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Traditional Sensing and Communications Separation

Communication ) Sensing J

Conventional approach: Resource splitting )
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Integrated Sensing and Communication (ISAC)

Sensing and Communication )
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e Synergistic Waveform for Sensing and Comm J
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The Point-to-Point (P2P) Channel



Information Theoretic Model for P2P ISAC Kobayashi et al.
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i.i.d. state sequence S" = (S1,...,5p)

Decoder

> 0

Inputs with generalized feedback X; = f;(M,Z'~1)

State estimation 5”7 = h(X", Z")

Arbitrary forward and backward channels Py|xs and Pzjyxs
o Memoryless fading channels Y = SX + N

e Receiver CSI: Y; can include S; or imperfect versions of S;
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Information-Theoretic Fundamental Limit

Definition

Capacity-distortion tradeoff C(D) is largest rate R such that there
exist encoder, decoder and estimator with

Pr(AAﬂ;éM>—>O as n— 0o

and
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Optimal Sensing under Distortion Constraints

e By memoryless assump.: Markov chain (X", Z") — (Xi, Zi) = Si
The optimal estimator operates symbolwise on (X", Z")
$"(x", z") = (8% (x1,21), 8" (%2, 22), - - -, 87 (Xn, 2n)),

where the optimal per-symbol estimator is

§*(x,z) := arg min Z Psixz(s|x, z)d(s,s')
S'€S oes

o Optimal estimator only depends on input sequence x” but not on
coding scheme — joint waveform design
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Capacity-Distortion Tradeoff C(D)

Theorem (Kobayashi et al.)

Capacity-distortion tradeoff
C(D) :=maxI(X;Y)
where maximum is over Px satisfying
E[d(S,5"(X, Z))] < D.

Here (X,S,Y,Z) ~ PxPsPyz|sx-

e Tradeoff between communication and sensing stems from Px

o Generalized feedback not used for coding. Simple point-to-point

codes are sufficient. It suffices to adjust input pmf Px to desired
sensing performance.
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Ex. 1: Binary Multiplicative-State Channel
e S~ B(q)
e Z=Y' =SXand Y =(Y,S)
e Hamming Distortion d(s,§) = s® 8.
e Minimize distortion: X =1 —+ D=0and R=0

e Maximize rate: X ~ B(1/2) — D =1/2-min{q,1—q}and R=gq
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Ex. 2: Rayleigh Fading Channel

Standard Gaussian state and noises S;, N;, N, ;

Rayleigh fading channel Y/ = 5;X; + N;

Rx observes Y; = (Y/,S;) and Tx Z; = Y/ + Np, ;

Input power constraint P = 10dB

Quadratic distortion d(s,$) = (s — $)2.

] e X ~ N(0, P) achieves capacity
ﬂ

! I ! I !
0.1 0.15 0.2 0.25 0.3 0.35 0.4

e X+ VP optimal for sensing
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Take-Away Messages for P2P

o Information-theoretic model based on generalized feedback,
memoryless state sequence, average distortion

e Symbol-by-symbol estimator optimal; sensing performance
depends only on empirical statistics of X"

e Use optimal data communication scheme under restriction on
empirical statistics of x”
— generalized feedback not used for data communication

@ Tradeoff between sensing and communication

@ Resource-sharing schemes highly suboptimal
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The One-to-Many Broadcast Channel



Information Theoretic Model for BCs

e State-dependent memoryless channels with generalized feedback

S’" < Estimator <

M, My — Encoder

X;

Transmitter

Zi1 Yy
Rec.1 > Ml
Channel
Py,v,z1x5
n
S Rec.2 > M2

Ps Yo

o Arbitrary forward and backward channels Py, v, xs and Pz|y,y,xs

e Model includes as special cases Rx-CSI and two states S = (51, S2)

e For most channels, feedback is helpful
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Fundamental Capacity-Distortion Region for BC

Definition

Capacity-distortion region is the set of triples (R, Rz, D) so that there
exist encoder, decoders, and estimator with

nan;OPr(Mk 4 M) =0, ke{1,2}, Tim fZ]E[d $,8) <D

Same per-symbol optimal estimator as for P2P!

Optimal estimator: s"=(8"(x1,21), 8 (%2, 22)s - - -, 8% (X, Z0))s

with

§*(x, z) := arg min Z Psixz(s|x, z)d(s,s").
S'€S ses

e Sensing performance depends only on statistics of x”

e Find optimal generalized-fb BC code and adapt X" statistics.
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Capacity-Distortion Region of Degraded BCs

Degraded Broadcast Channels X — Y; — Y5

Capacity-distortion region: all (Ry, Rz, D) that for some Pyx satisfy
I(X; Y| U)

I(U' Yz)a

D.

