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Abstract—We study distributed binary hypothesis testing with
a single sensor and two remote decision centers that are also
equipped with local sensors. The communication between the
sensor and the two decision centers takes place over three links:
a shared link to both centers and an individual link to each of
the two centers. All communication links are subject to expected
rate constraints. This paper characterizes the optimal exponents
region of the type-II error for given type-I error thresholds at the
two decision centers and further simplifies the expressions in the
special case of having only the single shared link. The exponents
region illustrates a gain under expected rate constraints compared
to equivalent maximum rate constraints. Moreover, it exhibits a
tradeoff between the exponents achieved at the two centers.

Index Terms—Broadcast channel, distributed hypothesis testing,
error exponents, expected rate constraints, IoT, decision centers.

I. INTRODUCTION

We address a distributed hypothesis testing problem where
different decision centers have to decide on the same hypothesis
based on their local sensing and the messages they receive
from remote sensors over rate-limited communication links.
Motivated by systems that share bandwidth among several
applications with variable instantaneous bandwidth for each
application, we consider expected-rate constraints that limit
only the expected bandwidth for each application.

In our work, we focus on distributed binary hypothesis
testing against independence. The decision centers have to
decide between a i) null hypothesis (normal situation) indicating
that the centers’ and the sensors’ observations are correlated,
and an ii) alternative hypothesis (alert situation) where the
observations are independent, for example because one of the
systems fails. Two types of errors can be distinguished: the type-
I error indicates a wrong decision under the null hypothesis
and the type-II error occurs if a wrong decision is made
under the alternative hypothesis. Since the alternative hypothesis
corresponds to a more critical situation, we aim at maximizing
the exponential decay of the type-II error probability, called
error exponent, subject to a type-I error that stays below
a given threshold. Such a setup has been studied in many
previous works focusing mostly on maximum-rate constraints
[1]–[16]. Expected-rate constraints were introduced in [17],
where the maximum error exponent for single-sensor single-
decision center setup was characterized in the special case
of testing-against independence. Extensions of this work were
first proposed for a multi-sensor scenario in [18], for a multi-

hop scenario with multiple decision centers in [19], [20], for
distributed sequential hypothesis testing with zero-rate [21], and
most recently from a signal detection perspective in [22].

In this paper, we consider a single-sensor two-decision center
scenario where the decision centers also have sensing capa-
bilities. The communication takes place over three noise-free
links: a common link to both decision centers and one private
link to each decision center. For this one-to-many broadcast
setup, we characterize the optimal exponents region under
expected-rate constraints and we show that it improves over
the exponents region under maximum-rate constraints, which
we also establish in this paper. The optimal exponents region
under expected-rate constraints illustrates two tradeoffs. The
first tradeoff results from the shared link that has to serve
both decision centers at the same time; this tradeoff is also
present under maximum-rate constraints. The second tradeoff
is particular to the setup with expected-rate constraints and
stems from the rate-sharing between three different variants of
the optimal coding scheme under maximum-rate constraints in
[8], depending on the observations at the sensor. We show that
two variants suffice when communication is only over a single
shared link, leading to a significant reduction in the complexity
of the optimal coding scheme.

Notation: We follow the notation in [23], [17]. In particular,
we use sans serif font for bit-strings: e.g., m for a deterministic
and M for a random bit-string, and we denote the length of m
by len(m). In addition, T (n)

µ (P ) denotes the strongly µ-typical
set with respect to P as defined in [24, Definition 2.8].

II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in Fig-
ure 1 in the special case of testing against independence, i.e.,
depending on the binary hypothesis H ∈ {0, 1}, the tuple
(Y n0 , Y

n
1 , Y

n
2 ) is distributed as:

under H = 0 : (Y n0 , Y
n
1 , Y

n
2 )i.i.d. ∼ PY0

· PY1Y2|Y0
; (1a)

under H = 1 : (Y n0 , Y
n
1 , Y

n
2 )i.i.d. ∼ PY0

· PY1Y2
(1b)

for given probability mass functions (pmfs) PY0
and PY1Y2|Y0

and where PY1Y2
denotes the marginal of the joint pmf

PY0Y1Y2
:= PY0

PY1Y2|Y0
.

