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Abstract—The main contribution of this paper is a strong
converse result for K-hop distributed hypothesis testing against
independence with multiple (intermediate) decision centers under
a Markov condition. Our result shows that the set of type-II
error exponents that can simultaneously be achieved at all the
terminals does not depend on the maximum permissible type-
I error probabilities. Our strong converse proof is based on a
change of measure argument and on the asymptotic proof of
specific Markov chains. This proof method seems to be useful
also in other applications, and is appealing because it does not
require resorting to variational characterizations or blowing-up
methods as in previous related proofs.

Index Terms—Strong converse, change of measure, hypothesis
testing, K hops.

I. INTRODUCTION

Strong converse results have a rich history in information
theory. They refer to proofs showing that the fundamental per-
formance limit (such as minimum compression rate or capacity)
of a specific system does not depend on its asymptotically
allowed error (or excess) probability (as long it is not 1). For
example, Wolfowitz’ strong converse [1] established that the
capacity of a discrete-memoryless channel remains unchanged
when positive asymptotic decoding error probabilities are tol-
erated. For source coding, the strong converse establishes that
irrespective of the allowed reconstruction error probabilities,
a discrete-memoryless source cannot be compressed with a
rate below the entropy of the source. Similar results were also
established for generalized network scenarios [2]–[4], i.e., for
memoryless multi-user channels and distributed compression
systems [5]–[9].

Our main interest in this paper is in distributed hypothesis
testing problems where multiple terminals observe memoryless
source sequences whose underlying joint distribution depends
on a binary hypothesis H ∈ {0, 1}. Multiple decision centers
wish to decide on the value of H based on their local source
sequences and the communicated bits. Information-theorists
showed great interest in Stein-setups where the type-I error
probability (the probability of error under the null hypothesis
H = 0) is required to stay asymptotically below a given
threshold in the infinite blocklength regime, while the type-
II error probability (the probability of error under H = 1)
has to decay to 0 exponentially fast with largest possible
exponent [10]–[30]. For the two-terminal setup with a single
sensor communicating to a single decision center over a rate-
limited link, Ahlswede and Csiszár [10] proved the strong
converse result that the largest possible type-II error exponent is
independent of the admissible type-I error probability threshold.

A similar strong converse result was also shown in the special
case called “testing against independence” for the two-hop
hypothesis testing problem (see Figure 1 for K = 2) over
rate-limited communication links where the last two terminals
produce a guess on the binary hypothesis [28] and assuming
that the source sequences satisfy certain Markov chains. This
latter strong converse result is based on a change of measure
and hyper-contractivity arguments [31].

In this paper, we generalize the strong converse result of
[28] to an arbitrary number of K hops. We thus show that the
set of possible type-II error exponents that are simultaneously
achievable at the various decision centers when testing against
independence in a K-hop system satisfying a given set of
Markov chains, does not depend on the permissible type-I error
probabilities and equals the region under vanishing type-I error
probabilities determined in [27]. The proof method applied in
this paper relies on a similar change of measure argument
as in [4]–[6], where we also restrict to jointly typical source
sequences as [5]. No variational characterizations, blowing-
up lemma [32], or hypercontractivity arguments are required.
Instead, we rely on arguments showing that certain Markov
chains hold in an asymptotic regime of infinite blocklengths.
Our proof method seems to extend also to other applications.
We show a warm-up version to establish the well-known strong
converse for lossless compression with side-information at the
decoder. This simplified version does not require the proof of
Markov chains. In the extended version of this paper [33], we
also illustrate our proof method to show the strong converse
result for the Wyner-Ziv source coding problem, which involves
the proof of Markov chains. Due to space constraints, this
probably more related proof is omitted from this conference
version.

Notation: We follow the notation in [34] and use sans serif
font for bit-strings: e.g., m for a deterministic and M for a
random bit-string. We also use len(m) to denote the length of
a bit-string. Finally, T (n)

µ (·) denotes the strongly typical set as
defined in [35, Definition 2.8].