P
IAIA A

E[d(S,5%(X, 2))]

e Tradeoff between communication and sensing from Px.

o No-feedback codes with appropriate Px.
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Binary Fading Example: Capacity-Distortion Region
e Double-State S = (51, Sz) with corr. components, known at Rxs
e Fading outputs Yy = Sk X, for k = 1,2 (without noise)
e Perfect Rx CSI and both outputs fed back Z = (Y1, Y2)

@ When X =1 Tx learns 51,5>; when X = 0 it learns nothing

e Resource/time-
sharing approaches
sub-optimal

o Tradeoff betwen
optimal sensing
and comm.
performances

16 /31



State-Dependent BCs with Generalized Feedback

Yi
Zi—l Rec. 1 — ]\Afl
M, My —| Encoder ;e Py,y,z1x5
Transmitter .
Rec.2  \— M,
PS 1/21

e Feedback does not increase capacity of degraded BCs (El Gamal, 79)

@ Achievable scheme for general BCs
(Shayevitz et al’12, Venkataramanan et al’13)

e Capacity of several BCs with full Receiver-CSI (Kim et al'16)
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Intuition about the Shayevitz-Wigger BC Scheme

Block: 1 b b+1 B
- Comp. Info. || Comp. Info Comp. Info.
New Data New Data New Data -

© Block-Markov strategy:

e Compression info sent in block b + 1: info about channel in block b
learned via feedback

e Block-b outputs improved with compression info sent in block b+ 1

@ New data and compression info sent with Marton’s BC scheme
(without feedback)
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Bounds on Capacity-Distortion Region of General BCs

General Broadcast Channels

Inner and outer bounds (feasible and infeasible regions) based on
Shayevitz-W. scheme and genie-aided bound

@ Bounds in general case tight only in special cases.
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Take-Away Messages for BC

o Information-theoretic model based on generalized feedback,
memoryless state sequence, average distortion

e Symbol-by-symbol estimator optimal; sensing performance
depends only on empirical statistics of X"

e Use optimal data communication scheme under restriction on
empirical statistics of x”
— generalized feedback used for data communication

e 3-dimensional tradeoff between 2 rates and distortion

@ Resource-sharing schemes highly suboptimal
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The Many-to-One Multiaccess Channel



ISAC over Multiaccess Channels

e Two Txs sense (correlated) states and also send data messages

Transmitter 1

Z1,i-1
A | | Estimator |<§
ST <]
M7 —| Encoder X Y
Y; 1M
Pyzle\Xleslsz‘é Receiver —
M5 —>| Encoder X /P M
2,i
S; < Estimator 1<
Z2i-1

Transmitter 2

e Symbol-wise estimator at Tx k based on (Xg j, Zk i) is suboptimal!

e Collaborative coding and sensing through Tx-Tx- paths!
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Coding for Sensing — A Toy Example

e Via feedback, Tx 1 can get info about S, that Tx 2 does not get
— use coding and send it to Tx 2 through the feedback link
e Example: Y = 55X Z1=5 Z> = X
Can achieve distortion 0 at Tx 2 if Tx 1 repeats its feedback
X,i=21i-1=%i-1 = 2i=5%,1

Without Tx 1 repeating the feedback this is not possible!

Coding for sensing can help if Tx 1 has info. on S, that is not
available at Tx 2 (or vice versa) J
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Idea of Collaborative Coding and Sensing Scheme

o [Willems’83] scheme (MAC with generalized feedback)
e Block-Markov coding and backwards decoding

e Txs exchange message parts over Tx-Tx paths

e Exchanged message parts are collaboratively re-transmitted in the
next block

e Extension of [Willems’83] to ISAC with collaborative sensing

o After each block, each Tx extracts sensing info of interest to the
other Rx

e Sends this sensing info in the next block in the codeword decoded
at other Tx

o Each Tx estimates state based on inputs/outputs, decoded
codewords, and sensing info from other Tx.
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Willems’ Scheme for MAC With Generalized Feedback
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Scheme for ISAC MAC with Collaborative Encoding
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Binary MAC Example
e 51,5, i.i.d. Bernouilli-0.9, noises By, B1, B> ind. Bernoulli, and
Y' = 51X+ $X + Bo, Y = (Y, 5,5%),
Zr = 51X1+ 5X,+ By, Vk € {1, 2}.
e Hamming distortion d(s,8) =s® §

@ Choose auxiliaries Uy, Uy, Us binary and

HZk =1} +2-1{Z =2 if B, =0
Vi = {k J {4e=2) ok Vk = {1,2}
? if Ek =1
1 -
=
* 051 === Vith collaborative sensing
e = Without collaborative sensing
03 4 5 6 7 8

D> 1072
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Take-Aways for the MAC and Related Scenarios

Symbol-by-symbol estimator based on inputs/outputs suboptimal

@ Base estimator also on decoded codewords

Sensing performance improved through collaborative sensing —
Use the Tx-to-Tx path already used for feedback communication!

Improved schemes are possible using interactive two-way schemes
(Han) and joint source-channel coding

Tradeoff between sensing and communication

Capacity-distortion region for the MAC remains an open problem
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Interesting Related Models (Joudeh et al., Wu et al., Chang et al.)

Zi1

Estimator

X, YZ|XS
7

Transmitter S

e Single sensing parameter S € {0,1} constant for all times

Encoder |

@ Sensing performance measured in detection-error exponent
E .= —% log (maxse{oyl} ‘—Vl\}' YwewP[S#s|W=w,S= 5])
Theorem (Chang et al.)

Without feedback coding, (R, D) pairs are achievable iff for some Px:

R < minl(X;Y),
seS

< =) Px(x)I P P 1
< i 2~ 30 PxCo8 (37 a0 Paps(ebe 1)

With feedback for coding the set is larger.
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Summary and Outlook
@ Presented information-theoretic framework for integrated sensing
and communication (Kobayashi,Caire,Kramer’18)

@ Single Tx: sensing performance depends only on X" statistics, i.e.,
on the chosen waveform.

e Tradeoff between rates and distortion(s).

e Multiple Txs: Fully integrate coding for collaborative sensing and
comm.

e Interesting future research directions:

o Channels with memory
o Other sensing performance criteria
e Secrecy constraints
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