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Abstract—The paper characterizes the fundamental limits of
integrated sensing and communication (ISAC) systems with a
bi-static radar, where the radar receiver is located close to
the transmitter and estimates or detects the state based on
the transmitter’s channel inputs and the backscattered signals.
Two models are considered. In the first model, the memoryless
state sequence is distributed according to a fixed distribution
and the goal of the radar receiver is to reconstruct this state-
sequence with smallest possible distortion. In the second model,
the memoryless state is distributed either according to PS

or to QS and the radar’s goal is to detect this underlying
distribution so that the missed-detection error probability has
maximum exponential decay-rate (maximum Stein exponent).
Similarly to previous results, our fundamental limits show that
the tradeoff between sensing and communication solely stems
from the empirical statistics of the transmitted codewords which
influences both performances. The main technical contribution
are two strong converse proofs that hold for all probabilities
of communication error ε and excess-distortion probability or
false-alarm probability δ summing to less than 1, ε+δ < 1. These
proofs are based on two parallel change-of-measure arguments
on the sets of typical sequences, one change-of-measure to obtain
the desired bound on the communication rate, and the second
to bound the sensing performance.

Index Terms—Integrated sensing and communication, strong
converse, change of measure arguments.

I. INTRODUCTION

Consider the communication problem in Figure 1, where a
transmitter (Tx) sends a message M to a receiver (Rx) over
a state-dependent discrete memoryless channel. Moreover,
based on a generalized feedback signal, it either attempts
to reconstruct the channel state sequence Sn or guesses
the hypothesis underlying the distribution of Sn. Such a
system has recently been termed integrated sensing and
communication (ISAC) and plays a prominent role in the
future 6G standard [1], [2], especially in the context of
autonomous vehicles or automated manufacturing sites. In
fact, in autonomous driving applications or industrial robot
applications, backscattered signals from communication can
be used for radar sensing to detect hazardous events, infer
properties of other terminals (e.g., velocities or directions
of other cars), or sense the environment for obstacles. This
integration requires significant technological effort but has
great potential for improving the performance of wireless
systems.

While ISAC has inspired a plethora of works in the signal
processing and communications community, see for example
[3]–[8] and references therein, only few works were reported
from the information-theoretic community [9]–[16]. The first
information-theoretic work [9] on ISAC determined the fun-
damental limits of the rate-distortion version of the ISAC
problem in Figure 1, where the radar receiver is colocated
with the Tx and uses the feedback signal to reconstruct the
state-sequence Sn. Extensions to network scenarios and to
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Fig. 1: Bistatic Radar ISAC Model

scenarios with secrecy constraints were subsequently pre-
sented in [10]–[13]. The works in [14]–[16] determined the
fundamental performance limits of a detection-version of the
model in Figure 1, where the state sequence Sn is assumed
constant over time and taking on one of multiple possible
values depending on a underlying hypothesis. The task of
the radar receiver is to guess this hypothesis, and sensing
performance was measured in terms of exponential decay-rate
of the probability of error, either the minimum exponential
decay-rate over all hypotheses [14], [15] or the set of decay-
rates that are simultaneously achievable under the different
hypotheses [16]. The work [15] also studied a mono-static
version of this problem, where the Tx coincides with the radar
receiver and thus can use the generalized-feedback signals
also for communication purposes. For this mono-static radar
scenario however only a coding scheme but no converse was
presented. The problem is known to be hard as it relates to
the challenging close-loop controlled sensing problem [17].

In this paper, we consider both the rate-distortion and the
hypothesis testing versions of the model in Figure 1. In our
first model, the state sequence {St}t≥1 is independent and
identically distributed (i.i.d.) according to a given distribution
PS and the radar wishes to reconstruct this state sequence
with smallest possible distortion. In our second model, the
state-sequence {St} depends on a binary hypothesis H ∈
{0, 1}. If H = 0, then {St} is i.i.d. according to a distribution
PS or if H = 1, it is i.i.d. according to a distribution
QS . We measure sensing performance in terms of Stein’s
exponent, i.e., in terms of the maximum exponential decay-
rate of the missed-detection error probability (detecting PS
instead of QS) under a permissible threshold on the false-
alarm probability (detecting QS instead of PS).