II. LOSSLESS SOURCE CODING WITH SIDE-INFORMATION

A. Setup and Known Results

Consider two terminals, an encoder observing the source
sequence Xn and a decoder observing the related side-
information sequence Y n, where we assume that

(Xn, Y n) i.i.d. ∼ PXY , (1)



for a given probability mass function (pmf) PXY on the product
alphabet X ×Y . The encoder uses a function φ(n) to compress
the sequence Xn into a bit-string message M,

M = φ(n)(Xn) (2)

of length nR bits, for a given rate R > 0,

len(M) = nR. (3)

Based on this message and its own observation Y n, the decoder
is supposed to reconstruct the source sequence Xn with small
probability of error. Thus, the decoder applies a decoding func-
tion g(n) to (M, Y n) to produce the reconstruction sequence
X̂n ∈ Xn:

X̂n = g(n)(M, Y n). (4)

Definition 1: Given ε ∈ [0, 1). Rate R > 0 is said ε-
achievable if there exist sequences (in n) of encoding and
reconstruction functions φ(n) and g(n) such that

lim
n→∞

Pr[Xn 6= X̂n] ≤ ε. (5)

A standard result in information theory says
Theorem 1: All rates R > H(X|Y ) are ε-achievable for all

ε ∈ [0, 1) and all rates R < H(X|Y ) are not ε-achievable for
any ε ∈ [0, 1).

In the following subsection we show a new converse proof.
The goal is to illustrate (some of) the tools that we employ to
prove our main result, Theorem 4 ahead.

B. Alternative Strong Converse Proof

Fix a sequence of encoding and decoding functions
{φ(n), g(n)}∞n=1 satisfying (5). We perform a similar change
of measure argument as in [4], [5] where we restrict to typical
sequences. Define µn := n−1/3 and the set

D :=
{

(xn, yn) ∈ T (n)
µn

(PXY ) : g(n)
(
φ(n)(xn), yn

)
= xn

}
,

(6)
i.e., the set of all typical (xn, yn)-sequences for which the
reconstructed sequence X̂n coincides with the source sequence
Xn. Let ∆ := Pr[(Xn, Y n) ∈ D] and notice that by (5) and
[35, Remark to Lemma 2.12]:

∆ ≥ 1− ε− |X ||Y|
4µ2

nn
, (7)

and thus
lim
n→∞

∆ ≥ 1− ε. (8)

Let further (X̃n, Ỹ n) be random variables of joint pmf

PX̃nỸ n(xn, yn) =
PX̃nỸ n(xn, yn)

∆
· 1{(xn, yn) ∈ D}. (9)

Let also M̃ = φ(n)(X̃n) and T be uniform over {1, . . . , n}
independent of (X̃n, Ỹ n, M̃), and define X̃ := X̃T and Ỹ :=
ỸT .

Notice the following sequence of equalities:

1

n
H(X̃n, Ỹ n)

= − 1

n

∑
(xn,yn)∈D

PX̃nỸ n(xn, yn) logPX̃nỸ n(xn, yn) (10)

= − 1

n

∑
(xn,yn)∈D

PX̃nỸ n(xn, yn) log
PXnY n(xn, yn)

∆
(11)

= − 1

n

n∑
i=1

∑
(xn,yn)∈D

PX̃nỸ n(xn, yn) logPXY (xi, yi)

+
1

n
log ∆ (12)

= − 1

n

n∑
i=1

∑
(x,y)∈X×Y

PX̃iỸi
(x, y) logPXY (x, y) +

1

n
log ∆ (13)

= −
∑

(x,y)∈X×Y

PX̃Ỹ (x, y) logPXY (x, y) +
1

n
log ∆. (14)

Since (X̃n, Ỹ n) ∈ T (n)
µn (PXY ), we have:

|PX̃Ỹ (x, y)− PXY (x, y)| ≤ µn, (15)

and thus as n → ∞ (because µn = n−1/3 and ∆ is bounded
away from 0, see (8)):

lim
n→∞

1

n
H(X̃nỸ n) = H(XY ). (16)

In a similar manner one can obtain

lim
n→∞

1

n
H(Ỹ n) = H(Y ), (17)

and thus combining (16) and (17), by the chain rule:

lim
n→∞

1

n
H(X̃n|Ỹ n) = H(X|Y ). (18)

The strong converse is then easily obtained by this Limit (18),
using the same steps as in the weak converse:

R ≥ 1

n
H(M̃) =

1

n
H(M̃|Ỹ n) (19)

=
1

n
I(M̃; X̃n|Ỹ n) =

1

n
H(X̃n|Ỹ n), (20)

and letting n → ∞. Here, the last equality holds because by
the definition of the set D, the new source sequence X̃n can
be obtained as a function of M̃ and Ỹ n.

