement problem thus forms a lower bound on
R2user(D

(1),D(2), C).
Definition 5: Let R∗SuccRef(D

(1),D(2), C) be the RDC func-
tion defined in (6) on top of the next page, where the
minimum is taken over all tuples (X, X̂(1), X̂(2)) such that
for k ∈ {1, 2}:

∀ ` ∈ Lk: E
[
δ
(k)
`

(
X̂

(k)
` , X`

)]
≤ D(k)

` . (7)



R∗SuccRef

(
D(1),D(2), C

)
:= max

(`1,`2)∈L1×L2

min
P

X,X̂(1),X̂(2)

max
{
I
(
X; X̂

(2)
`2

)
, I
(
X; X̂

(1)
`1
, X̂

(2)
`2

)
− C

}
(6)

R2user,Ach
(
D(1),D(2), C

)
:= min max

(`1,`2)∈L1×L2

max
{
I
(
X; X̂

(2)
`2

)
+ I
(
X; X̂

(1)
`1
|U, X̂(2)

`2

)
, I
(
X;U, X̂

(1)
`1
, X̂

(2)
`2

)
− C

}
(8)

R2user(0,0, C) ≤ min
PU|X

max
(`1,`2)∈L1×L2

max
{
H(X`2) +H(X`1 |U,X`2), H(U,X`1 , X`2)− C

}
(9)

Theorem 2:

R2user
(
D(1),D(2), C

)
≥ R∗SuccRef

(
D(1),D(2), C

)
.

C. Upper Bound on the RDC Function

We have the following upper bound on the RDC function.
Definition 6: Let R2user,Ach(D

(1),D(2), C) be defined as
in (8) on top of the next page, where the minimum is taken
over all tuples

(
U, X̂(1):={X̂(1)

`1
}`1∈L1 , X̂

(2):={X̂(2)
`2
}`2∈L2

)
jointly distributed with X such that (7) holds for k ∈ {1, 2}.

Theorem 3:

R2user
(
D(1),D(2), C

)
≤ R2user,Ach

(
D(1),D(2), C

)
.

Theorem 3 can equivalently be stated as follows: a rate
R > 0 is (D(1),D(2), C)-admissible whenever there is a tuple(
U, X̂(1), X̂(2)

)
and a collection of auxiliary rates {R̃`2}`2∈L2

such that for every pair (`1, `2) ∈ L1 × L2:

C + R̃`2 ≥ I
(
U ;X, X̂

(2)
`2

)
− I
(
U ; X̂

(2)
`2

)
= I
(
U ;X

∣∣X̂(2)
`2

)
R− R̃`2 ≥ I

(
X; X̂

(2)
`2

)
+ I
(
X; X̂

(1)
`1
|U, X̂(2)

`2

)
.

These rates are achieved by the following scheme. The
server compresses the entire library Xn into Un using the
adaptive conditional RD code for side-information X̂n

`2
that we

describe in the next paragraph. Our adaptive RD code produces
a first message of nC bits which the server stores in user 1’s
cache, and a second message of nR̃`2 bits which the server
sends as part of the delivery message. In the delivery message
it also sends a standard RD message that allows both users to
reconstruct X̂(2),n

`2
, and a standard conditional RD message

that allows user 1 to reconstruct X̂(1),n
`1

given that it al-
ready knows (Un, X̂(2),n

`2
). Both users first reconstruct X̂(2),n

`2
.

User 1 subsequently reconstructs Un and X̂(1),n
`1

, always using
previously reconstructed sequences as side-information.

Our adaptive conditional RD code uses a codebook C :=
{Un(mu)} with a nested binning structure: it contains ≈ 2nC

outer bins that each consist of ≈ 2nR̃`2 inner bins. The outer
binning rate C is fixed in advanced; the inner binning rate
however adapts to the quality of the side-information X̂

(2),n
`2

and is fixed only after the demand `2 is revealed. Encoding
is in two steps. In a first step the server picks the unique
codeword Un(m∗u) that for every `2 ∈ L2 is jointly typical
with the pair

(
Xn, X̂

(2),n
`2

)
. The outer bin index of Un(m∗u)

is immediately available and the server stores the nC bits
representing this index in user 1’s cache. Once the demand `2
is fixed, also the inner bin index is available and the server

sends it as part of the delivery message. Decoding is standard
using both bin indices and the side-information X̂(2),n

`2
.

D. Almost Lossless Reconstructions
Let now both users reconstruct their demanded files Xn

`1
and Xn

`2
(almost) losslessy. From Theorem 3:

Corollary 3.1: The RC-function for the lossless setup satis-
fies the upper bound in (9) on top of this page.

Corollary 3.2: Bound (9) holds with equality when
1) L1 = L2 = {`, `′} for `, `′ ∈ L;
2) L1 = {`} for some ` ∈ L; or
3) L2 = {`} for some ` ∈ L.

Proof: To prove cases 1.) and 2.), specialise the lower
bound in Theorem 2 to the lossless case and to U = (X`, X`′)
and U = X`, respectively. For case 3.) a new converse is
required.

Interestingly, in the first two cases there is no penalty for
not knowing the demands during the caching phase.

ACKNOWLEDGEMENTS

The work of R. Timo was supported by the Alexander
von Humboldt Foundation. The work of S. Saeedi Bidokhti
was supported by the Swiss National Science Foundation
fellowship no. 158487.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[2] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” arXiv:1308.0178v3, 2013.

[3] S. Sahraei and M. Gastpar, “K users caching two files: an improved
achievable rate”, online http://arxiv.org/abs/1512.06682v1.

[4] Z. Chen, P. Fan, and K. Ben Letaief, “Fundamental limits
of caching: Improved bounds for small buffer users,” online
http://arXiv.org/abs/1407.1935v2.pdf, Nov. 2015.

[5] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” online http://arxiv.org/abs/1501.06003.

[6] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation
of storage-rate tradeoff for caching via new outer bounds,” in IEEE
Intl. Symp. Inform. Theory, Hong Kong, China, 2015.

[7] C. Tian, “A note on the fundamental limits of coded caching,” online
http://arXiv.org/abs/1503.00010.

[8] R. Timo and M. Wigger, “Joint cache-channel coding over erasure
broadcast channels,” in IEEE Intl. Symp. Wireless Commun. Systems,
Brussels, Belgium, 2015.

[9] C. Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching:
sequential coding for computing,” arXiv:1504.00553, 2015.

[10] R. Gray and A. Wyner, “Source coding for a simple network,” Bell
Sys. Tech. J., vol. 53, no. 9, pp. 1681–1721, 1974.

[11] W. Liu, G. Xu, and B. Chen, “The common information of N dependent
random variables,” in Allerton Conf. Commun. Control Comp., 2010.

[12] R. Tandon, L. Sankar, and H.V. Poor, “Multi-user privacy: The Gray-
Wyner system and generalized common information” in Proc. IEEE Int.
Sym. on Information Theory, 2011


	Introduction and Setup
	Single User
	Formal Problem Definition
	Main Results
	Connections to the Gray-Wyner Network
	Almost Lossless Compression
	Lower Bound R�,Genie*(C) on R�(C)
	Connection to the Gács-Körner Common Information
	Lower Bound R�,Super*(C) on R�(C)
	Connection to Wyner's Common Information


	Two-Users with One Cache
	Setup
	Genie-Aided Lower Bound on the RDC Function
	Upper Bound on the RDC Function
	Almost Lossless Reconstructions

	References

