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Pierre Escamilla†? Michèle Wigger ? Abdellatif Zaidi† ‡

† Paris Research Center, Huawei Technologies, Boulogne-Billancourt, 92100, France
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Abstract—A detection system with a single sensor and K
detectors is considered, where each of the terminals observes
a memoryless source sequence and the sensor sends a common
message to all the detectors. The communication of this message
is assumed error-free but rate-limited. The joint probability mass
function (pmf) of the source sequences observed at the terminals
depends on an M-ary hypothesis (M ≥ K), and the goal of the
communication is that each detector can guess the underlying
hypothesis. Each detector k aims to maximize the error exponent
under hypothesis k, while ensuring a small probability of error
under all other hypotheses. This paper presents an achievable
exponents region for the case of positive communication rate,
and characterizes the optimal exponents region for the case of
zero communication rate. All results extend also to a composite
hypothesis testing scenario.

I. INTRODUCTION

Consider the multiterminal hypothesis testing scenario in
Figure 1 where an encoder observes a discrete memoryless
source sequence Xn , (X1, . . . , Xn) and communicates
with multiple detectors over a common noise-free bit-pipe
of rate R ≥ 0. Here, n is a positive integer that denotes
the blocklength. Each detector k ∈ {1, . . .K} observes a
memoryless source sequence Y nk , (Yk,1, . . . , Yk,n), where
the sequence of observations {(Xt, Y1,t, Y2,t, . . . , YK,t)}nt=1 is
independent and identically distributed (i.i.d) according to a
joint probability mass function (pmf) that is determined by
the hypothesis H ∈ {1, . . . ,M}. Under hypothesis H = m:

{(Xt, Y1,t, Y2,t, . . . YK,t)}nt=1 i.i.d. ∼ P (m)
XY1Y2...YK

, (1)

We assume M ≥ K. Each detector k ∈ {1, 2, . . . ,K} decides
on a hypothesis, Ĥ ∈ {1, 2, . . . ,M}, with the goal to maximize
the exponential decrease of the probability of type-II error
(i.e., of guessing Ĥ 6= k when H = k), while ensuring that
the probabilities of type-I error (i.e., guessing Ĥ 6= m when
H = m for some m 6= k) do not exceed a constant value
εk ∈ (0, 1) for all sufficiently large blocklengths n.

The described scenario models, e.g., a biometric system
where K distinct accounts require authentication from users
using biometric features. Each account k aims to grant access
to a different user while denying access to all other users and
guaranteing a given probability εk of false accept.

Problems of distributed hypothesis testing are strongly
rooted in both statistics and information theory. In particular,
the problem described above with only a single detector and
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Fig. 1. Distributed hypothesis testing with multiple detectors.

two hypotheses (K = 1 and M = 2) was studied in [1]–[4]. The
optimal exponent was derived for testing against conditional
independence [4], but it remains open in general. Extensions
to multiple terminals, multi-hop or interactive communication
were presented in [3], [5], [6], [8], [9]. Moreover, [11] studies
testing against conditional independence with two detectors
that aim at maximizing the error exponent under the same
hypothesis. The results in [11] report a tradeoff between the
exponents achieved at the two detectors when the sensor sends
a common message of positive rate R > 0 to both sensors.
As this paper shows, such a tradeoff does not necessarily arise
when the two detectors aim at maximizing the error exponents
under two different hypotheses. (See Remark 1.)

In this paper, we propose a coding and testing scheme for a
general number of hypotheses M and detectors K and positive
rate R > 0. In our scheme, the sensor makes a tentative guess
on the hypothesis and then applies the coding and testing
scheme that is adapted to the guessed hypothesis. Based on
this scheme, we describe a set of achievable error exponents
for given rate R > 0.

Furthermore, we exactly characterize the set of achievable
error exponents for communication rate R = 0. That means
when the sensor can send only a sublinear number of bits to
the K detectors. If the sensor sends at most log(M) bits, a
tradeoff arises between their error exponents. In contrast, if
it sends more than log(M) bits, each detector can achieve the
same error exponent as if the other detectors were not present.