The system consists of a transmitter TY0
, and two receivers

RY1
, RY2

. Transmitter TY0
observes the source sequence Y n0 and

computes three bit-string messages (M0,M1,M2) = φ(n)(Y n0 ),
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Fig. 1: Distributed hypothesis testing with a single sensor and
two remote decision centers with integrated sensors.

where the encoding function is of the form φ(n) : Yn0 →
{0, 1}?×{0, 1}?×{0, 1}?. Message M0 is sent to both receivers
RY1

, RY2
, while message M1 only to receiver RY1

and message
M2 only to receiver RY2

. The messages have to satisfy the
expected-rate constraints

E [len (Mi)] ≤ nRi, i ∈ {0, 1, 2}. (2)

Receiver RYi
, i ∈ {1, 2}, observes the source sequence Y ni and

with messages M0,Mi received from TY0
, it produces a guess

ĤYi
of the hypothesis H using a decision function g(n)

i : Yni ×
{0, 1}? × {0, 1}? → {0, 1}:

ĤYi = g
(n)
i (Y ni ,M0,Mi) ∈ {0, 1}, i ∈ {1, 2}. (3)

The goal is to design encoding and decision functions such
that their type-I error probabilities

αi,n , Pr[ĤYi = 1|H = 0], i ∈ {1, 2}, (4)

stay below given thresholds εi > 0, i ∈ {1, 2}, and the type-II
error probabilities

βi,n , Pr[ĤYi = 0|H = 1] (5)

decay to 0 with largest possible exponential decay.
Definition 1: Fix maximum type-I error probabilities ε1, ε2 ∈

[0, 1] and rates R1, R2 ≥ 0. The exponent pair (θ1, θ2) is called
(ε1, ε2)-achievable if there exists a sequence of encoding and
decision functions {φ(n), g

(n)
1 , g

(n)
2 }n≥1 satisfying:

E[len(Mi)] ≤ nRi, i ∈ {0, 1, 2} (6a)
lim
n→∞

αi,n ≤ εi, i ∈ {1, 2} (6b)

lim
n→∞

1

n
log

1

βi,n
≥ θi, i ∈ {1, 2}. (6c)

Definition 2: The closure of the set of all (ε1, ε2)-achievable
exponent pairs (θ1, θ2) is called the (ε1, ε2)-exponents region
and is denoted E∗(R0, R1, R2, ε1, ε2).

III. MAIN RESULTS

Our main results are a complete characterization of the
exponents region E∗(R0, R1, R2, ε1, ε2) under the expected-rate
constraints in (2) as well as a strong converse under analogous
maximum-rate constraints. A simplified expression is provided
for E∗(R0, 0, 0, ε1, ε2).

A. Individual and Common Communication Links

Theorem 1: The (ε1, ε2)-exponents region
E∗(R0, R1, R2, ε1, ε2) is the set of all (θ1, θ2) pairs satisfying

θi ≤ min
{
I
(
U0

0U
0
i ;Yi

)
, I
(
U i0U

i
i ;Yi

)}
, i ∈ {1, 2} (7a)

for some non-negative numbers σ0, σ1, σ2 with sum ≤ 1 and
conditional pmfs PU0

0 |Y0
, PU1

0 |Y0
, PU2

0 |Y0
, PU0

1 |U0
0Y0

, PU1
1 |U1

0Y0
,

PU0
2 |U0

0Y0
, PU2

2 |U2
0Y0

satisfying

R0 ≥ σ0I(U0
0 ;Y0) + σ1I(U1

0 ;Y0) + σ2I(U2
0 ;Y0), (7b)

Ri ≥ σ0I(U0
i ;Y0|U0

0 ) + σiI(U ii ;Y0|U i0), i ∈ {1, 2}, (7c)
and σ0 + σi ≥ 1− εi, i ∈ {1, 2}, (7d)