For both our models, we determine the fundamental limits
of communication rates and distortion/missed-detection error
exponents that are simultaneously achievable. Similarly to
previous works [9], [14], [15] our limits exhibit a tradeoff
between the sensing and communication performances, which
however solely stems from the empirical statistics of the



codewords used for communication.
The direct parts of our proofs follow immediately from

existing works. Our contributions are the proofs of the con-
verse results. In fact, we present strong converse proofs that
hold whenever the maximum allowed probability of commu-
nication error ε and the maximum allowed distortion-excess
probability or false-alarm probability δ satisfy ε + δ < 1.
The converse proofs are extensions of the channel coding
strong converse proof in [18] to incorporate also the sensing
bounds. Interestingly, the same change-of-measure as in [18]
can be used to obtain the desired bound on the rate of
communication. Different changes-of-measure are used to
obtain the desired bounds on the sensing performances.

Strong converse proofs based on change-of-measure argu-
ments go back to Gu and Effros [19], [20] and can be also
found in various other works, e.g., [21]. The proof method
was formalized and first applied to channel coding by Tyagi
and Watanabe [22]. Recent works [18], [23], [24] slightly
modified and simplified the technique in [22] by restricting
the new measures to sequences on typical or conditionally-
typical sets. This feature allows to circumvent resorting to
variational characterizations for the multi-letter and single-
letter problems as proposed in [22]. Notice that the works
[23], [24] also showed the utility of the proposed converse
proof method for scenarios with expectation constraints, in
which case the fundamental limits depend on the permissible
error probabilities.

Notation: Upper-case letters are used for random quan-
tities and lower-case letters for deterministic realizations.
Calligraphic font is used for sets. All random variables
are assumed finite and discrete. We abbreviate the n-tuples
(X1, . . . , Xn) and (x1, . . . , xn) as Xn and xn and the n− t
tuples (Xt+1, . . . , Xn) and (xt+1, . . . , xn) as Xn

t+1 and xnt+1.
We further abbreviate independent and identically distributed
as i.i.d. and probability mass function as pmf.

Entropy, conditional entropy, and mutual information func-
tionals are written as H(·), H(·|·), and I(·; ·), where the
arguments of these functionals are random variables and
whenever their probability mass function (pmf) is not clear
from the context, we add it as a subscript to these function-
als. The Kullback-Leibler divergence between two pmfs is
denoted by D(·‖·). We shall use T (n)

µ (PXY ) to indicate the
jointly strongly-typical set with respect to the pmf PXY on
the product alphabet X × Y and parameter µ as defined in
[25, Definition 2.8]. Specifically, let nxn,yn(a, b) denote the
number of occurrences of the pair (a, b) in (xn, yn):

nxn,yn(a, b) = |{t : (xt, yt) = (a, b)}|, (1)

a pair (xn, yn) lies in T (n)
µ (PXY ) if∣∣∣∣nxn,yn(a, b)

n
− PXY (a, b)

∣∣∣∣ ≤ µ, ∀(a, b) ∈ X ×Y, (2)

and nxn,yn(a, b) = 0 whenever PXY (a, b) = 0. The condi-
tionally strongly-typical set with respect to a conditional pmf
PY |X from X to Y , parameter µ > 0, and sequence xn ∈ Xn
is denoted T (n)

µ (PY |X , xn) [25, Definition 2.9]. It contains
all sequences yn ∈ Yn satisfying∣∣∣∣nxn,yn(a, b)

n
− nxn(a)

n
PY |X(b|a)

∣∣∣∣ ≤ µ, ∀(a, b) ∈ X×Y,
(3)

and nxn,yn(a, b) = 0 whenever PY |X(b|a) = 0. Here nxn(a)
denotes the number of occurrences of symbol a in xn. In this
paper, we denote the joint type of (xn, yn) by πxnyn , i.e.,

πxnyn(a, b) ,
nxn,yn(a, b)

n
. (4)

Accordingly, the marginal type of xn is written as πxn .