At last, we extend our results to a composite hypothesis test-
ing scenario where each receiver merges a set of hypotheses
and aims at maximizing the error exponent under this set of



hypotheses. This scenario models situations where a detector
wishes to raise an alarm in multiple events, without the need to
specify which of the events occurred. It can also model uncer-
tainty about the distribution implied by the hypotheses. Error
exponents for zero-rate single-detector composite hypothesis
testing problems have previously been presented in [12].

Notation: The set of pmfs over an alphabet X is denoted
P(X ) and the n-fold product of a pmf PX by P⊗nX . and
the type of a sequence xn is denoted by tp(xn). We write
Tµ(PX) for the set of µ-typical sequences with respect to PX .
Both D(PX‖PX̄) and D(X‖X̄) denote the Kullback-Leiber
divergence between two pmfs PX and PX̄ over the same
alphabet X . For an integer number I , we abbreviate {1, . . . , I}
by [1 : I]. Finally, H(·) and I(·; ·) denote entropy and
mutual information. Where IP (A;B) indicates that I(A;B)
is computed according to P .

II. FORMAL PROBLEM STATEMENT

Let (Xn, Y n1 , . . . , Y
n
K) be i.i.d. according to one of the

pmfs P (1)
XY1···YK , . . . , P

(M)
XY1···YK as described in (1). For clarity

of exposition, assume that for each k ∈ {1, . . . ,K}, the
pmfs P (1)

XYk
, . . . , P

(M)
XYk

are all different and P
(m)
XYk

� P
(k)
XYk

,
i.e., P (k)

XYk
is positive for all elements where P

(m)
XYk

(x, yk)
is positive. The encoder observes a source sequence Xn. It
applies an encoding function

fn : Xn →W , [1 : Wn] (2)

to Xn:
W = fn(Xn), (3)

and sends the resulting message W to all detectors. Detector
k obtains W and observes Y nk . It applies a decision function:

gk,n : W ×Ynk → [1 : M]. (4)

to decide on the hypothesis

Ĥk , gk,n(W,Y nk ). (5)

Type-I and type-II error probabilities at detector k are
defined as:

αk,m,n , Pr
{
Ĥk 6= m

∣∣H = m}, m ∈ [1 : M]\{k}, (6)

βk,n , Pr
{
Ĥk 6= k

∣∣H = k}. (7)

Definition 1. Given rate R ≥ 0 and vector ε =
(ε1, ε2, . . . , εK) in (0, 1)K, an error exponent vector θ =
(θ1, . . . , θK) is said achievable, if for each blocklength n there
exist functions fn, g1,n, g2,n, . . . , gK,n as in (2) and (4), so that
the following limits hold for all k ∈ [1 : K]:

lim
n→∞

αk,m,n ≤ εk, m ∈ [1 : M]\{k}, (8)

lim
n→∞

− 1

n
log βk,n ≥ θk, (9)

and

lim
n→∞

1

n
logWn ≤ R. (10)

For rate R = 0 we make a finer distinction. Constraint
Wn ≤ W, for some constant value W, is referred to as R =

0W. The main interest of this document is on the set of all
achievable error exponent vectors.

Definition 2. Given R > 0 or R = 0W and vector ε ∈ (0, 1)K,
the closure of the set of all achievable exponent vector θ =
(θ1, θ2, . . . , θK) is called the error exponents region E(R, ε).

Remark 1. The error exponents region only depends on
the sets of joint marginals {P (m)

XY1
}Mm=1, {P (m)

XY2
}Mm=1, . . . ,

{P (m)
XYK
}Mm=1. In our setup, each detector k aims at maximizing

the error exponent under hypothesis H = k. When P
(1)
X =

P
(2)
X = . . . = P

(K)
X , by relabelling above joint marginals,

the setup is equivalent to a setup where all detectors aim at
maximizing the error exponent under hypothesis H = 1. In
the special case of testing against conditional independence
for K = 2 detectors and M = 2 hypotheses, this latter setup
has been solved in [11]. This optimal exponent is also achieved
by our first main result, Theorem 1.

