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Abstract—This paper establishes the fundamental limits of a
two-user single-receiver system where communication from User
1 (but not from User 2) needs to be undetectable to an external
warden. Our fundamental limits show a tradeoff between the
highest rates (or square-root rates) that are simultaneously
achievable for the two users. Moreover, coded time-sharing for
both users is fundamentally required on most channels, which
distinguishes this setup from the more classical setups with either
only covert users or only non-covert users. Interestingly, the
presence of a non-covert user can be beneficial for improving
the covert capacity of the other user.

I. INTRODUCTION

Covert communication refers to any communication setup
where users wish to convey information while ensuring low
probability of detection by other users, adversaries or network
monitoring nodes. Such setups are relevant in future IoT
and sensor networks. For instance in healthcare applications,
sensors in a hospital may transmit sensitive data and this
data should be reliably decoded by authorized devices while
staying undetectable by any unauthorized one. The work
in [1] first characterized the fundamental limits of covert
communications over AWGN channels. It showed that it is
possible to communicate covertly as long as the message
is subject the so-called square-root law, i.e., the number of
communicated bits scales like O(

√
n), for n indicating the

number of channel uses. Recently, it has been establised in
various works [1]–[4] that the fundamental limits of covert
communication is indeed characterized by this square-root
law. While [4] assumed the existence of a sufficiently large
secret key allowing covertness, [3] derived the exact growth
rate of this secret key and established conditions where it is
not needed. These results were also extended to keyless setups
over binary symmetric channels (BSCs) [5] and over Multiple
Access Channels (MACs) [6], and to asymptotically keyless
setups [7]. Higher covert-rates than indicated by the square-
root law were shown to be achievable in scenarios where
the warden has uncertainty about the channel statistics [8]–
[11] or in the presence of a jammer [12]–[14]. More closely
related to this paper are [15]–[18] which consider extensions
to Broadcast Channels (BCs) and MACs. In particular, [15]
characterized the limits of covert communication over a BC
when the transmitter sends a common non-covert message to
two receivers and a covert message to only one of them by
embedding the covert codeword into the non-covert codeword.
Extensions to scenarios with a fixed codebook for the common

message or with several receivers were presented in [16] [17],
[18].

In this paper, we consider a Discrete Memoryless Multiple
Access Channel (DMMAC) with two users communicating
with a legitimate receiver. More specifically, sharing a secret
key with this receiver, User 1 wishes to communicate covertly
without being detected by an external warden. On the other
side, User 2 transmits a non-covert message to the same
legitimate receiver. The covertness constraint imposes in this
case that the communication of the covert user must resemble
communication of the non-covert user rather than pure noise.
We establish the fundamental limits on the set of achievable
triples of non-covert-rate, covert-square-root-rate, and key-
rate. Compared to the previous related results [3], [4], [15],
[16], our setup required extra non-trivial steps especially in
the asymptotic analysis and converse proof.

We show through numerical examples that coded time-
sharing improves the covert user square-root rate under a key-
rate constraint. Moreover, we observe a tradeoff between the
rates and square-root-rates of the non-covert and covert users,
which illustrates the dependence of the covert rate on the
channel parameters, emphasizing the influence of the non-
covert codewords on the achievable covert-square-root-rate.
We also show that the covert user’s square-root-rate can be
improved in the presence of a non-covert user. This conclusion
resembles the previous conclusions in [15], [17], [18], which
showed e.g., that the probability of detection vanishes faster
when one increases the number of non-covert users. In our
setup we consider only one non-covert user for simplicity.
However, our proofs can be extended to any number of non-
covert users.

Notation: We follow standard information theory notations.
We note by |S| the cardinality of a set S. Random variables are
denoted by upper case letters (e.g., X), while their realizations
are denoted by lowercase (e.g. x). We write Xn and xn for the
tuples (X1, . . . , Xn) and (x1, . . . , xn), respectively, for any
positive integer n > 0. For a distribution P on X , we note
its product distribution on Xn by P⊗n(xn) =

∏n
i=1 P (xi).

For two distributions P and Q on same alphabet X , the chi-
squared test is denoted χ2(P‖Q) =

∑
x∈X

(P (x)−Q(x))2

P (x) , the

divergence by D(P‖Q) =
∑
x∈X P (x) log P (x)

Q(x) , and we write
P � Q whenever Q(x) = 0 implies P (x) = 0 for all x ∈ X .
We use H(·), H(·|·) and I(·; ·) for the entropy, conditional
entropy and mutual information of random variables. The
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Fig. 1: Multi-access communication where communication of
User 1 has to remain undetectable to an external warden.

type of a sequence xn ∈ Xn is defined as πxn(a) =

|{t : xt = a}|/n and the strongly-typical set T (n)
µ (PX) [19,

Definition 2.8] is the subset of sequences xn ∈ Xn that
satisfy |πxn(a) − PX(x)| ≤ µ for all a ∈ X and whenever
PX(x) = 0 then also πxn(a) = 0. We further abbreviate
probability mass function by pmf. Finally, the logarithm and
exponential functions are in base e.

