# An Information-Theoretic View of Cache-Aided Communication, Compression, and Computation Systems

Michèle Wigger

GlobalSIP 2015, Orlando, Florida

14 December 2015



#### Content Delivery Networks



- Store contents in caches before file demands even known
- Reduce network load and latency during high-congestion periods
- Idea useful if certain files very popular and known in advance

#### Content Delivery Networks



- Store contents in caches before file demands even known
- Reduce network load and latency during high-congestion periods
- Idea useful if certain files very popular and known in advance

Let's see how caches enter the wireless story....

# Promising Solution: Distribute Caches at Various Locations in Network



• Can cache at main BSs, picoBSs, femtoBSs, or directly at end users

#### **File Popularities**



- Static file popularity follows a Zipf distribution  $P(x) = Cx^{-\alpha}$
- Evolution of file popularities (youtube videos) can also be predicted

Use pro-active caching to improve cellular systems!

Questions to Address for Cache-Aided Networks

• Sizes of caches?

- What to store in the caches?
- How to communicate in presence of cached data?

• Benefits in rate, delay, energy?

#### Energy Balance of Cache-Aided Communication

• Energy needed to cache/store data

• Energy needed to transmit caching information

• Energy needed to transmit delivery information

#### Energy Balance of Cache-Aided Communication

• Energy needed to cache/store data

 $\rightarrow$  can be relatively small & unused storage entity sometimes already available

- Energy needed to transmit caching information
  - $\rightarrow$  minimized by using simple low-rate codes and modulation schemes
- Energy needed to transmit delivery information
  - $\rightarrow$  improved through local retrieval of information
  - $\rightarrow$  global caching gain brings further reductions in rate and energy

## Our Scenario: One-To-Many Communication with Receiver-Caches





- All files equally popular  $\rightarrow$  interested in worst-case performance
- Centralized protocol on how to fill caches
- Caches filled during nights when demands not yet known

Library: Files  $W_1, W_2, \ldots, W_D$  of  $n\rho$  bits each (no popularities)



Communication in two phases:

Library: Files  $W_1, W_2, \ldots, W_D$  of  $n\rho$  bits each



Communication in two phases:

• Placement phase: Tx fills caches without knowing demands  $d_1, \ldots, d_5$ 



Communication in two phases:

- Placement phase: Tx fills caches without knowing demands  $d_1, \ldots, d_5$
- Delivery phase: Tx describes  $W_{d_1}, \ldots, W_{d_5}$  to Rxs 1, ..., 5, respectively, through nR common bits



#### Communication in two phases:

Rates-Memories Tradeoff

For which  $(\rho, R, M_1, \ldots, M_K)$  is error-free data transmission possible?

#### Naive Uncoded Caching for K = 2 Receivers



• Split 
$$W_d = (W_d^{(c)}, W_d^{(u)})$$
 of length  $\left(\frac{M}{D}n, (\rho - \frac{M}{D})n\right)$  bits

#### Naive Uncoded Caching for K = 2 Receivers



• Split 
$$W_d = (W_d^{(c)}, W_d^{(u)})$$
 of length  $\left(rac{M}{D}n, (
ho - rac{M}{D})n
ight)$  bits

#### Rates-Memory Trade-Off

Reconstruction is possible, if  $R \ge 2\left(\rho - \frac{M}{D}\right)$ 

#### Coded caching for K = 2 Receivers [Maddah-Ali&Niesen 2013]



• Split 
$$W_d = (W_d^{(c1)}, W_d^{(c2)}, W_d^{(u)})$$
 of length  $\left(\frac{M}{D}n, \frac{M}{D}n, (\rho - 2\frac{M}{D})n\right)$  bits

#### Coded caching for K = 2 Receivers [Maddah-Ali&Niesen 2013]



• Split  $W_d = (W_d^{(c1)}, W_d^{(c2)}, W_d^{(u)})$  of length  $(\frac{M}{D}n, \frac{M}{D}n, (\rho - 2\frac{M}{D})n)$  bits

# Rates-Memory Trade-Off Reconstruction possible, if $R \ge 2\left(\rho - \frac{M}{D}\right) - \frac{M}{D}$

Optimal Rates-Memory Tradeoff  $R^*(\rho, M)$  for K = D = 2



- Coded caching gives right-star
- ullet Symmetry arguments for left-star ightarrow exchange caching and delivery phase