III. MAIN RESULTS

The following Theorem 1 characterizes an inner bound to
E(R, ε). As we will see, it does not depend on ε.

Let for each positive rate R > 0, U(R) be the set of tuples(
P

(1)
U |X , . . . , P

(M)
U |X

)
satisfying

IP (m)(U ;X|Yk) ≤ R, k ∈ [1 : K], m ∈ [1 : M]\{k}, (11)

and
P

(m)
U |X = P

(m′)
U |X if P

(m)
X = P

(m′)
X . (12)

Theorem 1 (Achievability under Positive Rate). Given R >
0 and ε in (0, 1)K, region E(R, ε) contains all nonnegative
vectors θ = (θ1, θ2, . . . , θK) that satisfy the following two
conditions for a tuple

(
P

(1)
U |X , . . . , P

(M)
U |X

)
∈ U(R):

θk ≤ min
m∈[1:M]
m6=k

min
πUXYk :

πUX=P
(m)
UX

πUYk=P
(m)
UYk

D
(
πUXYk ||P

(m)
U |XP

(k)
XYk

)
(13)

and

θk ≤ min
m∈[1:M]
m6=k

min
πUXYk :

πUX=P
(m)
UX

πYk=P
(m)
Yk

H
P (m)(U |Yk)≤Hπ(U |Yk)[

D
(
πUXYk ||P

(m)
U |XP

(k)
XYk

)
+R− IP (m)(U ;X|Yk)

]
. (14)

Proof: See Section V.

Corollary 1. Assume that K = M = 2 and that P (1)
X 6= P

(2)
X .

In this case, for each k ∈ {1, 2}, detector k’s exponent
θk coincides with the Shimokawa-Han-Amari exponent [2]
achieved in a single-detector system with only detector k.

The scheme leading to Theorem 1 applies binning as used in
the Shimokawa-Han-Amari scheme [2]. A better performance
could be achieved in general if the scheme was replaced by
the Heegard-Berger type-scheme in [13].

We now consider the case of zero rate, i.e., where the
encoder’s message takes value in [1 : W], for some fixed
finite W > 0. Assume for the rest of this section that for



each k ∈ [1 : K], each pair of pmfs P (m)
XYk

and P (m′)
XYk

differs in
at least one of the two marginals PX or PYk . Further, assume

P
(k)
XYk

> 0, ∀k ∈ [1 : K], (x, yk) ∈ X × Yk. (15)

Let L be the number of different pmfs in {P (1)
X , . . . , P

(M)
X }.

So, 1 ≤ L ≤ M, where L = 1 means that pmfs P (1)
X , . . . , P

(M)
X

all coincide. Let PX,1, . . . , PX,L be these L distinct pmfs. The
error exponent region depends on L and on W. If W > L,
the exponent region is a K-dimensional cube and in each
dimension the exponent can be as large as in a system where
only the corresponding detector is present.

Proposition 1 (Exponents Region when W > L). For any ε ∈
(0, 1)K and W > L, the exponents region E(0W, ε) coincides
with the set of all nonnegative exponent vectors θ satisfying:

θk ≤ min
m∈[1:M]
m6=k

min
πXYk :

πX = P
(m)
X

πYk = P
(m)
Yk

D
(
πXYk‖P

(k)
XYk

)
(16)