II. PROBLEM SETUP

Consider the setup depicted in Figure 1 where two users
communicate to a legitimate receiver in the presence of a
warden. User 1 wishes to communicate covertly, i.e., the
warden cannot detect its communication. User 2 does not mind
being detected by the warden, and we shall even assume that
the warden knows the message transmitted by User 2. We thus
have two hypotheses H = 0 and H = 1, where under H = 0
only User 2 sends a message while under H = 1 both users
send a message to the legitimate receiver. For simplicity we
assume that User 1 produces inputs in the binary alphabet
X1 = {0, 1}. User 2’s input alphabet X2 is finite but arbitrary
otherwise. The legitimate receiver and the warden observe
channel outputs in the finite alphabets Y and Z . These out-
puts are produced by a discrete and memoryless interference
channel with transition law WY Z|X1X2

, see Figure 1.
Define the message and key sets

M1 , {1, . . . ,M1} (1)
M2 , {1, . . . ,M2} (2)
K , {1, . . . ,K} (3)

for given numbers M1, M2, and K and let the messages
W1 and W2 and the key S be uniform over M1,M2, and
K, respectively. The key S is known to User 1 and to the
legitimate receiver, message W1 is known to User 1 only, and
message W2 to User 2 and the warden. Under H = 0, User 1
sends the all-zero sequence

Xn
1 = 0n, (4)

whereas User 2 applies some encoding function ϕ(n)
2 : M2 →

Xn2 to its message W2 and sends the resulting codeword

Xn
2 = ϕ

(n)
2 (W2) (5)

over the channel. Under H = 1, User 1 applies some encoding
function ϕ

(n)
1 : M1 × K → Xn1 to its message W1 and the

secret key S and sends the resulting codeword

Xn
1 = ϕ

(n)
1 (W1, S) (6)

over the channel. User 2 constructs its channel inputs in the
same way as before, see (5), since it is not necessarily aware
of whether H = 0 or H = 1. For readability we will also write
xn1 (w1, s) and xn2 (w2) instead of ϕ(n)

1 (w1, s) and ϕ(n)
2 (w2).

The legitimate receiver, which knows the hypothesis H,
decodes the desired messages W2 (under H = 0) or (W1,W2)
(under H = 1) based on its observed outputs Y n and the
key S. Thus, under H = 0 it uses a decoding function
g

(n)
0 : Yn ×K →W2 to produce the single guess

Ŵ2 = g
(n)
0 (Y n) (7)

and under H = 1 it uses a decoding function g
(n)
1 : Yn →

W2 ×W1 to produce the pair of guesses

(Ŵ1, Ŵ2) = g
(n)
1 (Y n, S). (8)

Decoding performance of a tuple of encoding and decoding
functions (ϕ

(n)
1 , ϕ

(n)
2 , g

(n)
0 , g

(n)
1 ) is measured by the error

probabilities under the two hypotheses:

Pe1 , Pr
(
Ŵ2 6= W2 or Ŵ1 6= W1

∣∣∣H = 1
)

(9)

Pe0 , Pr
(
Ŵ2 6= W2

∣∣∣H = 0
)
. (10)

Communication is subject to a covertness constraint at the
warden, which observes the channel outputs Zn as well as the
correct message W2. (Obviously, covertness assuming that the
warden knows W2 implies also covertness in the setup where
it does not know W2.) For each w2 ∈M2 and W2 = w2, we
define the warden’s output distribution under H = 1

Q̂nC,w2
(zn) ,

1

M1K

∑

(w1,s)

W⊗nZ|X1X2
(zn|xn1 (w1, s), x

n
2 (w2)),

(11)

and under H = 0

W⊗nZ|X1X2
(zn|0n, xn2 (w2)), (12)

and the divergence between these two distributions:

δn,w2
, D

(
Q̂nC,w2

∥∥W⊗nZ|X1X2
(·|0n, xn2 (w2))

)
, w2 ∈M2.

(13)
(Standard arguments [20] can be used to relate this divergence
to the warden’s detection error probabilities.)

Definition 1: A triple (r1, r2, k) is achievable if there exists
a sequence (in the blocklength n) of triples (M1,M2,K) and
encoding/decoding functions (ϕ

(n)
1 , ϕ

(n)
2 , g

(n)
0 , g

(n)
1 ) satisfying

lim
n→∞

δn,w2
= 0, ∀w2 ∈M2, (14)

lim
n→∞

Pei = 0, i ∈ {0, 1}. (15)

and

r1 ≤ lim inf
n→∞

log(M1)√
n 1
M2

∑M2

w2=1 δn,w2

, (16)

r2 ≤ lim inf
n→∞

log(M2)

n
, (17)

k ≥ lim sup
n→∞

log(K)√
n 1
M2

∑M2

w2=1 δn,w2

. (18)



III. MAIN RESULT AND EXAMPLES

We shall assume that for any x2 ∈ X2:

WY |X1X2
(· | 1, x2)�WY |X1X2

(· | 0, x2), (19a)
WY |X1X2

(· | 1, x2) 6= WY |X1X2
(· | 0, x2), (19b)

WZ|X1X2
(· | 1, x2)�WZ|X1X2

(· | 0, x2), (19c)
WZ|X1X2

(· | 1, x2) 6= WZ|X1X2
(· | 0, x2). (19d)

Notice that if (19d) is violated, then in all channel uses
where User 2 sends symbol x2, User 1 can trivially transmit
information without being detected. Applying this to a sub-
linear fraction of channel uses, the rate of User 2 is unchanged
and User 1 can achieve infinite covert rate r1 =∞. If (19b) is
violated, then User 1 cannot transmit any information to the
receiver over all channel uses where User 2 sends symbol x2.
If (19c) is violated, then with high probability the warden can
detect communication from User 1 on the channel uses where
User 2 sends x2. Define

DY (x2) , D
(
WY |X1X2

(·|1, x2) ||WY |X1X2
(·|0, x2)

)
(20)

DZ(x2) , D
(
WZ|X1X2

(·|1, x2) ||WZ|X1X2
(·|0, x2)

)
(21)

χ2,Y (x2) , χ2

(
WY |X1X2

(·|1, x2) ||WY |X1X2
(·|0, x2)

)
(22)

χ2,Z(x2) , χ2

(
WZ|X1X2

(·|1, x2) ||WZ|X1X2
(·|0, x2)

)
. (23)

A. Main Results

Theorem 1: Let T , {1, 2} and let the pair of random
variables (T,X2) be distributed according to any pmf PTX2

over the alphabets T × X2. Let also {ωn}∞n=1 be a sequence
satisfying

lim
n→∞

ωn = 0 (24a)

lim
n→∞

(
ωn
√
n− log n

)
=∞, (24b)

and let ε1, ε2 ∈ [0, 1].
Then, there exists a sequence of encoding and decoding

functions {(ϕ(n)
1 , ϕ

(n)
2 , g

(n)
0 , g

(n)
1 )}n with message and key

sizes M1,M2,K so that for any ε > 0 and ξ, ξ1, ξ2 ∈ (0, 1)
and all sufficiently large blocklengths n the following condi-
tions hold:

Pei ≤ ε, i ∈ {0, 1}, (25)
δn,w2

≤ ε ∀w2 ∈M2, (26)
log(M2) = (1− ξ)nI(X2;Y | X1 = 0, T ), (27)
log(M1) = (1− ξ1)ωn

√
nEPTX2

[εTDY (X2)], (28)

log(M1) + log(K) = (1 + ξ2)ωn
√
nEPTX2

[εTDZ(X2)]. (29)

Proof: Section IV describes a coding scheme achieving
the desired performance. The analysis of the scheme is similar
to the analysis in [3], and sketched in Appendix A. A sketch
of the converse proof is given in Section V.

Lemma 1: For any choice of the pmf PTX2
, of the pos-

itive numbers ε1, ε2, and the sequence ωn as in Theorem 1
there exists a sequence of encoding and decoding functions

{(ϕ(n)
1 , ϕ

(n)
2 , g

(n)
0 , g

(n)
1 )}n satisfying the conditions in the the-

orem and moreover

1

M2

M2∑

w2=1

δn,w2 = (1 + o(1))
ω2
n

2
EPTX2

[
ε2T · χ2,Z(X2)

]
(30)

for a function o(1) that tends to 0 as n→∞.
Proof: By inspecting the proof of Theorem 1, see Ap-

pendix B.
Theorem 2: A rate-triple (r1, r2, k) is achievable, if, and

only if, for some pmf PTX2
over T × X2 and ε1, ε2 ∈ [0, 1]

the following three inequalities hold:

r2 ≤ I(X2;Y | X1 = 0, T ), (31)

r1 ≤
√

2
EPTX2

[εTDY (X2)]√
EPTX2

[ε2T · χ2,Z(X2)]
, (32)

k ≥
√

2
EPTX2

[εT (DZ(X2)−DY (X2))]√
EPTX2

[ε2T · χ2,Z(X2)]
, (33)

where for the right-hand sides of (32) and (33) we define
0/0 = 0.

Proof: The “if" direction follows directly from Theorem 1
and Lemma 1. The “only-if" part is proved in Section V.

Lemma 2: The set of three-dimensional vectors (r1, r2, k)
satisfying inequalities (31)–(33) for some choice of pmfs
PTX2 and values ε1, ε2 ∈ [0, 1] is a convex set.

Proof: See Appendix C.

Remark 1: Whenever EPTX2
[εT (DZ(X2)−DY (X2))] < 0

for any choice of the pmf PTX2 , the condition (33) is always
satisfied and no secret key is needed for covert communication.

Remark 2: For X2 = {x2} a singleton, we recover the result
in [3] for the channel WY |X1X2

(·|·, x2). In this case it suffices
to choose T deterministic, i.e., |T | = 1 and the expression in
(32)–(33) further simplify in the sense that the εT -terms in
the fraction can be reduced and the final expression does not
depend on εT anymore.

B. Numerical Examples

Example 1: Consider input alphabets X1 = X2 = {0, 1} and
channels (where rows indicate pairs (x1, x2) in lexocographic
order and columns the y- or z-values)

WY |X1X2
=




0.20 0.30 0.20 0.30
0.10 0.20 0.30 0.40
0.25 0.45 0.10 0.20
0.35 0.25 0.20 0.20


, (34a)

WZ|X1X2
=




0.30 0.20 0.10 0.40
0.30 0.20 0.15 0.35
0.35 0.15 0.20 0.30
0.23 0.27 0.20 0.30


. (34b)

Notice that these channels satisfy Conditions (19). Figure 2,
illustrates the rate-region in Theorem 2 for key-rates k ≤ 0.5
(in red) and the corresponding reduced rate-region when
one restricts to deterministic T s (dashed blue). (This latter



corresponds to the performance of a scheme without coded
time-sharing.)

Example 2: Consider input alphabets X1 = X2 = {0, 1}
and channels

WY |X1X2
=




0.35 0.11 0.31 0.23
0.03 0.55 0.40 0.01
0.51 0.02 0.17 0.30
0.04 0.33 0.62 0.01


, (35a)

WZ|X1X2
=




0.30 0.50 0.08 0.12
0.21 0.32 0.39 0.08
0.16 0.28 0.37 0.19
0.48 0.10 0.38 0.04


. (35b)

Notice that these channels satisfy Conditions (19). Figure 3,
illustrates the rate-region in Theorem 2 for key-rates k ≤ 0.3
(dashed blue line) and for key-rates k ≤ 0.8 (red line).

Example 3: Consider the same channel law in (35). Figure 4,
illustrates the largest possible covert-user square-root rate r1,
i.e., when one optimizes over PX2

, in function of the key-
rate k (red line). The same relation is also plotted under the
restriction that User 2 sends the constant symbol X2 = 0
(dashed blue line) or X2 = 1 (dotted black line). This shows
that non-constant channel inputs X2 at User 2 achieve better
performance than any of the two constant channel inputs.
In this sense, the presence of User 2 in the system actually
increases the covert capacity of User 1.

Considering the inputs Xn
2 a state sequence that influences

the channel, above observations imply that a state-dependent
channel can have higher covert square-root rate for a given
key-rate then any of the marginal channels that result when one
fixes the channel state. State-dependent covert-communication
was also considered in [9]–[11], [14].
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Fig. 2: Rate-region (r1, r2) for the channels in (34) and key-
rate k ≤ 0.5 (red line) and a degenerate region when one
restricts to |T | = 1 (dashed blue line).