σ0 ≥ 1− ε1 − ε2, (7e)

and where the mutual information quantities are calculated
according to the joint pmfs

PY0Y1Y2U0
0U

0
1U

0
2
, PY0Y1Y2PU0

0 |Y0
PU0

1U
0
2 |U0

0Y0
(8)

PY0Y1Y2Ui
0U

i
i
, PY0Y1Y2PUi

0|Y0
PUi

i |Ui
0Y0
, i ∈ {1, 2}. (9)

Proof: The converse is proved in Section IV. To prove
achievability, define three sets D0,D1,D2 ⊆ Yn0 with proba-
bilities (under PnY0

) equal to σ0, σ1, σ2, respectively. For each
set Di (i ∈ {0, 1, 2}), we apply the optimal coding scheme
under maximum rate constraints in [8], but for each set Di
we construct different codebooks and use different auxiliaries
U i0, U

i
1, U

i
2. In particular, we choose U2

1 and U1
2 constants,

indicating that when Y n0 ∈ Di then only messages (M0,Mi) are
sent, for i ∈ {1, 2}. When Y n0 ∈ D0, then all three messages
M0,M1,M2 are sent. For a detailed analysis, see [25].

Theorem 1 shows a tradeoff between the two achievable expo-
nents θ1 and θ2. (Figure 2 ahead illustrates this tradeoff at hand
of a numerical example in the special case R1 = R2 = 0.)
The tradeoff stems from the common random variable U0

0 that
is included in the exponent constraint (7a) for both i ∈ {1, 2},
and from the rate-sharing of the coding scheme in [8] for three
different choices of (σi, U

i
0, U

i
1, U

i
2), for i = 0, 1, 2.

To see the effect of the expected-rate constraint in (2), we
compare above exponents region E∗(R0, R1, R2, ε1, ε2) with the
exponents region E∗fix(R0, R1, R2, ε1, ε2) under more stringent
maximum-length constraints

len (Mi) ≤ nRi, i ∈ {0, 1, 2}. (10)

In the limit ε1, ε2 ↓ 0, the exponents region
E∗fix(R0, R1, R2, ε1, ε2) was determined in [8]. Here, we
strengthen this result by providing a strong converse, whose
proof follows similar steps (but with the expected rate replaced
by the maximum rate) as the converse to Theorem 1.

Theorem 2: Under the maximum rate constraints (10), the ex-
ponents region E∗fix(R0, R1, R2, ε1, ε2) is independent of (ε1, ε2)
and equals the set of (θ1, θ2) pairs satisfying:

θi ≤ I(U0Ui;Yi), i ∈ {1, 2}, (11a)

for some conditional pmfs PU0|Y0
, PUi|Y0

satisfying

R0 ≥ I(U0;Y0), (11b)



Ri ≥ I(Ui;Y0|U0), i ∈ {1, 2}. (11c)

Proof: Achievability is proved in [8]. The converse is
proved in [25].
Notice that (11) is obtained from (7) by setting σ0 = 1 and
U0

0 , U
1
0 , U

2
0 , U

2
2 constants. Moreover, E∗fix(R0, R1, R2, ε1, ε2) =

E∗(R0, R1, R2, 0, 0). Since E∗(R0, R1, R2, ε1, ε2) is generally
increasing in (ε1, ε2), expected-rate constraints allow to boost
the exponents region compared to maximum-rate constraints.

B. Only a Common Communication Link

For R1 = R2 = 0, i.e., without individual communication
links, we can simplify the expression for E∗(R0, R1, R2, ε1, ε2).

Definition 3: Define the two functions

ηi
(
Ri0
)

:= max
P

Ui
0|Y0

:

Ri
0≥I(U

i
0;Y0)

I
(
U i0;Yi

)
, i ∈ {1, 2}, (12)

where the mutual information quantities are calculated with
respect to the joint pmf PUi

0Y0Y1Y2
, PUi

0|Y0
PY0Y1Y2 .

