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Example: Distributed Control-System for Smart Cars

Smart cars measuring speed, distance, road conditions

Fixed road-side sensors measuring same parameters

Intact car system: measurements highly correlated

e Erroneous car system: measurements independent

Task of Distributed Control-System

Decide on joint distribution underlying the observations



Distributed Hypothesis Testing
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“Normal situation” # = 0: (X", Y™) ~ i.i.d. Pxy

e “Hazardous event” H = 1: (X", Y") ~ i.i.d. Qxy

Probability of false alarm: a, = P[H = 1|H = 0] < ¢

Probability of miss detection: 3, = P[H = O|H = 1]< 2"

Rate-Exponent Tradeoff 0*(R)
Given R > 0, largest exponent ¢ that is achievable Ve > 0



Local Hypothesis Testing
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e Rate Ris so large that sensor can send all X" to decision center

e Decision center applies likelihood ratio test to both (X", Y")

19*(F1' = OO) = D(nyHQxy)

o Alternative: Decision center raises alarm if (X", Y") are typical
(have good statistics) according to Pxy



Distributed Hypothesis Testing with R =0 (Han’s7)
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Sensor: If X" typical ~ Px — send M = 0, otherwise M = 1

Decision center raises alarm unless

X" typical ~ Px and Y"typical ~ Py

Optimal exponent:

0"(R=0) = min D(mxy||Qxy)

mx=Px
Ty=Py



Distributed Hypothesis Testing with R > 0 (Han’s7)
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Quantize X" to S"(j)
If (S"(j), X™) typical ~ Ps x send M = j, otherwise M =0

Decision center raises alarm % = 1 unless
(S"(M), X™) typical and (S"(M),Y") typical ~ Psxy.

Achievable exponent

0*(R) > max min D P
( )_ Pss; Tsxy (7TSXY|| S\XQXY)
R>1(S:X) ”SXigsx
msy=Fsy



Testing Against Independence  (Csiszar-Ahlswede ’86)
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e H=0: (X", Y") ~ iid. Pxy

o H=1: (X" Y") ~ iid. PxPy

Optimal Rate-Exponent Tradeoff
0*(R)= max I(S;Y)

PS\X H
R>1(S;X)



Using Wyner-Ziv Compression (Shimokawa, Han, Amari’94)

e Rx has side-info. Y" about source X"

e Wyner-Ziv coding: send a list of possible quantization indices
— Rx decodes the correct index using Y"

e Rx decodes with minimum empirical-entropy decoder
(a universal capacity-achieving decoder)

0*(R)> max ming min D(msxy|PsixQxy),
PS‘X: TTSXY *

=P
R2I(S:X|Y) e —Poy

min  DrsxyPexur) + A I(S:XIN)}
msx=Psx
Ty=Py

H(S|Y)<Hxg, (SIY)



Testing over Noisy Channels



Distributed Testing over Noisy Channels
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e Discrete memoryless channel Py,
(can model fast fading, additive noise, etc.)
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Our Coding and Testing Scheme for Noisy Channels
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e “Quantize and test” with lists (Wyner-Ziv)

e Unequal error protection code protects M = 0 (Borade’08)

e Sendt"if M =0
o Use codebook Cy = {W"(1),..., W"(2"P)} it M #£ 0

e New error events related to erroneous decoding of 0-message
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Result on Testing over Noisy Channels

Achievable Exponent (Salehkalaibar&W’2017)

N .
0" > max min {estandarm BOwrong-dec. » Omissed-0 }>
Psx,Prw

I(S:X|Y)<I(W;V|T)

where
Osandara = Min D(msxy||Qxy Ps)x),
Tsx=Psx
msy=Psy
Bwrong-dec. = min D(msxy||PsixQxy) + I[(W; V|T) = I(S; X|Y),
msx=Psx

my=Py
H(S|Y)<H=(S|Y)

emissed-(): D(PYHQY) + I(W, V|T) - I(S,X‘Y) 9P ET[D(PV|THPV\W:T)]

Quantization rate R limited by /(W; V|T).
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Penalty because of Noisy Channel

e Sometimes noisy channel only limits communication rate:

e In case of large missed-0 exponent

e When sensor cannot decide

e Noisy channel can severely limit error exponent

e In case of small missed-0 exponent

e Sensor decision very important

13



Testing at Multiple Centers
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Two Simultaneous Hypothesis Tests
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e Two different decision centers

e Single decision center with uncertain Pxy € {Pxy,, Pxy, }

Tension: Communication needs to serve both decisions!
E.g.: find quantization that is useful for both centers
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Tradeoff in Exponents Region (Salehkalaibar/W’/Timo’2017)

e Probabilities of false alarms: «; , = IP’[?A{,- =1H= 0] <€
e Probabilities of miss detections: 3, , = JP’[?—I,- =0/H =0] <27
e Find optimal exponents region (61, 62)

e For an example with Gaussian sources and channel
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Testing over Multi-Hop Networks
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Single-Relay Multi-Hop Channel
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H=0: (X", Y",Z") ~ iid. Pxyz
o H=1: (X" Y"Z") ~ iid. Qxyz

Probability of false alarm: a, = P[H = 1|H = 0] < ¢

Probability of miss-detection: 3, = P[# = 0|H = 1]< 2

Rate-Exponent Tradeoff 0*(R, T)

Largest exponent ¢ achievable Ve > 0 given rates R, T > 0
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e Independent “Quantize and Test” at sensor and relay

¢ “Unanimous-Decision Forwarding”: forward 0 if 0 received

Testing for Independence (Salehkalaibar/W’/Wang 2017)

9*(/?, T) = egensor—melay(’q) + eﬁelayaDecision(T)

Accumulation of error exponents
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Challenges/Features of Solutions
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e Each terminal will take a decision — alarm if one raises alarm

e Message sent from transmitter (sensor): tradeoff between
serving decision center / providing useful information to relay

e Relay processing of Y and message from transmitter — reduce
communication rate or send joint information to receiver

20



General Coding- and Testing-Scheme

e Coarse quantization of X7 — S"(i)
e Finer quantization of X" given S"(i) — U"(ji)

e Joint quantization of U"(j|i), Y" given S"(i) — V"(k|i)

xn y" A
S™(q ,U” ‘| g S (i 7‘/71 kli ~
Sensor (@) (1) Relay ® (kle) Center e
or 0 or 0
it (™, U™, X™) if both tests fail

good statistics

e Distributed quantization for cascade channels and
unanimous-decision forwarding
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An Achievable Exponent for Single-Relay Multi-Hop

Theorem
0*(R, T) > max _min  D(msuvxvz | Psuix Pvisuy Qxyz)-
Pusix:Pv|suy Wsj;gg,’;'lx
R:I(US;)_() msvuy=Pswuy
TS HI(VYUIS) TS =Een

e KL-divergence between auxiliary “z”- and “Q”-distribution
e max-constraints on R, T from applied source coding

e min-constraints from joint-typicality tests
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e Hypothesis testing for multi-hop / multi-receiver networks and
noisy channels
(Extensions to multi-relay networks, parallel relay networks)

e Schemes based on distributed quantization, unanimous-decision
forwarding, and unequal error protection

e Accumulation of error exponents
e Competition for network resources — tradeoff in exponents
¢ Intermediate processing required for optimal communication

e Derived error exponents are optimal for some testing against
conditional independence
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