#### Coded caching for K = 3 Receivers [Maddah-Ali&Niesen 2013]



• Split 
$$W_d = (W_d^{(c1)}, W_d^{(c2)}, W_d^{(c3)}, W_d^{(u)})$$

- If M small: save single part at each receiver
- If M large: save two parts at each receiver

#### Coded caching for K = 3 Receivers [Maddah-Ali&Niesen 2013]



• Split 
$$W_d = (W_d^{(c1)}, W_d^{(c2)}, W_d^{(c3)}, W_d^{(u)})$$

- If M small: save single part at each receiver
- If M large: save two parts at each receiver

#### Local and Global Caching Gains $K \ge 2$ [Maddah-Ali&Niesen 2013]



#### Coded caching achieves

Reconstruction possible, if  $R_{\text{coded}} \ge K(\rho - \frac{M}{D}) \cdot \min\left\{\frac{1}{1+KM/\rho/D}, \frac{D}{K}\right\}$ 

$$1 \leq \frac{R^*(\rho, M)}{R_{\text{coded}}(\rho, M)} \leq 12, \qquad \forall K, \rho, D, M.$$

#### Extensions

Decentralized caching

[M. A. Maddah-Ali, U. Niesen, "Decentralized coded caching attains order-optimal memory-rate tradeoff"]

• Nonuniform or random demands

[U. Niesen and M. A. Maddah-Ali, "Coded caching with nonuniform demands"] [Ji, Tulino, Llorca, and Caire, "Order-optimal rate of caching and coded multicasting with random demands"]

• Online caching phase

[R. Pedarsani, M. A. Maddah-Ali and U. Niesen, "Online coded caching"]

Hierarchical caching

[Hachem, Karamchandani, Diggavi, "Coded caching for heterogeneous wireless networks with multi-level access"]

#### Delivery over Noisy Broadcast Channel (BC) [Saeedi, Timo, Wigger 2015]

![](_page_22_Figure_1.jpeg)

• Receiver k gets erasure with probability  $\delta_k$  where  $\delta_1 \geq \delta_2 \geq \ldots \geq \delta_K$ 

$$Y_k^n = (X_1, X_2, \Delta, X_4, \Delta, \ldots, X_{n-1}, \Delta)$$

 $\rightarrow$  fraction of  $\Delta s \approx \delta_k$ 

# Example: Asymmetric Caches and Separate Channel Coding Library:

Files  $W_1, W_2, \ldots, W_D$  of  $n\rho$  bits each

![](_page_23_Figure_2.jpeg)

• 
$$W_d = (W_d^{(c1)}, W_d^{(u)})$$
 of sub-rates  $(\frac{M}{D}, \rho - \frac{M}{D})$ 

#### Example: Asymmetric Caches and Separate Channel Coding

![](_page_24_Figure_1.jpeg)

Separate Cache-Channel Coding 
$$\rightarrow$$
 No Global Caching Gain  
 $p(\text{error}) \rightarrow 0 \text{ if:} \quad \frac{\rho - \frac{M}{D}}{F(1 - \delta_1)} + \frac{\rho}{F(1 - \delta_2)} \leq 1$   
Standard Erasure BC:  $p(\text{error}) \quad \text{if} : \quad \frac{\rho_1}{F(1 - \delta_1)} + \frac{\rho_2}{F(1 - \delta_2)} \leq 1$ 

#### Example: Our Joint Cache-Channel Scheme for K = 2

![](_page_25_Figure_1.jpeg)

# Piggyback Coding to Send $(W_{d_1}^{(u)}, W_{d_2}^{(c1)})$ to Both Rxs

![](_page_26_Figure_1.jpeg)

Transmission of  $W_{d_2}^{(c1)}$  not affecting Rx 1 at all!

$$p(error) o 0 \text{ as } n o \infty$$
:  $\max\left\{rac{
ho - rac{M}{D}}{F(1 - \delta_1)}, rac{
ho}{F(1 - \delta_2)}
ight\} \leq rac{n}{r}$ 