Corollary 1: Let π : {1, 2} → {1, 2} be a permutation
ordering the ε-values in decreasing order:

επ(1)≥επ(2). (13)

Then E∗(R0, 0, 0, ε1, ε2) is the set of all (θ1, θ2) pairs satisfying

θπ(1) ≤ I
(
U0;Yπ(1)

)
, (14a)

θπ(2) ≤ min
{
I
(
U0;Yπ(2)

)
, ηπ(2)

(
R
π(2)
0

)}
, (14b)

for some conditional pmf PU0|Y0
and rate Rπ(2)

0 satisfying

R0 ≥
(
1− επ(1)

)
I(U0;Y0) +

(
επ(1) − επ(2)

)
R
π(2)
0 . (14c)

Proof: See Appendix A.
The following example illustrates the benefits of expected-

rate constraints versus maximum-rate constraints, and the trade-
off between the two exponents when R1 = R2 = 0.

Example 1: Consider the following joint pmf PY0Y1Y2 :

(Y1, Y2)
Y0 (0, 0) (0, 1) (1, 0) (1, 1)

0 0.05 0.05 0.15 0.083325
1 0.05 0.15 0.05 0.08335
2 0.15 0.05 0.05 0.083325

For this pmf, Figure 2 shows the optimal exponents regions
under maximum- and expected-rate constraints when R0 = 0.1
and ε1 = 0.15 > ε2 = 0.05. The figure illustrates the boost
in the exponents region due to the expected-rate constraints.
It also emphasizes the benefits of sharing the rate in (14c)
between two summands, which relate to the fact that depending
on the observation Y n0 we use two variants of the coding
scheme in [8], one with auxiliary U0 and the other with
an auxiliary U

π(2)
0 that satisfies I(U

π(2)
0 ;Y0) ≤ R

π(2)
0 and

I(U
π(2)
0 ;Y1) = ηπ(2)(R

π(2)
0 ). Restricting to a single auxiliary

U0 in (14) (i.e., setting R
π(2)
0 = I(U0;Y0)) results in an ex-

ponents region, denoted Eno-RS (R0, 0, 0, ε1, ε2) which coincides
with E∗(R0, 0, 0, ε2, ε2) and E∗fix

(
(1− ε2)−1R0, 0, 0, ε1, ε2

)
.
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Fig. 2: Optimal error exponents regions under expected- and
maximum-rate constraints for R0 = 0.1, ε1 = 0.15, ε2 = 0.05.

IV. CONVERSE PROOF TO THEOREM 1

Fix an exponent pair in E∗(R0, R1, R2, ε1, ε2) and a sequence
(in n) of encoding and decision functions {(φ(n), g

(n)
1 , g

(n)
2 )}

satisfying the constraints on the rate and the error probabilities
in (6). Our proof relies on the following lemma:

Lemma 1: Fix a blocklength n and a set D ⊆ Yn0 of positive
probability, and let the tuple (M̃0, M̃1, M̃2, Ỹ

n
0 , Ỹ

n
1 , Ỹ

n
2 ) follow

the pmf

PM̃0M̃1M̃2Ỹ n
0 Ỹ

n
1 Ỹ

n
2

(m0,m1,m2, y
n
0 , y

n
1 , y

n
2 ) ,

PY n
0 Y

n
1 Y

n
2

(yn0 , y
n
1 , y

n
2 ) · 1{y

n
0 ∈ D}

PY n
0

(D)

·1{φ(n)(yn0 ) = (m0,m1,m2)}. (15)

Further, define U0 , (M̃0, Ỹ
T−1
0 , T ), U1 , M̃1, U2 , M̃2,

Ỹi , Ỹi,T (for i ∈ {0, 1, 2}), where T is uniform over
{1, . . . , n} and independent of all other random variables.
Notice the Markov chain (U0, U1, U2)→ Ỹ0 → (Ỹ1, Ỹ2). Then
the following inequalities hold:

H(M̃0) ≥ nI(U0; Ỹ0) + logPY n
0

(D), (16)