IV. CODING SCHEME ACHIEVING THEOREM 1
Preparations: Fix a pmf PTX2 , a pair ε1, ε2 and a sequence
{ωn} as in the theorem. For each t ∈ T , define the conditional
pmf

PX1,n|T (1|t) = 1− PX1,n|T (0|t) = εt
ωn√
n

(36)

and let µn , n−1/3 and the type πtn over T n satisfy

|π(t)− PT (t)| ≤ µn ∀t ∈ T , (37)
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Fig. 3: Rate-region (r1, r2) in Theorem 2 for the channels in
(35) and key-rates k ≤ 0.3 (dashed blue line) or k ≤ 0.8 (red
line).
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Fig. 4: Maximum covert square-root rate r1 in function of the
key-rate k when one optimizes over PX2T (red line) and when
X2 = 0 or X2 = 1 deterministically (dashed blue and dotted
black lines).

as well as π(t) = 0 whenever PT (t) = 0. Fix a large
blocklength n and let tn = (t1, . . . , tn) be of type πtn .

Define the joint pmf

P
(n)
TX1X2Y

, PTX2
PX1,n|TWY |X1X2

. (38)

Let PTX2Y denote the (T,X2, Y )-marginal of the pmf
P

(n)
TX1X2Y

and notice that the following asymptotic quantity
exists because ωn√

n
→ 0:

P ∗TX2Y (t, x2, y) , lim
n→∞

P
(n)
TX2Y

(t, x2, y) (39)

= PTX2
(t, x2)WY |X1X2

(y|0, x2). (40)

Codebook generation: For User 1, generate a codebook
C1 =

{
xn1 (1, 1), . . . , xn1

(
2M1 , 2K

)}
by drawing the i-th entry

of codeword xn1 (w1, s) according to the pmf PX1,n|T (·|ti)
independent of all other entries.

For User 2, generate a codebook C2 ={
xn2 (1), . . . , xn2

(
2M2

)}
by drawing the i-th entry of codeword

xn2 (w2) according to the pmf PX2|T (·|ti) independent of all
other entries.

The realisation of the codebook is revealed to all parties.

Encoding and Decoding: If H = 1 User 1 sends the
codeword xn1 (W1, S), and if H = 0 it sends xn1 = 0n. User 2
sends codeword xn2 (W2).



The legitimate receiver, who observes Y n = yn and knows
the secret key S and the hypothesis H, performs successive
decoding starting with message W2 followed by message W1.
More specifically, it first looks for a unique index w2 satisfying

(tn, xn2 (w2), yn) ∈ T nµn
(PTX2Y ). (41)

If such a unique index w2 exists, the receiver sets Ŵ2 = w2.
Otherwise it declares an error and stops.

If H = 1, the receiver also looks for a unique index w1

satisfying
(xn1 (w1, S), xn2 (Ŵ2), yn) ∈ Anη , (42)

where

Anη ,

{
(xn1 , x

n
2 , y

n) : log

(
W⊗nY |X1X2

(yn|xn1 , xn2 )

W⊗nY |X1X2
(yn|0n, xn2 )

)
≥ η

}

(43)

and η , (1− ξ1/2)
√
nωnEPTX2

[εTDY (X2)].

V. CONVERSE PROOF TO THEOREM 2

Similarly to [3, Theorem 3] and [15], it can be shown that:

1

n
log(M2) ≤ 1

1− Pe1
I(X2,T ;YT | X1,T , T ) +

1

n
Hb(Pe1,0)

(44)

and by Appendices D-B and D-C:

log(M1)√
n
M2

∑M2

w2=1 δn,w2

≤
√

2

1− Pe1
EPTX2

[αn,TDY (X2)] + 1
n√

EPTX2

[
(1−√αn,T )α2

n,Tχ2,Z(X2)
] (45)

=

√
2

1− Pe1
EPTX2

[γn,TDY (X2)] + 1
n√

EPTX2

[
(1−√αn,T )γ2

n,Tχ2,Z(X2)
] , (46)

where here we define T to be uniform over {1, . . . , n}
independent of the inputs and the channel and αn,t denotes
the fraction of 1-symbols in the t-th positions of the x1-
codewords:

αn,t ,
1

M1K

M1∑

w1=1

K∑

s=1

1{x1,t(w1, s) = 1}, (47)

for x1,t(w1, s) denoting the t-th symbol of codeword
xn1 (w1, s). In (46) we used the normalized definition

γn,t ,
αn,t

ET [αn,T ]
, t ∈ {1, . . . , n}. (48)

The new parameters γn,t are well defined because ET [αn,T ]
equals the fraction of 1-entries in the codebook {xn1 (W1, S)}
and is thus non-zero because otherwise no communication
is going on. Moreover, by Jensen’s Inequality, ET [γ2

n,T ] ≥
(ET [γn,T ])

2
= 1 and the covertness constraint implies that

αn,t → 0 for any t (proof omitted, but similar to [3]).

It then follows by Assumptions (19), that the right-hand
side of (46) lies in a bounded interval, and consequently there
exists a subsequence of blocklengths so that (44) and (46)
converge. By the continuity of the expressions and in view of
the achievability result, it can be concluded that there exists
a sequence of coding schemes achieving the same asymptotic
expressions. In the remainder of this proof we restrict attention
to these coding schemes, for which we can conclude that (see
also the arguments in Appendix D-B) for any number φ2 ∈
(0, 1) and sufficiently large blocklengths n:
√

n

M2

∑

w2

δn,w2
)

≤ n

(1− φ2)

√√√√EPTX2

[
(1−√αn,T )

α2
n,T

2
· χ2,Z(X2)

]
. (49)

Combining (49) and the lower bound on logM1 + logK
derived in Appendix D-D, it can then be concluded that for
sufficiently large blocklengths n:

log(M1) + log(K)√
n 1
M2

∑M2

w2=1 δn,w2

≥ (1− φ′2)

√
2 · EPTX2

[
γn,TDZ(X2)

]

√
EPTX2

[
γ2
n,T · χ2,Z(X2)

] , (50)

where φ′2 can again be chosen as an arbitrary positive number.
Here we used again the fact that αn,t → 0 as n→∞.