#### Performance of Joint Cache-Channel Scheme with Piggyback Coding

![](_page_27_Figure_1.jpeg)

# $\begin{array}{l} \text{Joint Cache-Channel Coding} \to \text{Global Caching Gain!} \\ p(\textit{error}) \to 0 \quad \text{if :} \qquad \underbrace{\max\left\{\frac{\rho - \frac{M}{D}}{F(1 - \delta_1)}, \ \frac{\rho}{F(1 - \delta_2)}\right\}}_{\text{piggyback coding}} + \frac{\rho - \frac{M}{D}}{F(1 - \delta_2)} \leq 1 \end{array}$

Example for  $\delta_1 = 4/5$  and  $\delta_2 = 1/5$  and  $M \le \rho 3D/8$ 

2 Asymmetric caches  $M_1 = M$  and  $M_2 = 0$  & separate source-channel coding

$$ho \leq rac{4}{5} {m F}(1-\delta_1) + rac{4}{5} rac{{m {\sf M}}}{D}$$

S Asymmetric caches  $M_1 = M$  and  $M_2 = 0$  & joint cache-channel coding

$$ho \leq rac{4}{5}F(1-\delta_1)+rac{\mathsf{M}}{D}$$

Example for  $\delta_1 = 4/5$  and  $\delta_2 = 1/5$  and  $M \le \rho 3D/8$ 

 ${\color{black} 0}$  Symmetric caches  $M_1=M_2=M/2$  & coded caching as before & separate source-channel coding

$$ho \leq rac{4}{5} F(1-\delta_1) + rac{3}{5} rac{\mathsf{M}}{D}$$

2 Asymmetric caches  $M_1 = M$  and  $M_2 = 0$  & separate source-channel coding

$$ho \leq rac{4}{5} {m F}(1-\delta_1) + rac{4}{5} rac{{\mathsf M}}{D}$$

S Asymmetric caches  $M_1 = M$  and  $M_2 = 0$  & joint cache-channel coding

$$ho \leq rac{4}{5}F(1-\delta_1)+rac{\mathsf{M}}{D}$$

#### Fundamental Limits of Caching

A caching/delivery scheme cannot have  $p(\text{error}) \rightarrow 0$  as  $n \rightarrow \infty$ , if

$$egin{aligned} &rac{
ho-M_1}{F(1-\delta_1)}+rac{
ho-M_2}{1-\delta_2} \leq 1 \ &2
ho \leq 2F(1-\delta_1)+M_1 \ &2
ho \leq 2F(1-\delta_2)+M_2 \ &3
ho \leq F(1-\delta_1)+F(1-\delta_2)+M_1+M_2 \end{aligned}$$

#### Achievable and Infeasible Maximum Rates $\rho(M)$

- K = D = 2 and asymmetric cache sizes  $M_1 = M$  and  $M_2 = 0$
- $\delta_1 = 0.8$  and  $\delta_2 = 0.2$  and F = 10
- Maximum rates  $\rho(M)$  in bits per channel use

![](_page_31_Figure_4.jpeg)

#### Extension to K Receivers

![](_page_32_Figure_1.jpeg)

#### Extension to K Receivers

![](_page_33_Figure_1.jpeg)

• Split 
$$W_d = \left(W_d^{(c1)}, \dots, W_d^{(cK/2)}, W_d^{(u)}\right) \rightarrow \text{cache } W_d^{(ck)} \text{ at } \operatorname{Rx} k$$

• Deliver Maddah-Ali&Niesen x-ors and piggyback  $\{W_{d_\ell}^{(ck)}\}_{\ell=K/2+1}^{\kappa}$  on  $W_{d_k}^{(u)}$ 

#### Insights and Intuition

- Important to consider noisy communication channel:
  - Joint cache-channel coding (piggyback coding)
  - Caching gains combine with feedback gains
     [A. Ghorbel, M. Kobayashi, S. Yang, "Cache-enabled broadcast packet erasure channels with state feedback"
  - Interplay between caching gains and CSI gains

[J. Zhang and P. Elia, "Fundamental limits of cache-aided wireless BC: interplay of coded-caching and CSIT feedback"]

- $\bullet\,$  Larger caches for weak receivers  $\to$  even more important with joint cache-channel coding
- Piggyback coding useful whenever info for strong Rx in cache of weak Rx!