H(M̃i) ≥ nI(Ui; Ỹ0|U0), i ∈ {1, 2}. (17)

Let η > 0 be arbitrary. For i ∈ {1, 2}, if

Pr[ĤYi
= 0|H = 0, Y n0 = yn0 ] ≥ η, ∀yn0 ∈ D, (18)

then

− 1

n
log βi,n ≤ I(U0Ui; Ỹi) + øi(n), (19)

where øi(n) is a function that tends to 0 as n→∞.
Proof: Similar to the proof of [20, Lemma 1]. For details,

see Appendix B in [25].
We now proceed to prove the converse to Theorem 1. Fix

a positive η > 0. Denote for each blocklength n, the set of
strongly typical sequences in Yn0 by T (n)

µn (PY0
). Set µn = n−1/3

and define for i ∈ {1, 2}, the sets

Bi(η) , {yn0 ∈ T (n)
µn

(PY0
) :



Pr[ĤYi
= 0|Y n0 = yn0 ,H = 0] ≥ η}, i ∈ {1, 2}, (20)

D0(η) , B1(η) ∩ B2(η), (21)
Di(η) , Bi(η)\D0(η). (22)

Further define for each n the probabilities

∆j , PY n
0

(Dj(η)), j ∈ {0, 1, 2}, (23)

and notice that by the laws of probability

∆0 + ∆i = PY n
0

(Bi(η)), i ∈ {1, 2}, (24)
∆0 ≥ PY n

0
(B1(η)) + PY n

0
(B2(η))− 1. (25)

By (6b), it can be shown that

1− εi ≤ η(1− PY n
0

(Bi(η))) + PY n
0

(Bi(η)) + PnY0
(T (n)

µn
). (26)

Thus, by (26) and [24, Lemma 2.12]:

PY n
0

(Bi(η)) ≥ 1− εi − η
1− η

− |Y0|
(1− η)4µ2

nn
, i ∈ {1, 2}, (27)

and we conclude that in the limit n→∞ and η ↓ 0:

lim
η↓0

lim
n→∞

(∆0 + ∆i) ≥ 1− εi, i ∈ {1, 2} (28a)

lim
η↓0

lim
n→∞

∆0 ≥ 1− ε1 − ε2 (28b)

lim
η↓0

lim
n→∞

2∑
j=0

∆j ≤ 1. (28c)

We proceed by applying Lemma 1 to the set Dj for any j ∈
{0, 1, 2} with ∆j > 0, and conclude that for any j ∈ {0, 1, 2}
with ∆j > 0 there is a tuple (U j0 , U

j
1 , U

j
2 ) satisfying

H(M̃j
0) ≥ nI(U j0 ; Ỹ j0 ) + logPY n

0
(Dj), j ∈ {0, 1, 2}, (29)

H(M̃j
i ) ≥ nI(U ji ; Ỹ j0 |U

j
0 ), i ∈ {1, 2}, j ∈ {0, i}, (30)

and for i ∈ {1, 2}, j ∈ {0, i}:

− 1

n
log βi,n≤ I(U j0U

j
i ; Ỹ ji ) + øji (n), (31)

where for each pair (i, j), the function øji (n) → 0 as n → ∞
and the random variables Ỹ j0 , Ỹ

j
i , M̃

j
0, M̃

j
i are defined as in the

lemma applied to the subset Dj .
To summarize:

− 1

n
log βi,n ≤ min{I(U0

0U
0
i ; Ỹ 0

i ); I(U i0U
i
i ; Ỹ

i
i )}+ øi(n), (32)

where øi(n) is a function tending to 0 as n→∞.
Define the following random variables for i ∈ {1, 2} and

j ∈ {0, 1, 2}
L̃i,j , len(M̃j

i ). (33)

By the rate constraints (2), and the definition of the random
variables M̃j

i , we obtain by the total law of expectations

nR0 ≥ E[L0] ≥
∑

j∈{0,1,2}

E[L̃0,j ]∆j . (34)