By the Fenchel-Eggleston strenghtening of Carathéodory’s
theorem it can be shown that in Constraints (44), (46), and
(50), one can restrict to random variables T over alphabets of
size 4. This allows to obtain the desired asymptotic results by
letting n→∞, as we explain in Appendix D-E.

The final step is to show that no loss in optimality is incurred
by restricting T to be of cardinality 2, see Appendix D-F.

VI. SUMMARY AND DISCUSSION

We characterized the fundamental limits of a system mixing
a covert user and a non-covert user both communicating to the
same receiver, which also shares a common key with the covert
user of a given rate. Our results show a tradeoff between the
three quantities: the covert user’s square-root-rate, the non-
covert user’s rate and the key rate. They also show necessity
of a coded time-sharing strategy at the two users, similarly
as in multi-access scenarios without covertness constraints.
Finally, our results also prove that the presence of the non-
covert user can increase the covert-capacity of the other user
under a stringent key-rate constraint.

While our results are for multiple-access channels with a
single covert and non-covert users, extensions to multiple users
seems feasible. Further interesting research directions include
studies less standard models for the users or the channels such
as fading channels, channels with states, or non-synchronized
transmissions.
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APPENDIX A
SKETCH OF THE ANALYSIS OF THE CODING SCHEME IN

SECTION IV

A. Error Probability Analysis of the Proposed Scheme

By standard steps, e.g., [20, Chapter 15], we can conclude
that

lim
n→∞

EC [Pe0] = 0 (51)

whenever

lim
n→∞

1

n
logM2 ≤ IP∗(X2;Y | T ) (52)

= IP (X2;Y | X1 = 0, T ). (53)

Next, notice that upon defining

Pe1,1 , Pr
(
Ŵ1 6= W1

∣∣∣H = 1, Ŵ2 = W2

)
(54)

Pe1,2 , Pr
(
Ŵ2 6= W2

∣∣∣H = 1
)
, (55)

we have that
Pe1 = Pe1,1 + Pe1,2. (56)

As in the analysis of Pe0, we deduce that under Condition (53)

lim
n→∞

EC [Pe1,2] = 0. (57)

The analysis of EC [Pe1,1] is an extension of [3], we only
provide the major steps here.

By the symmetry of the code construction, we have

EC(Pe1,1) =

M1∑

i=2

Pr[(Xn
1 (i, 1), Xn

2 (w2), Y n) ∈ Anη ]

+ Pr[(Xn
1 (1, 1), Xn

2 (w2), Y n) /∈ Anη ] (58)

and one can show that
M1∑

i=2

Pr[(Xn
1 (i, 1), Xn

2 (w2), Y n) ∈ Anη ]

≤
M1∑

i=2

e−η
∏

t∈T


 E
PX2Y |T=t


 W

(t)
Y |X1

(Y |X2)

WY |X1X2
(Y |0, X2)





nπ(t)

(59)

≤M1e
−ηe−ω

2
n((1−∆)EPT

[ε2T ]+µn
∑

t∈T ε
2
t) (60)

where we define

W
(t)
Y |X2

(y|x2) ,
∑

x1∈X1

WY |X1X2
(y|x1, x2)PX1,n|T (x1|t). (61)

Since
(
(1−∆)EPT

[ε2T ] + µn
∑
t∈T ε

2
t

)
is bounded and ω2

n →
0, the above sum in (60) tends to 0 only if

lim
n→∞

(logM1 − η) = −∞. (62)

It can be shown by Hoeffding’s inequality that the second
summand in the right hand side of (58) vanishes exponentially
fast whenever

η <
√
nωnEPTX2

[εT [DY (X2)]]. (63)

We therefore can conclude that EC [Pe1,1] is vanishing if (28)
is satisfied, which concludes the error probability analysis.

B. Channel Resolvability Analysis

Recall the distribution Q̂nC,w2
in (11). We show that

EC
[
D
(
Q̂nC,w2

∥∥∥W⊗nZ|X1X2
(·|0n, xn2 )

)]
→ 0, ∀w2 ∈M2,

(64)

if (29) is satisfied. Similarly to (61), we define the conditional
output distributions

W
(t)
Z|X2

(z|x2) ,
∑

x1∈X1

PX1,n|T (x1 | t)WZ|X1X2
(z|x1, x2)

(65)

and the product distribution

W̃Zn|Xn
2

(zn|xn2 ) ,
n∏

i=1

W
(ti)
Z|X2

(z|x2). (66)

Fix a message w2 ∈ W2 and a codeword xn2 (w2). For ease
of notation, we write xn2 instead of xn2 (w2).

Start by noticing that by following analogous steps as in
[3], it can be shown that the inequalities in (69) and (70) on
top of the next page hold for sufficiently large values of n,
where for any t ∈ T and x2 ∈ X2 we define

λ
(n)
w2,t(x2) ,

∣∣{j ∈ [n] : x2,j(w2) = x2, tj = t}|
n

(67)

as well as

η0 , min
z,x2∈supp(WZ|X1X2

(z|0,x2))
WZ|X1X2

(z|0, x2) (68)

for an arbitrary small ξ2 > 0.
Since ωn → 0 as n → ∞, we deduce from (69) and

(70) that the limit in (64) vanishes for a specific message w2

whenever

lim
n→∞

D
(
Q̂nC,w2

∥∥∥W̃Zn|Xn
2

(·|Xn
2 )
)

= 0. (71)

We shall prove the stronger statement that the divergence in
(71) vanishes exponentially fast in the blocklength. In the
remainder of this subsection we consider the average (over
the codebooks) expected divergence

EC
[
D
(
Q̂nC,w2

∥∥∥W̃Zn|Xn
2

(·|Xn
2 (w2))

)]
. (72)

Following similar steps as in [3], one can show inequality (73)
on top of the next page, where we define

τ , (1 + ξ2)ωn
√
nEPTX2

[εTDZ(X2)]. (74)

We notice that the first summand in (73) tends to 0 because
ne−na decays for any positive a > 0. If moreover,

lim
n→∞

logM1 + logK − (1 + ξ2)ωn
√
nEPTX2

[εTDZ(X2)]

= −∞, (75)

then also the second summand tends to 0 exponentially fast.
This concludes the resolvability analysis.