Situation that Motivates our Next Problem [Timo, Saeedi, Wigger, Geiger 2015]

$$\begin{array}{ccc} \underline{\text{Library:}} & W_1 = \begin{pmatrix} \tilde{W}_0 \\ \tilde{W}_1 \end{pmatrix}, W_2 = \begin{pmatrix} \tilde{W}_0 \\ \tilde{W}_2 \end{pmatrix}, \dots, W_D = \begin{pmatrix} \tilde{W}_0 \\ \tilde{W}_D \end{pmatrix}, & nM \text{ bits} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

• Ignoring file correlation with M small:  $\rightarrow R \ge K(\rho - \frac{M}{D}) - \frac{M}{D}$ 

• Storing common information  $\tilde{\mathcal{W}}_0$  in each cache:  $\rightarrow R \geq K(\rho - M)$ 

#### Main Insights

Cache-contents now useful for multiple demands without need for coding

# Files $X_1^n, X_2^n, \ldots, X_D^n$ Might be Correlated!

• Interactive videos: users can choose different angles, segments, etc

![](_page_36_Picture_2.jpeg)

- Large data bases: users retrieve different functions of measured samples
  - Different features of biological data stored in a data base
- Cloud computing: different users download processed versions of data
  - Profiles of people in social networks

#### General One-To-Many Scenario

![](_page_37_Figure_1.jpeg)

#### Lossless reconstruction of demanded files

$$\forall d_1, \ldots, d_K \colon \mathsf{Pr}\left(\hat{X}_k^n(\mathbf{m}_k, \mathbf{r}, d_1, \ldots, d_K) \neq X_{d_k}^n\right) \to 0 \text{ as } n \to \infty$$

#### Application: Computation of Different Functions from Common Data

![](_page_38_Figure_1.jpeg)

- Data stored on a central data base
- Each user wishes to retrieve one function  $X_d^n = f_d(X^n)$
- Demand not known when caching at servers

#### Single Receiver Problem and a Typical Rate-Memory Tradeoff $R^*(M)$

![](_page_39_Figure_1.jpeg)

Single Receiver Problem and a Typical Rate-Memory Tradeoff  $R^*(M)$ 

![](_page_40_Figure_1.jpeg)

# Single-Receiver: Optimal Rate-Memory Tradeoff

#### Scheme for Optimal Rate-Memory Tradeoff

• Compress  $(X_1^n, \ldots, X_D^n)$  by  $U^n$ , and cache compression index

• Deliver  $X_d^n$  under side-info  $U^n$ 

• 
$$R^*(M) = \min_{P_{U|X_1,...,X_D}} \max_{d \in \{1,...,D\}} H(X_d|U)$$
  
s.t.  $I(X_1,...,X_D; U) \le M$ 

## Single-Receiver: Optimal Rate-Memory Tradeoff

#### Scheme for Optimal Rate-Memory Tradeoff

• Compress  $(X_1^n, \ldots, X_D^n)$  by  $U^n$ , and cache compression index

• Deliver  $X_d^n$  under side-info  $U^n$ 

• 
$$R^{\star}(M) = \min_{P_{U|X_1,...,X_D}} \max_{d \in \{1,...,D\}} H(X_d|U)$$
  
s.t.  $I(X_1,...,X_D;U) \le M$ 

• How to choose  $P_{U|X_1,...,X_D}$ ?

#### Example 1: Degenerate Sources

• 
$$X_1 \subseteq X_2 \subseteq \cdots X_D$$

![](_page_43_Figure_2.jpeg)

• U: store largest  $X_d$  that fits into cache

#### Example 1: Degenerate Sources

• 
$$X_1 \subseteq X_2 \subseteq \cdots X_D$$

![](_page_44_Figure_2.jpeg)

• U: store largest  $X_d$  that fits into cache

#### $\rightarrow$ same rate-memory tradeoff as if genie revealed demand d before caching

Example 2: Independent and Identical Sources

• 
$$X_{1,t},\ldots,X_{D,t}$$
 i.i.d.  $\sim P_X$ 

![](_page_45_Figure_2.jpeg)