III. TESTING AGAINST INDEPENDENCE IN A K-HOP
NETWORK

Consider a system with a transmitter T0 observing the
source sequence Y n0 , K − 1 relays labelled R1, . . . ,RK−1 and
observing sequences Y n1 , . . . , Y

n
K−1, respectively, and a receiver

RK observing sequence Y nK .
The source sequences (Y n0 , Y

n
1 , . . . , Y

n
K) are distributed ac-

cording to one of two distributions depending on a binary
hypothesis H ∈ {0, 1}:

if H = 0 : (Y n0 , Y
n
1 , . . . , Y

n
K) i.i.d. ∼ PY0Y1···YK

; (21a)
if H = 1 : (Y n0 , Y

n
1 , . . . , Y

n
K) i.i.d. ∼ PY0

· PY1
· · ·PYK

.

(21b)

Fig. 1: Cascaded K-hop setup with K decision centers.



Communication takes place over K hops as illustrated in Fig-
ure 1. The transmitter T0 sends a message M1 = φ

(n)
0 (Y n0 ) to

the first relay R1, which sends a message M2 = φ
(n)
1 (Y n1 ,M1)

to the second relay and so on. The communication is thus
described by encoding functions

φ
(n)
0 : Yn0 → {0, 1}? (22)

φ
(n)
k : Ynk × {0, 1}? → {0, 1}?, k ∈ {1, . . . ,K − 1}, (23)

so that the produced message strings

M1 = φ
(n)
0 (Yn0 ) (24)

Mk+1 = φ
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K − 1}, (25)

satisfy the maximum rate constraints

len (Mk) ≤ nRk, k ∈ {1, . . . ,K}. (26)

Each relay R1, . . . , RK−1 as well as the receiver RK ,
produces a guess of the hypothesis H. These guesses are
described by guessing functions

g
(n)
k : Ynk × {0, 1}? → {0, 1}, k ∈ {1, . . . ,K}, (27)

where we request that the guesses

Ĥk,n = g
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K}, (28)

have type-I error probabilities

αk,n , Pr[Ĥk = 1|H = 0], k ∈ {1, . . . ,K}, (29)

not exceeding given thresholds ε1, ε2, . . . , εK > 0, and type-II
error probabilities

βk,n , Pr[Ĥk = 0|H = 1], k ∈ {1, . . . ,K}, (30)

decaying to 0 exponentially fast with largest possible exponents.

Definition 2: Given maximum type-I error probabilities
ε1, ε2, . . . , εK ∈ [0, 1) and rates R1, R2, . . . , RK ≥ 0.
The exponent tuple (θ1, θ2, . . . , θK) is called (ε1, ε2, . . . , εK)-
achievable if there exists a sequence of encoding and decision
functions

{
φ
(n)
0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , g

(n)
2 , . . . , g

(n)
K

}
n≥1 sat-

isfying for each k ∈ {1, . . . ,K}:

len(Mk) ≤ nRk, (31a)
lim
n→∞

αk,n ≤ εk, (31b)

lim
n→∞

1

n
log

1

βk,n
≥ θk. (31c)

Definition 3: The fundamental exponents region
E∗(R1, R2, . . . , RK , ε1, ε2, . . . , εK) is defined as the closure
of the set of all (ε1, ε2, . . . , εK)-achievable exponent pairs
(θ1, θ2, . . . , θK) for given rates R1, . . . , RK ≥ 0.

A. Previous Results on K-Hop Hypothesis Testing

The K-hop hypothesis testing setup of Figure 1 and Equa-
tions (21) was also considered in [27] in the special case
ε1 = · · · = εK = 0, for which the fundamental exponents
region was determined. The result of [27] is based on the
following definition and presented in Theorem 4 ahead.

Definition 4: For any ` ∈ {1, . . . ,K}, define the function

η` : R+
0 → R+

0 (32)

R 7→ max
PU|Y`−1

:

R≥I(U ;Y`−1)

I (U ;Y`) . (33)

Theorem 2 (Proposition 5 in [27]): The fundamental expo-
nents region satisfies

E∗(R1, . . . , RK , 0, . . . , 0)

=

{
(θ1, . . . , θK) : θk ≤

k∑
`=1

η`(R`), k ∈ {1, . . . ,K}

}
(34)

For K = 2, Cao, Zhou, and Tan [28] also established the
following strong converse result.