∣∣∣D
(
Q̂nC,w2

‖W⊗nZ|X1X2
(·|0n, xn2 )

)
− D

(
W̃Zn|Xn

2
(·|xn2 )‖W⊗nZ|X1X2

(·|0n, xn2 )
)∣∣∣ ≤ D

(
Q̂nC,w2

‖W̃Zn|Xn
2

(·|xn2 )
)(

1 +
n

2
log

(
1

η0

))
.

(69)

ω2
n

2
·

∑

(x2,t)∈X2×T

(
1−

√
εt
ωn√
n

)
ε2tλ

(n)
w2,t(x2) · χ2,Z(x2) ≤ D

(
W̃Zn|Xn

2
‖W⊗nZ|X1X2

(·|0n, xn2 )
)

≤ ω2
n

2
·

∑

(x2,t)∈X2×T

(
1 +

√
εt
ωn√
n

)
ε2tλ

(n)
w2,t(x2) · χ2,Z(x2), (70)

EC
[
D
(
Q̂nC,w2

‖W̃Zn|Xn
2

(·|Xn
2 (w2)

)]
≤ nEPT

[
log

(
2

(1− εT ωn√
n

)η0

)]
exp

(
− n2

B

(
κEPTX2

[
εT
ωn√
n
DZ(X2)

])2)
+

eτ

M1K
.

(73)

C. Summary of the Analysis

Since limn→∞ π(·) = PT (·), our findings (53), (58) and
(75) allows us to conclude the existence of a sequence of
encoding and decoding functions {(ϕ(n)

1 , ϕ
(n)
2 , g

(n)
0 , g

(n)
1 )}n

with message and key sizes M1,M2,K so that for any ε > 0
and ξ, ξ1, ξ2 ∈ (0, 1) and all sufficiently large blocklengths n,
(25)–(29) hold.

APPENDIX B
PROOF OF LEMMA 1

Consider the random code-construction from Section IV,
which we analyzed in Appendix A. Combining (70) and (69)
with (73), and after averaging over the message w2, we obtain
that under condition (75) for any realization of this code
construction:

1

M2

M2∑

w2=1

δn,w2

≤ e−ζ2ωn

(
1 + n log

(
1

η0

))

+
ω2
n

2

∑

x2,t

[
λt(x2)ε2t

(
1 +

√
εt
ωn√
n

)
χ2,Z(x2)

]
. (76)

where ζ2 is an appropriate positive constant and

λt(x2) ,
1

M2

M2∑

w2=1

λ
(n)
w2,t(x2). (77)

In a similar way:

1

M2

M2∑

w2=1

δn,w2

≥ −e−ζ2ωn

(
1 + n log

(
1

η0

))

+
ω2
n

2

∑

x2,t

[
λt(x2)ε2t

(
1−

√
εt
ωn√
n

)
χ2,Z(x2)

]
. (78)

Since both Pe0 and Pe1 vanish as n→∞, and by the decoding
rule in (41), we can conclude that the sequence of codes in
Theorem 1 satisfies for each (t, x2) ∈ T × X2:

∣∣λt(x2)− PTX2
(t, x2)

∣∣→ 0. (79)

We thus conclude from (76) and (78) that

1

M2

M2∑

w2=1

δn,w2
= (1 + o(1))

ω2
n

2
EPTX2

[
ε2Tχ2,Z(X2)

]
(80)

for a function o(1) that tends to 0 as n→∞. This concludes
the proof of the lemma.

APPENDIX C
PROOF OF LEMMA 2

Fix two pmfs PTX2
and QTX2

as well as two tuples (ε1, ε2)
and (δ1, δ2) in [0, 1]2. Then, choose λ ∈ [0, 1] and set ν > 0
so that

ν2 ,
EPT

[
ε2TEPX2|T

[χ2,Z,T ]
]

EQT

[
δ2
TEQX2|T

[χ2,Z,T ]
] . (81)

Also form the new pmf RTX2
by choosing

RT (t) =

{
λ · PT (t) t ∈ {1, 2}
(1− λ) ·QT (t− 2) t ∈ {3, 4} (82)

and

RX2|T (x2|t) =

{
PX2|T (x2|t) t ∈ {1, 2}
QX2|T (x2|t− 2) t ∈ {3, 4}. (83)

Moreover,

γt ,

{
εt, t ∈ {1, 2}
ν · δt−2, t ∈ {3, 4} (84)

Let (r1, r2, k), (r′1, r
′
2, k
′), and (r̃1, r̃2, k̃) be the triples given

by the right-hand sides of (31)–(33) when evaluated for



PTX2
and (ε1, ε2), for QTX2

and (δ1, δ2), and for RTX2
and

(γ1, . . . , γ4). We shall show that

λ



r1

r2

k


+ (1− λ)



r′1
r′2
k′


 =



r̃1

r̃2

k̃


. (85)

The desired equality for the r2-component is directly ob-
tained by the linearity of conditional mutual information and
because it does not depend on the ε-, δ-, and γ-tuples. To see
the equality for the other two components, notice that for any
functions f and g from X2 to R satisfying

ν2 ,
EPTX2

[
ε2T g(X2)

]

EQTX2
[δ2
T g(X2)]

(86)

we have (90)

λ
EPX2T

[εT f(X2)]√
EPX2T

[ε2T g(X2)]
+ (1− λ)

EQX2T
[δT f(X2)]√

EQX2T
[δ2
T g(X2)]

(87)

= λ
EPX2T

[εT f(X2)]√
EPX2T

[ε2T g(X2)]
+ (1− λ)