Compress each source X<sup>n</sup><sub>d</sub> independently with M/D bits and cache these compression bits

Example 2: Independent and Identical Sources

• 
$$X_{1,t},\ldots,X_{D,t}$$
 i.i.d.  $\sim P_X$ 

![](_page_46_Figure_2.jpeg)

Compress each source X<sup>n</sup><sub>d</sub> independently with M/D bits and cache these compression bits

 $\rightarrow$  same rate-memory tradeoff as for a super-user with *D* delivery pipes of rate *R* that reconstructs all sources  $X_1^n, \ldots, X_D^n$ 

#### A Closer Look at the Typical Rate-Memory Function

![](_page_47_Figure_1.jpeg)

- $M_{\text{genie}} = \max \{ H(U): H(U|X_d) = 0, \forall d = 1, ..., D \}$ Gács-Körner common info in symmetric setups
- $M_{\text{super}} = \min \{ I(U; X_1, \dots, X_d) : X_d \to U \to X_{\mathcal{D} \setminus \{d\}}, \forall d = 1, \dots, D \}$ Wyner common info in symmetric setups

Related Single-Rx Scenario: Per-Symbol Demands [Wang, Lim, Gastpar 2015]

• Sequence of demands  $d_1, \ldots, d_n$  i.i.d.  $\sim P_{\mathbb{D}}$ 

![](_page_48_Figure_2.jpeg)

# Two-User Lossy-Source Coding with One Cache

![](_page_49_Figure_1.jpeg)

- Caching:  $\mathbf{m} = \operatorname{caching}(X_1^n, \dots, X_D^n)$
- Delivery:  $\mathbf{r} = \text{delivery}(X_1^n, \dots, X_D^n, d_1, d_2)$

# Two-User Lossy-Source Coding with One Cache

![](_page_50_Figure_1.jpeg)

- Rx 1 more powerful than Rx 2 ightarrow Rx 1 can reconstruct  $X_{d_2}^n$ 
  - $\rightarrow$  But only in delivery phase!

#### Coding Scheme for an Idealized Setup

• Genie-aided scenario:  $R \times 1$  (and  $T \times$ ) learns  $X_{d_2}^n$  even before caching

Coding scheme:

- Describe  $X_{d_2}^n$  for Rx 2 (delivery)
- For Rx 1, use single-user caching with Rx side-info

![](_page_51_Figure_5.jpeg)

Problem: compression with side-info. (Wyner-Ziv and Slepian-Wolf coding) require statistical knowledge of SI

 $\rightarrow$  need to adjust bin-size!

#### Coding Scheme for 2 Users and Rx 1 Caching using Adaptive Binning

Coding scheme:

S.

- Describe  $X_{d_2}^n$  for Rx 2 (delivery)
- For Rx 1, use single-user caching with Rx side-info with adaptive binning and rate-transfer (caching and delivery)

![](_page_52_Figure_4.jpeg)

#### Rate of idealized scenario is achievable:

$$egin{aligned} R^{\star} &\geq \min_{P_{U|X_{1},\ldots,X_{D}}} \; \max_{(d_{1},d_{2})} Hig(X_{d_{2}}ig) + Hig(X_{d_{1}}ig|U,X_{d_{2}}ig) + ilde{R} \ \mathrm{t.} \ &I(U;X_{1},\ldots,X_{D}|X_{d_{2}}ig) \leq M + ilde{R}. \end{aligned}$$

## Insights

- Cache common information (Wyner or Gács-Körner) if possible
- Use previously delivered correlated files as side-information (Wyner-Ziv coding, Slepian-Wolf coding)
- New tools (adaptive binning and rate-transfer) needed to implement Wyner-Ziv or Slepian-Wolf with "unknown" side-information

#### Summary

- Clever choices of cache contents can highly improve caching gains:
  - Diversify cache contents if files independent
  - Extract common information if files dependent
- Delivery should be based on joint cache-channel schemes
  - Piggyback information to stronger receiver on weak receiver, if the former in cache of the latter
  - Adaptive binning to compensate missing side-information
  - More insignts for interference channels [Maddah-Ali&Niesen2015]
- Cache design is influenced by optimal coding schemes  $\rightarrow$  e.g., piggyback coding improves benefits of asymmetric cache sizes