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Example: Distributed Control-System for Smart Cars

• Smart cars measuring speed, distance, road conditions

• Fixed road-side sensors measuring same parameters

• Intact car system: measurements highly correlated

• Erroneous car system: measurements independent

Task of Distributed Control-System

Decide on joint distribution underlying the observations
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Distributed Hypothesis Testing

Sensor
Decision

Center

Y n

rate-R message M Ĥ 2 {0, 1}

• “Normal situation” H = 0: (X n,Y n) ∼ i.i.d. PXY

• “Hazardous event” H = 1: (X n,Y n) ∼ i.i.d. QXY

• Probability of false alarm: αn = P
[
Ĥ = 1|H = 0

]
< ε

• Probability of miss detection: βn = P
[
Ĥ = 0|H = 1

]
< 2−nθ

Rate-Exponent Tradeoff θ?(R)

Given R > 0, largest exponent θ that is achievable ∀ε > 0

3



Local Hypothesis Testing

Sensor
Decision

Center

Y n

Ĥ 2 {0, 1}
1 bits

• Rate R is so large that sensor can send all X n to decision center

• Decision center applies likelihood ratio test to both (X n,Y n)

θ?(R =∞) = D(PXY ||QXY )

• Alternative: Decision center raises alarm if (X n,Y n) are typical
(have good statistics) according to PXY
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Distributed Hypothesis Testing with R = 0 (Han’87)

Sensor
Decision

Center

Y n

Ĥ 2 {0, 1}
m bits

• m = 1 bit suffices

• Sensor: If X n typical ∼ PX → send M = 0, otherwise M = 1

• Decision center raises alarm unless

X n typical ∼ PX and Y n typical ∼ PY

• Optimal exponent:

θ?(R = 0) = min
πXY :
πX=PX
πY=PY

D(πXY ||QXY )
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Distributed Hypothesis Testing with R > 0 (Han’87)

Sensor
Decision

Center

quantiz. index j

or 0
Ĥ 2 {0, 1}

• Quantize X n to Sn(j)

• If (Sn(j),X n) typical ∼ PS,X send M = j , otherwise M = 0

• Decision center raises alarm Ĥ = 1 unless

(Sn(M),X n) typical and (Sn(M),Y n) typical ∼ PSXY .

• Achievable exponent

θ?(R) ≥ max
PS|X :

R≥I(S;X)

min
πSXY :
πSX=PSX
πSY=PSY

D(πSXY ||PS|X QXY )
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Testing Against Independence (Csiszar-Ahlswede ’86)

Sensor
Decision

Center

Y n

rate-R message M Ĥ 2 {0, 1}

• H = 0 : (X n,Y n) ∼ i.i.d. PXY

• H = 1 : (X n,Y n) ∼ i.i.d. PX PY

Optimal Rate-Exponent Tradeoff
θ?(R)= max

PS|X :

R≥I(S;X)

I(S;Y )
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Using Wyner-Ziv Compression (Shimokawa, Han, Amari’94)

• Rx has side-info. Y n about source X n

• Wyner-Ziv coding: send a list of possible quantization indices
→ Rx decodes the correct index using Y n

• Rx decodes with minimum empirical-entropy decoder
(a universal capacity-achieving decoder)

θ?(R) ≥ max
PS|X :

R≥I(S;X |Y )

min
{

min
πSXY :

πSX=PSX
πSY=PSY

D(πSXY‖PS|X QXY ),

min
πSXY :

πSX=PSX
πY=PY

H(S|Y )≤HπSY (S|Y )

D(πSXY‖PS|X QXY ) + R − I(S;X |Y )

}
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Testing over Noisy Channels
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Distributed Testing over Noisy Channels

Sensor
Decision

Center

Y n

Wn V n

Channel
Ĥ 2 {0, 1}

• Discrete memoryless channel PV |W

(can model fast fading, additive noise, etc.)
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Our Coding and Testing Scheme for Noisy Channels

Sensor DecisionCenter

Y n

Wn V n

Channel
Channel
Code

Quantize
Test

Channel
Decoder

Test
M M̂ Ĥ 2 {0, 1}

• “Quantize and test” with lists (Wyner-Ziv)

• Unequal error protection code protects M = 0 (Borade’08)

• Send tn if M = 0

• Use codebook CW = {W n(1), . . . ,W n(2n(R))} if M 6= 0

• New error events related to erroneous decoding of 0-message
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Result on Testing over Noisy Channels

Achievable Exponent (Salehkalaibar&W’2017)

θ? ≥ max
PS|X ,PTW :