EQX2T
[νδT f(X2)]√

EQX2T
[ν2δ2

T g(X2)]

(88)
(a)
=

λEPX2T
[εT f(X2)] + (1− λ) EQX2T

[νδT f(X2)]√
λEPX2T

[ε2T g(X2)] + (1− λ)EQX2T
[ν2δ2

T g(X2)]
(89)

=
ERX2T

[γT f(X2)]√
ERX2T

[γ2
T g(X2)]

(90)

where (a) holds because by the definition of ν we have

EQX2T

[
ν2δ2

T g(X2)
]

= EPX2T

[
ε2T g(X2)

]
(91)

= λEPX2T

[
ε2T g(X2)

]
+ (1− λ)EQX2T

[
ν2δ2

T g(X2)
]
. (92)

APPENDIX D
DETAILS OF THE CONVERSE PROOF

A. Auxiliary Lemmas

The following two lemmas will be used in various proofs
of this section. They are simple extensions of the lemmas in
[3, Lemma 1]. Their proofs are thus omitted.

Lemma 3: Let (T,X1, X2, Y ) ∼ PTX2PX1,n|TWY |X1X2

for some pmfs PTX2
and PX1,n|T satisfying αn,t ,

PX1,n|T=t(1)→ 0 as n→∞. For any n ∈ N∗ we have

I(X1;Y | X2, T )

= EPTX2

[
αn,TDY (X2)− D(WY |X2

‖WY |X1X2
(·|0, X2))

]
.

(93)

Lemma 4: Consider for each blocklength n a pmf PX1,n

over the binary alphabet X1 satisfying αn , PX1,n(1)→ 0 as
n→∞. Define for each x2 ∈ X2:

WZ|X2
(z|x2) , αnWZ|X1X2

(z|1, x2)

+(1− αn)WZ|X1X2
(z|0, x2). (94)

Then, for all sufficiently large values of n:

(1−√αn)
α2
n

2
χ2,Z(x2) ≤ D(WZ|X2

(·|x2)‖WZ|X1X2
(·|0, x2))

≤ (1 +
√
αn)

α2
n

2
χ2,Z(x2). (95)

B. Upper bound on log(M1)

Since W1 is uniformly distributed over [M1], we have:

log(M1)

= H(W1) (96)
= H(W1 |W2, S) (97)
= I(W1;Y n |W2, S) + H(W1 | Y n,W2, S) (98)
(a)

≤ I(W1;Y n |W2, S,X
n
2 ) + Hb(Pe1) + Pe1 log(M1) (99)

=
1

1− Pe1
(I(W1;Y n |W2, S,X

n
2 ) + Hb(Pe1,1)) (100)

(b)

≤ 1

1− Pe1

( n∑

i

H(Yi | X2,i)−H(Yi | X1,i, X2,i)

+Hb(Pe1)

)
(101)

=
1

1− Pe1

(
n

n∑

i=1

1

n
I(X1,i;Yi | X2,i) + Hb(Pe1,1)

)
, (102)

where (a) holds by Fano’s inequality and because Xn
2 =

ϕ
(n)
2 (W2) and (b) holds respectively by the chain rule and

because conditioning cannot increase entropy.
Defining T as a uniform random variable over [|1, n|] and

independent of all other random variables, we can rewrite
(102) as:

log(M1) ≤ 1

1− Pe1
(nI(X1,T ;YT | X2,T , T ) + Hb(Pe1)) (103)

≤ 1

1− Pe1
n

(
E[αn,T ·DY (X2,T )] +

1

n

)
, (104)

where the last step is obtained by applying Lemma 3 for each
realization of T , by the nonnegativity of divergence, and by
upper-bounding the binary entropy by 1.

C. Lower bound on 1
M2

∑M2

w2=1 δn,w2

Recalling the definition of Q̂nC,w2
(zn) in (11) and letting

x2,i(w2) denote the i-th component of codeword w2, we obtain
for a specific code C:

1

M2

M2∑

w2=1

D
(
Q̂nC,w2

‖W⊗nZ|X1X2
(·|0n, xn2 (w2))

)
(105)

(a)
=

1

M2

M2∑

w2=1

n∑

i=1

D
(
Q̂

(i)
C,w2
‖WZ|X1X2

(·|0, x2,i(w2))
)

(106)

(b)
=

1

M2

M2∑

w2=1

n∑

i=1

D
(
Qαn,i,w2

‖WZ|X1X2
(·|0, x2,i(w2))

)
(107)

=

n∑

i=1

∑

x2

PX2,i(x2)D
(
Qαn,i,w2

‖WZ|X1X2
(·|0, x2)

)
(108)



(c)

≥ nEPTX2,T

[
(1−√αn,T )

α2
n,T

2
χ2,Z(X2,T )

]
, (109)

where we defined T uniform over [n] independent of all other
random variables and the last step holds for sufficiently large
values of n. Here, (a) holds by the memoryless nature of the
channel and upon defining x1,i(w1, s) as the i-th symbol of
codeword xn1 (w1, s) and

Q̂
(i)
C,w2

(zi) ,

1

M1K

M1∑

w1=1

K∑

s=1

WZ|X1X2
(zi|x1,i(w1, s), x2,i(w2)); (110)

(b) holds by recalling the definition in (47):

αn,i ,
1

M1K

M1∑

w1=1

K∑

s=1

1{x1,i(w1, s) = 1}, (111)

and defining

Qα,w2
, αWZ|X1X2

(·|1, x2,i(w2))

+(1− α)WZ|X1X2
(·|0, x2,i(w2)); (112)

and (c) holds by Lemma 4 and because the covertness
constraint implies that αn,t → 0 for any t. (Proof omitted
due to lack of space.)