Theorem 3 (Theorem 1 [28]): For K = 2 and arbitrary
ε1, ε2 ∈ [0, 1):

E∗(R1, R2, ε1, ε2) =

{
(θ1, θ2) : θk ≤

k∑
`=1

η`(R`), k ∈ {1, 2}

}
(35)

Our main result is a generalization of above Theorem 3 to an
arbitrary number of K ≥ 2 hops. That is, we prove the strong
converse to Theorem 2.

Theorem 4: For K ≥ 2 and arbitrary ε1, . . . , εK ≥ 0:

E∗(R1, . . . , RK , ε1, . . . , εK)

= E∗(R1, . . . , RK , 0, . . . , 0) (36)

=

{
(θ1, . . . , θK) : θk ≤

k∑
`=1

η`(R`), k ∈ {1, . . . ,K}

}
(37)

Proof: See the following Section IV.

IV. STRONG CONVERSE PROOF OF THEOREM 4

Fix an exponent-tuple (θ1, . . . , θK) in the
exponents region E∗(R1, . . . , RK , ε1, . . . , εK), and a
sequence (in n) of encoding and decision functions
{(φ(n)0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , . . . , g

(n)
K )}n≥1 achieving this

tuple, i.e., satisfying constraints (31).
Fix an arbitrary k ∈ {1, . . . ,K} and set µn = n−1/3. Let
Ak denote the acceptance region of Rk, i.e.,

Ak := {(yn0 , . . . , ynk ) : g
(n)
k (mk, y

n
k ) = 0}, (38)

where we define recursively m1 := φ
(n)
0 (yn0 ) and

m` := φ
(n)
`−1(m`−1, y`−1), ` ∈ {2, . . . , k}. (39)

Define also the intersection of this acceptance region with the
typical set:

Dk , Ak ∩ T (n)
µn

(PY0···Yk
). (40)

By [35, Remark to Lemma 2.12] and the type-I error probability
constraints in (31b),

∆k := PY n
0 Y

n
1 ···Y n

k
(Dk) ≥ 1− εk −

|Y0| · · · |Yk|
4µ2

nn
, (41)

and thus limn→∞∆k ≥ 1− εk > 0 as n→∞.
Let (Ỹ n0 , Ỹ

n
1 , . . . , Ỹ

n
k ) be random variables of joint pmf

PỸ n
0 ,Ỹ

n
1 ,...,Ỹ

n
k

(ỹn0 , ỹ
n
1 , . . . , ỹ

n
k )

=
PỸ n

0 ,Ỹ
n
1 ,...,Ỹ

n
k

(ỹn0 , ỹ
n
1 , . . . , ỹ

n
k )

∆
· 1{(ỹn0 , ỹn1 , . . . , ỹnk ) ∈ Dk}.

(42)



Let also M̃` = φ
(n)
`−1(M̃`−1, Ỹ

n
`−1) and T be uniform over

{1, . . . , n} independent of (Ỹ n0 , Ỹ
n
1 , . . . , Ỹ

n
k , M̃1, . . . , M̃k), and

define Ỹ` := Ỹ`,T for ` ∈ {1, . . . , k}.

At the end of this section, we prove the following Lemma 1.
Lemma 1: There exist random variables {U1, . . . , Uk} satis-

fying the (in)equalities

nR` ≥ H(M̃`) ≥ nI(U`; Ỹ`−1) + log ∆k, ` ∈ {1, . . . , k},
(43a)

I(U`; Ỹ`|Ỹ`−1) = ø1,`(n), (43b)

and

− 1

n
log Pr[Ĥk = 0|H = 1, (Y n0 , . . . , Y

n
k ) ∈ Dk]

≤
k∑
`=1

I(U`; Ỹ`) + ø2(n), (43c)

where the functions {ø1,`(n)}k`=1 and ø2(n) all tend to 0 as
n→∞.