Proof: The converse holds by [12, Theorem 5] and be-
cause any detector cannot have a larger type-II error exponent
as in a setup where it is the only detector and the transmitter
can send a message of size W to this single detector. Achiev-
ability follows by analyzing the following scheme. (Details of
the analysis are omitted.) Fix a small µ > 0.
Encoder: If the encoder observes Xn = xn and xn ∈
Tµ(PX,`) for some index ` ∈ {1, . . . , L}, then it sends W = `.
Otherwise, it sends W = L + 1. (Notice that since pmfs
PX,1, . . . , PX,L are all distinct, for sufficiently small µ, every
xn ∈ Xn belongs to only one typical set Tµ(PX,`).)
Detector k: If the received message W ≤ L and for some
m ∈ [1 : M] the following two conditions hold:

P
(m)
X = PX,W (17)

Y nk ∈ Tµ
(
P

(m)
Yk

)
, (18)

detector k sets Ĥk = m. Otherwise, it sets Ĥk = k.
For each vector r := (r1, . . . , rK−1) ∈ RK−1 and mapping

b : [1 : M] → [1 : W], define a partition φb,1(r), . . . , φb,W(r)

of P(X ) so that φb,i(r) contains P (m)
X if and only if b(m) = i,

and φb,i(r) contains any other type P̃X only if

i = argmax
j∈[1:W]

min
κ∈[1:K][
min

m∈[1:M]
b(m)=j
m 6=κ

min
πXYk :

πX=P̃X
πYκ=P

(m)
Yκ

D
(
πXYκ‖P (κ)

XYκ

)
+

K∑
l=κ

rl

]
. (19)

Theorem 2 (Exponents Region when W ≤ L). For any ε ∈
(0, 1)K, the exponents region E(0W, ε) coincides with the set of
nonnegative exponent vectors θ = (θ1, . . . , θK) that for some
r ∈ RK−1 and mapping b : [1 : M]→ [1 : W] satisfy

θk ≤ min
m∈[1:M]
m 6=k

min
πXYk :

πX∈φb,b(m)(r)

πYk=P
(m)
Yk

D
(
πXYk‖P

(k)
XYk

)
, k ∈ [1 : K].

(20)

Proof: See Section VI.
Given the mapping b, the theorem describes an optimal

choice of the partition φb,1(r), . . . , φb,W(r). It remains to opti-
mize over the choice b. A similar phenomenon is encountered
in the characterization of the optimal error exponent of the
single-detector composite hypothesis testing problem in [12]
and in the characterization of the optimal set of type-I and
type-II error exponents in [14].

Example 1. Consider a setup where K = 2, M = 3 and
W = 2 and where X,Y1, Y2 are binary with pmfs{

P
(1)
XYk

(0, 0) = 0.30 P
(1)
XYk

(0, 1) = 0.23

P
(1)
XYk

(1, 0) = 0.27 P
(1)
XYk

(1, 1) = 0.20
(21){

P
(2)
XYk

(0, 0) = 0.14 P
(2)
XYk

(0, 1) = 0.29

P
(2)
XYk

(1, 0) = 0.31 P
(2)
XYk

(0, 1) = 0.26
(22){

P
(3)
XYk

(0, 0) = 0.52 P
(3)
XYk

(0, 1) = 0.18

P
(3)
XYk

(1, 0) = 0.23 P
(3)
XYk

(1, 1) = 0.07.
(23)

The exponent region corresponding to this example is
depicted in Fig. 2. It is non-convex. (Notice that time-sharing
arguments cannot be applied to convexify the region.)

Fig. 2. Exponent region of Example 1, see [15] for implementation details.