Moreover,

H(M̃j
0) = H(M̃j

0, L̃0,j) (35)

=
∑
lj

Pr[L̃0,j = lj ]H(M̃j
0|L̃0,j = lj) +H(L̃0,j) (36)

≤
∑
lj

Pr[L̃0,j = lj ]lj +H(L̃0,j) (37)

= E[L̃0,j ] +H(L̃0,j), (38)

which combined with (34) establishes∑
j∈{0,1,2}

∆jH(M̃j
0) ≤

∑
j∈{0,1,2}

∆jE[L̃0,j ] + ∆jH(L̃0,j) (39)

≤ nR0

1 +
∑

j∈{0,1,2}

hb

(
∆j

nR0

) , (40)

where (40) holds by (34) and because the entropy of a discrete
and positive random variable L̃0,j of mean E[L̃0,j ] ≤ nR0

∆j
is

bounded by nR0

∆j
· hb

(
∆j

nRj

)
, see [26, Theorem 12.1.1].

In a similar way we obtain for i ∈ {1, 2}

∑
j∈{0,i}

∆jH(M̃j
i ) ≤ nRi

1 +
∑

j∈{0,i}

hb

(
∆j

nRi

) . (41)

Notice that when ∆j = 0, the trivial choice U ji = Ỹ ji
satisfies the inequalities (32), (40), and (41). Therefore, above
conclusions hold for (U j0 , U

j
1 , U

j
2 ) for any j ∈ {0, 1, 2}.

Combining (40) and (41) with (29) and (30), noting (24)
and (27), and considering also (32), we have proved so far
that for all n ≥ 1 there exist joint pmfs PUj

0U
j
1U

j
2 Ỹ

j
0 Ỹ

j
1 Ỹ

j
2

=

PỸ j
0
PỸ j

1 Ỹ
j
2 |Ỹ

j
0
PUj

0U
j
1U

j
2 |Ỹ

j
0

(abbreviated as P
(n)
j ) for j ∈

{0, 1, 2} so that the following conditions hold for i ∈ {1, 2}
(where IP indicates that the mutual information should be
calculated according to a pmf P ):

R0 ≥
∑

j∈{0,1,2}

(
I
P

(n)
j

(U j0 ; Ỹ j0 ) + g1,j(n)
)
· g2,j(n, η), (42a)

Ri ≥
∑

j∈{0,i}

(
I
P

(n)
j

(U ji ; Ỹ j0 |U
j
0 )
)
· g2,j(n, η), (42b)

θi ≤ min{I
P

(n)
0

(U0
0U

0
i ; Ỹ 0

i ), I
P

(n)
i

(U i0U
i
i ; Ỹ

i
i )}+ g3,i(n),(42c)

for some nonnegative functions g1,j(n), g2,j(n, η), g3,i(n) with
the following asymptotic behaviors:

lim
n→∞

g1,j(n) = 0, ∀j ∈ {0, 1, 2}, (43)

lim
n→∞

g3,i(n) = 0, ∀i ∈ {1, 2}, (44)

lim
n→∞

(g2,0(n, η) + g2,i(n, η)) ≥ 1− εi − η
1− η

, ∀i ∈ {1, 2}.

(45)

By Carathéodory’s theorem [23, Appendix C], there exist for
each n, random variables U0

0 , U
1
0 , U

2
0 , U

0
1 , U

1
1 , U

0
2 , U

2
2 satisfying

(42) over alphabets of sizes

|U0
0 | ≤ |Y0|+ 3, (46)

|U j0 | ≤ |Y0|+ 2, j ∈ {1, 2}, (47)

|U ji | ≤ |U
j
0 | · |Y0|+ 1, i ∈ {1, 2}, j ∈ {0, i}. (48)



Then we invoke the Bolzano-Weierstrass theorem and consider
for each j ∈ {0, 1, 2} a sub-sequence P

(nk)