The desired bound on θk in (37) is then obtained from above
lemma by taking n → ∞, as we explain in the following. By
Carathéodory’s theorem [34, Appendix C], for each n there
must exist random variables U1, . . . , Uk satisfying (43) over
alphabets of sizes

|U`| ≤ |Y`−1| · |Y`|+ 2, ` ∈ {1, . . . , k}. (44)

We thus restrict to random variables of above (bounded) sup-
ports and invoke the Bolzano-Weierstrass theorem to conclude
the existence of a pmf P (`)

Y`−1Y`U`
over Y`−1 × Y` × U`, also

abbreviated as P (`), and an increasing subsequence of positive
numbers {ni}∞i=1 satisfying

lim
i→∞

PỸ`−1Ỹ`U`;ni
= P

(`)
Y`−1Y`U`

, ` ∈ {1, . . . , k}, (45)

where PỸ`−1Ỹ`U`;ni
denotes the pmf at blocklength ni.

By the monotone continuity of mutual information over finite
pmfs, we can then deduce that

R` ≥ IP (`)(U`;Y`−1), ` ∈ {1, . . . , k}, (46)

θk ≤
k∑
`=1

IP (`)(U`;Y`), (47)

where the subscripts indicate that mutual informations should
be computed according to the indicated pmfs.

Since for any blocklength ni the pair
(
Ỹ ni

`−1, Ỹ
ni

`

)
lies in

the jointly typical set T (ni)
µni

(PY`−1Y`
), we have

∣∣PY`−1Y`;ni −
PY`−1Y`

∣∣ ≤ µnk
and thus the limiting pmfs satisfy P

(`)
Y`−1Y`

=
PY`−1Y`

. By similar continuity considerations and by (43b), for
all ` ∈ {1, . . . , k} the Markov chain

U` → Y`−1 → Y`, (48)

holds under P (`)
Y`−1Y`U`

.
By the definitions of the functions {η`(·)} and by (46)–(48):

θk ≤
k∑
`=1

η`(R`), (49)

which concludes the proof.

A. Proof of Lemma 1

Define Ũ`,t , (M̃`, Ỹ
t−1
0 , . . . , Ỹ t−1k ) for ` ∈ {1, . . . , k} and

notice:

H(M̃`) = I(M̃`; Ỹ
n
0 · · · Ỹ nk ) (50)

= H(Ỹ n0 · · · Ỹ nk )−H(Ỹ n0 · · · Ỹ nk |M̃`) (51)
= nH(Ỹ0,T · · · Ỹk,T ) + log ∆k + ø1(n)

−
n∑
t=1

H(Ỹ0,t · · · Ỹk,t|Ũ`,t) (52)

= nH(Ỹ0,T · · · Ỹk,T ) log ∆k + ø1(n)

−nH(Ỹ0,T · · · Ỹk,T |Ũ`,T , T )] (53)

= n[I(Ỹ0 · · · Ỹk;U`)] + log ∆k + ø1(n) (54)

≥ n
[
I(Ỹ`−1;U`) +

1

n
log ∆k

]
+ ø1(n). (55)

Here, (52) holds by similar steps to (10)–(14), where ø1(n) is
a function that tends to 0 as n→∞, by the chain rule, by the
definition of Ũ`,t, and by defining T uniform over {1, . . . , n}
independent of all other random variables; and (54) holds by
defining U` , (Ũ`,T , T ) and Ỹ` , Ỹ`,T for all ` ∈ {0, . . . , k}.
This proves Inequality (43a) in the lemma.

We next upper bound the type-II error exponent θk. Define:

QM̃k
(mk) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PỸ n
0

(yn0 ) · · ·PỸ n
k−1

(ynk−1)

·1{mk = φk(φk−1(· · · (φ1(yn0 ) · · · )), ynk−1)},
(56)

and

QMk
(mK) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PY n
0

(yn0 ) · · ·PY n
k−1

(ynk−1)

·1{mk = φk−1(φk−2(· · · (φ0(yn0 ) · · · )), ynk−1)}.
(57)

and notice that

QM̃k
PỸ n

k
(Ak) ≤ QMk

PY n
k

(Ak) ∆
−(k+1)
k = βk,n∆

−(k+1)
k (58)

Notice that by (38), the probability PM̃kỸ n
k

(Ak) = 1, and thus
by (58) and standard inequalities (see [21, Lemma 1]):