IV. COMPOSITE HYPOTHESIS TESTING

Consider now the related composite testing setup in which
each detector aims at maximizing the error exponent that is
associated to a set of hypothesis. For each k ∈ [1 : K], let Sk
be a subset of [1 : M]. Detector k declares Ĥk = 0 to indicate
that H ∈ Sk, and it declares Ĥ = m to indicate that H = m
for any hypothesis m ∈ [1 : M]\Sk. Specifically, it produces
Ĥk as in (5) but using a decision function of the form

gk,n : [1 : W]× Yn → {0} ∪ ([1 : M]\Sk). (24)

Type-I error probabilities are defined as in the previous section.
The type-II error probability at detector k is defined as

γk,n := min
ξ∈Sk

Pr
{
Ĥk 6= 0

∣∣H = ξ}. (25)

The exponents region is defined as in Definitions 1 and 2,
except that (8) and (9) needs to be replaced by:

lim
n→∞

αk,m,n ≤ εk, ∀m ∈ [1 : M]\Sk, (26)

ηk ≤ lim
n→∞

− 1

n
log γk,n, (27)



and symbols θ and θ have to be replaced by η and η :=
(η1, . . . , ηK).

In this section, we allow for any number of hypotheses
M ≥ 2, even M < K. The result from the previous section,
can be extended to this composite hypothesis testing scenario.
More specifically, the achievability parts of the following
Theorem 3 and Proposition 2 rely on the coding and testing
schemes described previously, but where each detector simply
declares Ĥk = 0 instead of Ĥk = m when m ∈ Sk. The
achievability proof of Theorem 4 necessitates further changes.

Theorem 3 (Achievability under Positive Rate). Given R >
0 and ε in (0, 1)K, region E(R, ε) contains all nonnegative
vectors θ = (θ1, θ2, . . . , θK) that satisfy the following two
conditions for a tuple

(
P

(1)
U |X , . . . , P

(M)
U |X

)
∈ U(R):

ηk ≤ min
(ξ,m) :
ξ∈Sk

m∈[1:M]\Sk

min
πUXYk :

πUX=P
(m)
UX

πUYk=P
(m)
UYk

D
(
πUXYk ||P

(m)
U |XP

(ξ)
XYk

)
(28)

and

ηk ≤ min
(ξ,m) :
ξ∈Sk

m∈[1:M]\Sk

min
πUXYk :

πUX=P
(m)
UX

πYk=P
(m)
Yk

H
P (m) (U |Yk)≤Hπ(U |Yk)[

D
(
πUXYk ||P

(m)
U |XP

(ξ)
XYk

)
+R− IP (m)(U ;X|Yk)

]
. (29)

Proof: Omitted.
This result differs from its simple-hypothesis testing coun-

terpart in Theorem 1 only in the first minimization of (28) and
(29). A similar statement applies to the following result.

Consider zero-rate communication. Assume (15) and that
any two P (m)

XYk
and P (m′)

XYk
differ in at least one of the marginals.

Proposition 2 (Exponents Region when W > L). For any ε ∈
(0, 1)K and W > L, the exponents region E(0W, ε) coincides
with the set of all nonnegative exponent vectors θ satisfying:

ηk ≤ min
(ξ,m) :
ξ∈Sk

m∈[1:M]\Sk

min
πXYk :

πX = P
(m)
X

πYk = P
(m)
Yk

D
(
πXYk‖P

(ξ)
XYk

)
(30)

Proof: Omitted.

Theorem 4 (Exponents Region when W ≤ L). For any ε ∈
(0, 1)K the exponents region E(0W, ε) coincides with the set
of nonnegative exponent vectors θ = (θ1, . . . , θK) that for a
partition ψ1, . . . , ψW of P(X ) and a mapping b : [1 : M] →
[1 : W] satisfy

ηk ≤ min
(ξ,m) :
ξ∈Sk

m∈[1:M]\Sk

min
πXYk :

πX∈ψb(m)

πYk=P
(m)
Yk

D
(
πXYk‖P

(ξ)
XYk

)
, k ∈ [1 : K].

Proof: Omitted.
The optimal partition ψ1, . . . , ψW of P(X ) in above Theo-

rem 4 is in general different from the partitions φb,1(r), . . . ,
φb,W(r) introduced for the simple hypothesis testing setup.

This shows suboptimality of the naive strategy of applying the
coding and testing scheme for the simple hypothesis testing
problem and then declaring Ĥk = 0 at a detector k if the
outcome of the test lies in Sk and declaring the produced
hypothesis otherwise.