D. Lower bound on log(M1) + log(K)

We start with the lower bound

log(M1) + log(K) ≥ I(W1, S;Zn | Xn
2 ) (113)

(a)

≥ I(Xn
1 ;Zn | Xn

2 ), (114)

where (a) holds because Xn
1 = xn1 (W1, S) is a function of

W1 and S.
To single-letterize the mutual information I(Xn

1 ;Zn | Xn
2 ),

we abbreviate the covertness constraint using the definition of
δn,w2

in (13). Then notice that by

EW2 [δn,W2 ]

= EW2

[∑

zn

Q̂nC,W2
(zn) log

(
1

W⊗nZ|X1X2
(zn|0n, Xn

2 (W2))

)]

−H(Zn|Xn
2 ) (115)

we can obtain (119), see (118) and use the nonnegativity of
divergence, and where we defined

W̃Z|X2
(z|x2) ,

∑

x1∈X1

WZ|X1X2
(z | x1, x2)PX1,T

(x1) (116)

= WZ|X1X2
(z | 0, x2)αn,T

+WZ|X1X2
(z | 1, x2)(1− αn,T ). (117)

Recalling then the definition of αn,i in (111) and we obtain
the bound:

I(Xn
1 ;Zn | Xn

2 ) ≥ nI(X1,T ;ZT | X2,T , T )− EW2 [δn,W2 ].

(120)

Combining (120) with (114) and applying Lemma 3 followed
by Lemma 4 for each realization of T , continue with

log(M1) + log(K)

≥ nEPTX2

[
αn,TDZ(X2)−

α2
n,T

2
χ2,Y (X2)(1−√αn,T )

]

+EW2 [δn,W2 ]. (121)

Notice that by assumption, δn,w2
→ 0 for any w2 and thus

lim
n→∞

EW2
[δn,W2

] = 0. (122)

Moreover, the second term in the expectation is dominated by
the first term because the covertness constraint δn,w2

→ 0 for
any w2 implies that αn,t → 0 (proof omitted.)

Combining these observations with (121) and the lower
bound on 1

M2

∑M2

w2=1 δn,w2
establishes the desired result.

E. Asymptotic Analysis

To conclude the proof, we notice that by the Bolzano-
Weierstrass Theorem there exists an increasing subsequence
{ni} so that {PX2,T

(·|t)} and {PT (·)} converge on this
subsequence. If also γni,t converges for each value of t ∈ T ,
{1, . . . , 4}, then in view of bounds (44), (46), and (50), the
desired bounds (31)–(33) follow immediately by considering
the convergence points γt of these sequences and defining

εt :=
γt

max
t′∈T

γ′t
. (123)

Otherwise, if some of the γni,t diverge to∞, we notice that for
each of these t-values the probability PT (t) → 0 as n → ∞
and because by definition the expectation E[γn,t] = 1 one of
the following three cases applies:
1.) PT (t)γni,t → 0 and PT (t)γ2

ni,t → 0;
2.) PT (t)γni,t → 0 and limni→∞ PT (t)γ2

ni,t = c for c ∈
(0,∞);

3.) PT (t)γni,t ∈ [0, 1] and PT (t)γ2
ni,t →∞.

All t-values satisfying case 1.) can simply be ignored since
they do not change the bounds. Whenever there exists a t-
value in case 3.), then bounds (46) and (50) are 0 and the
result is trivial. In case 2.) we can modify the probabilities
PT (t) and the parameters γni,t to values in a bounded interval
[a, b] for b > a > 0, while still approximating the bounds (44),
(46), and (50) arbitrarily closely. We then fall back to the case
where all sequences γni,t converge.

F. A tighter cardinality bound for the auxiliary random vari-
able T

Since by Lemma 2 the set of all valid vectors (r1, r2, k) is
convex, its dominant boundary points are all maximizers of
the objective function defined by

√
2

(µ1 + µ3)EPTX2
[εTDY (X2)]√

EPTX2
[ε2Tχ2,Z(X2)]



I(Xn
1 ;Zn | Xn

2 )

= H(Zn | Xn
2 )−H(Zn | Xn

1 , X
n
2 ) + EW2

[
n∑

z

Q̂nC,w2
(zn) log

(
1

W⊗nZ|X1X2
(zn|0n, Xn

2 (W2))

)]
−H(Zn | Xn

2 )− EW2
[δn,W2

]

(118)

≥ n
n∑

t=1

∑

(x1,x2,z)

PX1,T ,X2,T ,ZT ,T (x1, x2, z, t) log

(
WZ|X1X2

(z | x1, x2)

WZ|X1X2
(z|0, x2)

)
− EW2 [δn,W2 ]− nD(W̃Z|X2

‖WZ|X1X2
(·|0, x2)).

(119)

−
√

2
µ3EPTX2

[εTDZ(X2)]√
EPTX2

[ε2Tχ2,Z(X2)]

+µ2I(X2;Y | X1 = 0, T ), (124)

for some positive values µ1, µ2, µ3 ≥ 0. Fix any triple
µ1, µ2, µ3 ≥ 0 and any positive constant c > 0. Then, for each
pair (PX2 , ε), where ε ∈ [0, 1], define the two-dimensional
vector v = (v1, v2) with first component

v1 =
√

2
(µ1 + µ3)εEPX2

[DY (X2)]√
c

−
√

2
µ3εEPX2

[DZ(X2)]√
c

+µ2I(X2;Y | X1 = 0), (125)

and second component

v2 = ε2EPX2
[χ2,Z(X2)]. (126)

By the Fenchel-Eggleston strengthening of Carathéodory’s
theorem, we can conclude that each point in the convex hull
of the two-dimensional vectors can be obtained as an average
of 2 vectors. As a consequence, if for some pmf PTX2

and
tuple ε1, . . . , ε4 we choose

c = EPTX2

[
ε2T · χ2,Z(X2)

]
, (127)

we can conclude that there exists a new pair P̃TX2 and (ε̃1, ε̃2)
with T only over the alphabet {1, 2} and so that the term in
(124) evaluates to the same value as for the original pmf PTX2

and tuple (ε1, . . . , ε4).
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