− 1

n
log βk,n ≤ −

1

n
log
(
QM̃k

PỸ n
k

(Ak)
)
− (k + 1)

n
log ∆k

(59)

≤ 1

n
D(PM̃kỸ n

k
||QM̃k

PỸ n
k

) + δ′n (60)

where δ′n , − (k+1)
n log ∆k + 1

n and tends to 0 as n→∞.
We continue to upper bound the divergence term as

D(PM̃kỸ n
k
||QM̃k

PỸ n
k

)

= I(M̃k; Ỹ nk ) +D(PM̃k
||QM̃k

) (61)

≤ I(M̃k; Ỹ nk ) +D(PỸ n
k−1M̃k−1

||PỸ n
k−1

QM̃k−1
) (62)

≤ I(M̃k; Ỹ nk ) + I(M̃k−1; Ỹ nk−1)

+D(PỸ n
k−2M̃k−2

||PỸ n
k−2

QM̃k−2
) (63)

...



≤
k∑
`=1

I(M̃`; Ỹ
n
` ) (64)

≤
k∑
`=1

n∑
t=1

I(M̃`Ỹ
t−1
0 · · · Ỹ t−1k ; Ỹ`,t) (65)

=

k∑
`=1

n∑
t=1

I(Ũ`,t; Ỹ`,t) (66)

≤ n
k∑
`=1

I(U`; Ỹ`). (67)

Here (62) is obtained by the data processing inequality for KL-
divergence and (66)–(67) by the definitions of Ũ`,t, U`, Ỹ` and
T .

Combined with (60) this establishes Inequality (43c).
Finally, we proceed to prove that for any ` ∈ {1, . . . , k}

the Markov chain U` → Ỹ`−1 → Ỹ` holds in the limit as
n→∞. We start by noticing the Markov chain M̃1 → Ỹ n0 →
(Ỹ n1 , · · · , Ỹ nk ), and thus:

0 = I(M̃1; Ỹ n1 · · · Ỹ nk |Ỹ n0 ) (68)
= H(Ỹ n1 · · · Ỹ nk |Ỹ n0 )−H(Ỹ n1 · · · Ỹ nk |Ỹ n0 M̃1) (69)
= nH(Ỹ1,T · · · Ỹk,T |Ỹ0,T ) + log ∆k + ø̃1(n)

−H(Ỹ n1 · · · Ỹ nk |Ỹ n0 M̃1) (70)
≥ nH(Ỹ1,T · · · Ỹk,T |Ỹ0,T ) + log ∆k + ø̃1(n)

−nH(Ỹ1,T · · · Ỹk,T |Ỹ0,T Ỹ T−10 · · · Ỹ T−1k Ỹ n0,T+1M̃1T ) (71)

= nI(Ỹ1,T · · · Ỹk,T ; Ỹ T−10 · · · Ỹ T−1k Ỹ n0,T+1M̃1T |Ỹ0,T )

+ log ∆k + ø̃1(n) (72)
≥ nI(Ỹ1 · · · Ỹk;U1|Ỹ0) + log ∆k + ø̃1(n), (73)

for some function ø̃1(n) so that 1
n ø̃1(n) tends to 0 as n→∞,

and where (70) can be shown in a similar manner to (18) and
(73) by the definitions of Ỹ`, Ỹ0, Ũ1,t, and U1 for all ` ∈
{1, . . . , k}.

Since ∆k is bounded, 1
n log ∆k tends to 0 as n → ∞, and

we can conclude that

lim
n→∞

I(Ỹ1 · · · Ỹk; Ũ1|Ỹ0) = 0, (74)

thus proving (43b) for ` = 1.
Notice next that for any ` ∈ {2, . . . , k}:

I(U`; Ỹ`|Ỹ`−1) ≤ I(U`Ỹ0 · · · Ỹ`−2; Ỹ`|Ỹ`−1) (75)
= I(U`; Ỹ`|Ỹ0 · · · Ỹ`−1)

+I(Ỹ0 · · · Ỹ`−2; Ỹ`|Ỹ`−1). (76)

In the following we show that both quantities
I(U`; Ỹ`|Ỹ0 · · · Ỹ`−1) and I(Ỹ0 · · · Ỹ`−2; Ỹ`|Ỹ`−1) tend to
0 as n→∞, which establishes (43b) for ` ∈ {2, . . . , k}.