V. PROOF OF THEOREM 1

Fix µ > 0, a sufficiently large blocklength n and conditional
pmfs P (1)

U |X , . . . , P
(M)
U |X so that (11) and (12) are satisfied. De-

fine the joint pmfs P (m)
UXY = P

(m)
XY P

(m)
U |X and the nonnegative

rate R′ such that for each m ∈ [1 : M]:

R+R′ = IP (m)(X;U) + µ, (31)
R′ < IP (m)(Yk;U), k ∈ [1 : K]\{m}. (32)

Code Construction: For each m ∈ [1 : M], construct a
random codebook

CU,m = {unm(w̃, `) : w̃ ∈ {1, ..., benRc}, ` ∈ {1, ..., benR′c}},

by drawing all entries i.i.d. according to P (m)
U .

Sensor: Given that it observes the sequence Xn = xn, the
sensor looks for indices (m, w̃, `) such that

(unm(w̃, `), xn) ∈ Tµ/2(P
(m)
UX ). (33)

If successful, it picks one of these indices uniformly at
random and sends the pair (m, w̃) over the noise-free bit pipe.
Otherwise, it sends W = (0, 1). (Notice that sending index m
takes only dlogMe bits and is thus of zero rate.)

Detector k: Assume that detector k observes Y nk = ynk . If
it obtains message W = (0, 1), then it declares Ĥk = k.
Otherwise, it parses message W into the pair (m, w̃), and
picks an index `′ ∈ {1, ..., benR′c} such that for all ˜̀ ∈
{1, . . . , benR′c}:

Htp(unm(w̃,`′),ynk )(U |Yk) ≤ Htp(unm(w̃,˜̀),ynk )(U |Yk). (34)

It then checks whether

(unm(w̃, `′), ynk ) ∈ Tµ(P
(m)
UY ). (35)

If this test is successful, detector k declares Ĥk = m.
Otherwise, Ĥk = k.

Error analysis: By the same technical arguments as in the
single decision center setup, see [10, Proof of Thm. 4, App.
H].

VI. PROOF OF THEOREM 2
Achievability: Fix µ > 0 and a function b : [1 : M] → [1 :

W]. Fix also a vector r = (r1, . . . , rK−1) ∈ RK−1 and define
the sets φb,1,µ(r), . . . , φb,W,µ(r) so that they partition Pn(X ),
so that the types of the sequences in Tµ(P

(m)
X ) belong to subset

φb,b(m),µ(r), and so that any other type P̃X is in φb,b(m),µ(r)
only if (19) holds.

Sensor: Given that it observes the sequence Xn = xn, the
sensor sends W = i if tp(Xn) ∈ φb,i,µ(r).

Detector k: Given that it observes Y nk = ynk and receives
message W = w from the sensor, detector k checks whether
for some m ∈ [1 : M] the following two conditions hold:

b(m) = w and ynk ∈ Tµ
(
P

(m)
Yk

)
. (36)



If such an index m exists, Detector k declares Ĥk = m. If
none or multiple exist, it declares Ĥk = k.

Error analysis: Notice first that because all pmfs P (1)
XYk

, . . . ,

P
(M)
XYk

differ in at least one of the two marginals, for sufficiently
small µ, when Xn ∈ Tµ(P

(m)
X ) and Y nk ∈ Tµ(P

(m)
Yk

), then
Detector k declares Ĥk = m. Thus, by the weak law of large
numbers, for each k ∈ [1 : K] and sufficiently large n:

αk,m,n ≤ 1− Pr
[
(Xn, Y n) ∈ Tµ(P

(m)
X )× Tµ(P

(m)
Yk

)
]
≤ εk.