Uj
0U

j
1U

j
2 Ỹ

j
0 Ỹ

j
1 Ỹ

j
2

that
converges to a limiting pmf P ∗

Uj
0U

j
1U

j
2Y

j
0 Y

j
1 Y

j
2

. For these limiting
pmfs, which we abbreviate by P ∗j , we conclude by (42a)–(42c)
and (28) that for all i ∈ {1, 2}:

R0 ≥ σ0 · IP∗0 (U0
0 ;Y 0

0 ) + σ1 · IP∗1 (U1
0 ;Y 1

0 )

+σ2 · IP∗2 (U2
0 ;Y 2

0 ), (49)

Ri ≥ σ0 · IP∗0 (U0
i ;Y 0

0 |U0
0 ) + σi · IP∗i (U ii ;Y

i
0 |U i0), (50)

θi ≤ min{IP∗0 (U0
0U

0
i ;Y 0

i ), IP∗i (U i0U
i
i ;Y

i
i )}, (51)

where numbers σ0, σ1, σ2 > 0 satisfy σ0 + σ1 + σ2 ≤ 1 and

σ0 + σi ≥ 1− εi, i ∈ {1, 2}, (52a)
σ0 ≥ 1− ε1 − ε2. (52b)

Notice further that since for any j ∈ {0, 1, 2} and any k, the
sequence Ỹ j,nk

0 lies in the typical set T (nk)
µnk

(PY0), we have for
all j ∈ {0, 1, 2}, |PỸ j

0
− PY0 | ≤ µnk

and thus the limiting
pmf satisfies P ∗

Y j
0

= PY0
. Moreover, since for each nk the pair

of random variables (Ỹ j1 , Ỹ
j
2 ) is drawn according to PY1Y2|Y0

given Ỹ j0 , the limiting pmf also satisfies P ∗
Y j
1 Y

j
2 |Y

j
0

= PY1Y2|Y0
.

We also notice for all j ∈ {0, 1, 2} that under P ∗j the Markov
chain (U j0 , U

j
1 , U

j
2 )→ Y0 → (Y1, Y2) holds. This concludes the

converse proof.

ACKNOWLEDGMENT

M. Wigger and M. Hamad have been supported by the
European Union’s Horizon 2020 Research And Innovation
Programme under grant agreement no. 715111.

APPENDIX
PROOF OF COROLLARY 1

By Theorem 1, E∗(R0, 0, 0, ε1, ε2) is the set of all (θ1, θ2)
pairs satisfying

θi ≤ min
{
I(U0;Yi), ηi

(
Ri0
)}
, i ∈ {1, 2}. (53a)

for some non-negative numbers σ0, σ1, σ2 with sum ≤ 1
and satisfying (7d) and (7e), a conditional pmf PU0|Y0

, and
nonnegative rates R1

0, R
2
0 such that

R0 ≥ σ0I(U0;Y0) + σ1R
1
0 + σ2R

2
0. (53b)

Notice that without loss in optimality, in the evaluation of above
region, we can restrict to tuples

(
PU0|Y0

, R1
0, R

2
0

)
satisfying

I(U0;Yi) ≥ ηi
(
Ri0
)
, (54)

which by the maximum in the definition of function ηi implies

I(U0;Y0) ≥ Ri0, i ∈ {1, 2}. (55)

In fact, if (54) is violated, rates R1
0 and/or R2

0 can be reduced
without changing (53a) and so that (54) holds.

We next show that any exponent pair (θ1, θ2) and tuple
(PU0|Y0

, R1
0, R

2
0) satisfying (53), (54), and

I(U0;Y0) ≤ Rπ(1)
0 +R

π(2)
0 (56)

also satisfies (14). The exponents’ constraints (14a) and (14b)
are easily verified. To verify (14c), notice that when σ0 > 1−
επ(1):

R0 ≥ σ0I(U0;Y0) + σπ(1)R
π(1)
0 + σπ(2)R

π(2)
0 (57)

= (1− επ(1))I(U0;Y0) + σπ(1)R
π(1)
0

+(σ0 − 1 + επ(1))I(U0;Y0) + σπ(2)R
π(2)
0 (58)