I(S;X |Y )≤I(W ;V |T )

min
{
θstandard, θwrong-dec., θmissed-0

}
,

where
θstandard = min

πSXY :
πSX=PSX
πSY =PSY

D(πSXY ||QXY PS|X ),

θwrong-dec. = min
πSXY :

πSX=PSX
πY =PY

H(S|Y )≤Hπ(S|Y )

D(πSXY ||PS|X QXY ) + I(W ;V |T )− I(S;X |Y ),

θmissed-0= D(PY ||QY ) + I(W ;V |T )− I(S;X |Y ) + ET [D(PV |T ||PV |W=T )]

Quantization rate R limited by I(W ;V |T ).
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Penalty because of Noisy Channel

• Sometimes noisy channel only limits communication rate:

• In case of large missed-0 exponent

• When sensor cannot decide

• Noisy channel can severely limit error exponent

• In case of small missed-0 exponent

• Sensor decision very important
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Testing at Multiple Centers
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Two Simultaneous Hypothesis Tests

Decision 1

Decision 2

Y n
1

Channel

V n
1

V n
2

Setup can model:

• Two different decision centers

• Single decision center with uncertain PXY ∈ {PXY1 ,PXY2}

Tension: Communication needs to serve both decisions!
E.g.: find quantization that is useful for both centers
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Tradeoff in Exponents Region (Salehkalaibar/W’/Timo’2017)

• Probabilities of false alarms: αi,n = P
[
Ĥi = 1|H = 0

]
< ε

• Probabilities of miss detections: βi,n = P
[
Ĥi = 0|H = 0

]
< 2−nθi

• Find optimal exponents region (θ1, θ2)

• For an example with Gaussian sources and channel
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Testing over Multi-Hop Networks
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Single-Relay Multi-Hop Channel

Sensor RelayM : nR bits B : nT bits Decision
Center

Ĥ 2 {0, 1}

• H = 0 : (X n,Y n,Z n) ∼ i.i.d. PXYZ

• H = 1 : (X n,Y n,Z n) ∼ i.i.d. QXYZ

• Probability of false alarm: αn = P
[
Ĥ = 1|H = 0

]
< ε

• Probability of miss-detection: βn = P
[
Ĥ = 0|H = 1

]
< 2−nθ

Rate-Exponent Tradeoff θ?(R,T )

Largest exponent θ achievable ∀ε > 0 given rates R,T ≥ 0
18



Markov chain X n → Y n → Z n: Independent Tests

Relay Decision
Center

Sensor
quant. index k quant. index j

or 0 or 0

Ĥ 2 {0, 1}

• Independent “Quantize and Test” at sensor and relay

• “Unanimous-Decision Forwarding”: forward 0 if 0 received

Testing for Independence (Salehkalaibar/W’/Wang 2017)

θ?(R,T ) = θ?Sensor→Relay(R) + θ?Relay→Decision(T )

Accumulation of error exponents
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Challenges/Features of Solutions

Sensor RelayM : nR bits B : nT bits Decision
Center

Ĥ 2 {0, 1}

• Each terminal will take a decision→ alarm if one raises alarm

• Message sent from transmitter (sensor): tradeoff between
serving decision center / providing useful information to relay

• Relay processing of Y n and message from transmitter→ reduce
communication rate or send joint information to receiver
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General Coding- and Testing-Scheme

• Coarse quantization of X n → Sn(i)

• Finer quantization of X n given Sn(i) → Un(j |i)

• Joint quantization of Un(j |i),Y n given Sn(i) → V n(k |i)

Sensor Relay Center
ĤSn(i), Un(j|i) Sn(i), V n(k|i)

or 0 or 0

if (Sn, Un, Xn)
good statistics

if both tests fail

• Distributed quantization for cascade channels and
unanimous-decision forwarding
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An Achievable Exponent for Single-Relay Multi-Hop

Theorem

θ?(R,T ) ≥ max
PUS|X ,PV|SUY :

R≥I(US;X)
T≥I(X ;S)+I(V ;YU|S)

min
πSUVXYZ :
πSUX=PSUX
πSVUY=PSVUY
πSVZ=PSVZ

D(πSUVXYZ‖PSU|X PV |SUY QXYZ ).

• KL-divergence between auxiliary “π”- and “Q”-distribution

• max-constraints on R,T from applied source coding

• min-constraints from joint-typicality tests
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Summary

• Hypothesis testing for multi-hop / multi-receiver networks and
noisy channels
(Extensions to multi-relay networks, parallel relay networks)

• Schemes based on distributed quantization, unanimous-decision
forwarding, and unequal error protection

• Accumulation of error exponents

• Competition for network resources→ tradeoff in exponents

• Intermediate processing required for optimal communication

• Derived error exponents are optimal for some testing against
conditional independence
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