To prove that I(Ỹ0 · · · Ỹ`−2; Ỹ`|Ỹ`−1) tends to 0 as n→∞,
we notice that for any ` ∈ {2, . . . , k}:

D(PỸ0···Ỹk
||PY0···Yk

) ≥ D(PỸ0···Ỹ`
||PY0···Y`

) (77)
= D(PỸ0···Ỹ`

||PY0···Y`−1
PY`|Y`−1

) (78)
= D(PỸ0···Ỹ`−1

||PỸ0···Ỹ`−1
PỸ`|Ỹ`−1

)

+EPỸ`−1

[
D(PỸ`|Ỹ`−1

||PY`|Y`−1
)
]

+D(PỸ0···Ỹ`−1
||PY0···Y`−1

) (79)

≥ D(PỸ0···Ỹ`
||PỸ0···Ỹ`−1

PỸ`|Ỹ`−1
) (80)

≥ I(Ỹ0 · · · Ỹ`−2; Ỹ`|Ỹ`−1). (81)

Since (Ỹ0 · · · Ỹk) lie in the jointly typical set T (n)
µn (PY0···Yk

):

|PỸ0···Ỹk
− PY0···Yk

| ≤ µn. (82)

Recalling that µn ↓ 0 as n→∞, and by the continuity of the
KL-divergence, we conclude that D(PỸ0···Ỹk

||PY0···Yk
) tends to

0 as n→∞, and thus by (81) and the nonnegativity of mutual
information:

lim
n→∞

I(Ỹ0 · · · Ỹ`−2; Ỹ`|Ỹ`−1) = 0. (83)

Following similar steps to (68)–(73), we further obtain:

0 = I(M̃`; Ỹ
n
` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1)

= H(Ỹ n` · · · Ỹ nK |Ỹ n0 · · · Ỹ nk−1)

−H(Ỹ nk · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1M̃`) (84)

= nH(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + log ∆k + ø̃`(n)

−H(Ỹ n` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1M̃`) (85)

≥ nH(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + log ∆k + ø̃`(n)

−
n∑
t=1

H(Ỹ`,t · · · Ỹk,t|Ỹ0,t · · · Ỹ`−1,t

Ỹ t−10 · · · Ỹ t−1k Ỹ n0,t+1 · · · Ỹ n`−1,t+1M̃`) (86)

= nH(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + log ∆k + ø̃`(n)

−nH(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T
Ỹ T−10 · · · Ỹ T−1k Ỹ n0,T+1 · · · Ỹ n`−1,T+1M̃`T ) (87)

≥ nI(Ỹ`,T · · · Ỹk,T ; Ỹ T−10 · · · Ỹ T−1k M̃`T |Ỹ0,T · · · Ỹ`−1,T )

+ log ∆k + ø̃`(n) (88)
= nI(Ỹ` · · · Ỹk;U`|Ỹ0 · · · Ỹ`−1) + log ∆k + ø̃`(n), (89)

where ø̃`(n) is a function so that 1
n ø̃`(n) tends to 0 as n→∞.

Since ∆k is bounded, 1
n log ∆k tends to 0 as n→∞, we can

conclude that

lim
n→∞

I(Ỹ`; Ũ`|Ỹ0 · · · Ỹ`−1) = 0, (90)

Combined with (76), (83), and the nonnegativity of mutual
information, this proves (43b) for ` ∈ {2, . . . , k}.

V. CONCLUSIONS AND OUTLOOK

We derived the strong converse result for testing against
independence over a K-hop network with K decision centers
and under a Markov chain assumption regarding the source
sequences observed at the terminals. Our strong converse proof
is based on a change of measure argument similar to Gu
and Effros [5], [6] and to Tyagi and Watanabe [4]. However,
to obtain the desired Markov chain, we did not rely on the
variational characterization of the weak converse result, as
suggested by Tyagi and Watanabe [4], nor did we use the
blowing-up lemma or hypercontractivity arguments as in the
proof for K = 2 [28]. Instead, an easier proof is proposed
that relies on showing the validity of the Markov chains in
the limit of infinite blocklengths. Our method can also be used
for related scenarios, for example to establish the well-known
strong converse for the Wyner-Ziv source coding problem, as
we show in the extended version of this paper [33].
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