≥ (1− επ(1))I(U0;Y0) + (επ(1) − επ(2))R
π(2)
0 (59)

where (59) holds because σπ(1)R
π(1)
0 ≥ 0, because I(U0;Y0) ≥

R
π(2)
0 by (55), and σ0 + σπ(2) ≥ 1− επ(2) by (7d).
For σ0 ≤ 1− επ(1), (14c) can be verified as follows:

R0 ≥ σ0I(U0;Y0) + σπ(1)R
π(1)
0 + σπ(2)R

π(2)
0 (60)

≥ σ0I(U0;Y0) + (1− επ(1) − σ0)R
π(1)
0 + σπ(2)R

π(2)
0 (61)

≥ σ0I(U0;Y0) + (1− επ(1) − σ0)
(
R
π(1)
0 +R

π(2)
0

)
+(επ(1) − επ(2))R

π(2)
0 (62)

≥ (1− επ(1))I(U0;Y0) + (επ(1) − επ(2))R
π(2)
0 (63)

where (61) holds by (7d), (62) holds because σπ(2) ≥ 1−επ(2)−
σ0 by (7d), and (63) holds by (56) and σ0 ≤ 1 − επ(1). This
establishes that (53) holds under condition (56).

The proof is concluded by showing that for any tuple
(θ1, θ2, PU0|Y0

, R1
0, R

2
0) satisfying (53), (54), and

I(U0;Y0) > R
π(1)
0 +R

π(2)
0 , (64)

we can find a pmf PŨ0|Y0
, satisfying (14) when U0 is replaced

by Ũ0. Choose a bivariate Ũ0 = (Ũ1
0 , Ũ

2
0 ) such that Ũ1

0 →
Y0 → Ũ2

0 forms a Markov chain and for each i ∈ {1, 2} the
new random-variable Ũ i0 achieves ηi

(
Ri0
)
, i.e.,

Ri0 ≥ I
(
Y0; Ũ i0

)
and ηi

(
Ri0
)

= I
(
Ũ i0;Yi

)
. (65)

Since for any i ∈ {1, 2} we have I(Ũ0;Yi) ≥ I(Ũ i0;Yi) =
ηi(R

i
0), the exponents satisfy

θπ(1) ≤ min
{
I(U0;Yπ(1)), ηπ(1)

(
R
π(1)
0

)}
= ηπ(1)

(
R
π(1)
0

)
(66)

≤ I(Ũ0;Yπ(1)), (67)

θπ(2) ≤ min
{
I(U0;Yπ(2)), ηπ(2)

(
R
π(2)
0

)}
= ηπ(2)

(
R
π(2)
0

)
(68)

= min
{
I(Ũ0;Yπ(2)), ηπ(2)

(
R
π(2)
0

)}
, (69)

where the inequalities in (66) and (68) hold by (54). Similarly,

R0 ≥ σ0I(U0;Y0) + σπ(1)R
π(1)
0 + σπ(2)R

π(2)
0 (70)

> (1− επ(1))R
π(1)
0 + (1− επ(2))R

π(2)
0 (71)

= (1− επ(1))I
(
Ũ
π(1)
0 ;Y0

)
+ (1− επ(2))I

(
Ũ
π(2)
0 ;Y0

)
(72)

≥ (1− επ(1))I
(
Ũ
π(1)
0 ;Y0

)
+ (1− επ(1))I

(
Ũ
π(2)
0 ;Y0|Ũπ(1)

0

)
+(επ(1) − επ(2))I

(
Ũ
π(2)
0 ;Y0

)
(73)

= (1− επ(1))I
(
Ũ0;Y0

)
+ (επ(1) − επ(2))I

(
Ũ
π(2)
0 ;Y0

)
(74)

where inequality (71) holds by the assumption that I(U0;Y0) >
R1

0 + R2
0 and by condition (7d); equality (72) holds by (65);

inequality (73) holds by the Markov chain Ũ1
0 → Y0 → Ũ2

0 ;
and (74) by the chain rule and the definition of Ũ0.
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