Define now for each k ∈ [1 : K], m ∈ [1 : M], and r ∈ RK−1:

Ak,m,µ(r) :=
{

(xn, ynk ) : tp(xn) ∈ φb,b(m),µ(r),

and ynk ∈ Tµ(P
(m)
Yk

)
}
. (37)

The type-II error probability at detector k satisfies:

βk,n ≤ Pr
[
(Xn, Y nk ) ∈

⋃
m∈[1:M]
m 6=k

Ak,m,µ
∣∣∣H = k

]

≤ min
m∈[1:M]
m6=k

min
πXYk :

πX∈φb,b(m),µ(r)∣∣πYk−P (m)
Yk

∣∣≤µ
e
−n
(
D
(
πXYk ||P

(k)
XYk

)
−µ
)
, (38)

where the last inequality holds for sufficiently large values
of n and by Sanov’s theorem. Taking µ → 0 and n → ∞
establishes the desired achievability result.

Converse: Fix an integer number n and define εmin to be
the minimum component of ε. Since the sensor sends an index
in [1 : W], for each m ∈ [1 : M] there exists a partition
C1, . . . , CW of Xn and subsets Fk,m1 , . . . ,Fk,mW ⊆ Ynk so that:

Ĥk = m ⇐⇒ (Xn, Y nk ) ∈
(

W⋃
i=1

Ci ×Fk,mi

)
. (39)

For each i ∈ [1 : W], define the set

φi,n :=

{
P̃X ∈ P(X ) : P̃⊗nX

[
Xn ∈ Ci

]
≥ 1− εmin

W

}
. (40)

Since the sets C1, . . . , CW form a partition of Xn and since
for each P̃X ∈ P(X ) it holds that P̃⊗nX

[
Xn ∈ Xn

]
= 1,

the subsets φ1,n, . . . , φW,n cover the set P(X ). For a similar
reason and by the constraint on the type-I error probabilities,
for each k ∈ [1 : K] and m ∈ [1 : M] with m 6= k, there exists
an index i(m, k) ∈ [1 : W] so that:

P
(m)⊗n
X

[
Xn ∈ Ci(m,k)

]
≥ 1− εmin

W
, (41a)

P
(m)⊗n
Yk

[
Y nk ∈ Fk,mi(m,k)

]
≥ 1− εmin

W
. (41b)

Notice that (41) implies that P (m)
X ∈ φi(m,k). Combining (41)

with the definition of φi(m,k),n in (40) and with [12, Theorem
3] yields that for any µ > 0 and sufficiently large n:

Pr[Ĥk = m|H = k] ≥ max
πXYk :

πX∈φi(m,k),n,
πYk=P

(m)
Yk

e
−n
(
D
(
πXYk‖P

(k)
XYk

)
+µ
)
.

Thus,

Pr[Ĥk 6= k|H = k]

≥ exp
(
− n min

m∈[1:M]
m6=k

min
πXYk :

πX∈φi(m,k),n,
πYk=P

(m)
Yk

D
(
πXYk‖P

(k)
XYk

)
− nµ

)

Taking µ → 0 and n → ∞, by continuity we can conclude
that if the exponent vector θ = (θ1, . . . , θK) is achievable,
then there exist subsets φ1, . . . , φW so that

θk ≤ min
m∈[1:M]
m 6=k

min
πXYk :

πX∈φb(m),

πYk=P
(m)
Yk

D
(
πXYk‖P

(k)
XYk

)
. (42)

where b(m) is the index of the set φi containing P (m)
X . Since

the upper bounds in (42) become looser when elements are
removed from the sets φi, the converse statement remains valid
by imposing that φ1, . . . , φW form a partition of P(X ).

Fix now r = (r1, . . . , rK−1) ∈ RK−1 and consider only the
exponent vectors θ = (θ1, . . . , θK) that satisfy

θk = θk+1 + rk, k ∈ {1, . . . ,K− 1}. (43)

Then constraints (42) are loosest if φi contains pmf P̃X ∈
P(X )\{P (1)

X , . . . , P
(M)
X } only if condition (19) is satisfied.
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