II. MEMORYLESS STATE AND AVERAGE DISTORTION AS
A SENSING MEASURE

Consider the bistatic radar receiver model over a mem-
oryless channel in Fig. 1. A transmitter (Tx) that wishes
to communicate a random message M to a receiver (Rx)
over a state-dependent channel. The message M is uniformly
distributed over the set {1, . . . , 2nR} with R > 0 and
n > 0 denoting the rate and blocklength of communication,
respectively. The channel from the Tx to the Rx depends on
a state-sequence Sn = (S1, . . . , Sn) which is i.i.d. according
to a given pmf PS .

For a given blocklength n, the Tx thus produces the n-
length sequence of channel inputs

Xn = φ(n)(M) (5)

for some choice of the encoding function
φ(n) : {1, . . . , 2nR} → Xn.

Based on Xn and Sn the channel produces the sequences
Y n observed at the Rx and the backscattered signal Zn.
The channel is assumed memoryless and described by the
stationary transition law PY Z|XS implying that the pair
(Yt, Zt) is produced according to the channel law PY Z|XS
based on the time-t symbols (Xt, St).

The Rx attempts to guess message M based on the
sequence of channel outputs Y n:

M̂ = g(n)(Y n) (6)

using a decoding function g(n) : Yn → {1, . . . , 2nR}.
Performance of communication is measured in terms of

average error probability

p(n)(error) := Pr[M̂ 6= M ] (7)

The radar receiver produces as a guess a reconstruction of
the state sequence

Ŝn = h(n)(Xn, Zn), (8)

based on the inputs and backscattered signals. Radar sensing
performance is measured as time-averaged distortion

dist(n)
(
Ŝn, Sn

)
,

1

n

n∑
i=1

d
(
Ŝi, Si

)
, (9)

for a given and bounded distortion function d(·, ·).

In this context we have the following definition and result.
Definition 1: A rate-distortion pair (R,D) is (ε, δ)-

achievable over the state-dependent channel (X ,Y, PY |XS)
with state-distribution PS , if there exists a sequence of encod-
ing, decoding, and estimation functions {(φ(n), g(n), h(n))}
such that the average probability of error satisfies

lim
n→∞

p(n)(error) ≤ ε (10)

and the excess distortion probability

lim
n→∞

Pr
[
dist(n)

(
Ŝn, Sn

)
> D

]
≤ δ. (11)



Theorem 1: For any ε+δ < 1, a rate-distortion pair (R,D)
is (ε, δ)-achievable, if and only if, there exists a pmf PX
satisfying

R = IPXPSPY |XS
(X;Y ) (12)

and
D ≥ EPXPSPZ|XS

[d(ŝ(X,Z), S)] (13)

where

ŝ(x, z) := min
ŝ∈Ŝ

∑
s

PS|XZ(s|x, z)d(ŝ, s) (14)

and

PS|XZ(s|x, z) :=
PS(s)PZ|XS(z|x, s)∑
s′ PS(s′)PZ|XS(z|x, s′) (15)

Proof: The limiting case ε, δ ↓ 0 of the theorem was
already proved in [11]. Achievability of the theorem follows
thus directly from this previous result. The converse is proved
in the following subsection, also using the next lemma, which
is from [11].

Lemma 1 (From [11]): Without loss in optimality, one can
restrict to the per-symbol estimator

h(n)(xn, zn) = (ŝ(x1, z1), . . . , ŝ(xn, zn)). (16)

A. Strong Converse Proof

Fix a sequence of encoding and decoding functions
{(φ(n), g(n))}∞n=1 and consider the optimal estimator h(n)

in Lemma 1. Assume that (10) and (11) are satisfied. For
readability, we will also write xn(·) for the function φ(n)(·).
Choose a sequence of small positive numbers {µn}∞n=1

satisfying

lim
n→∞

µn = 0 (17)

lim
n→∞

(
n · µ2

n

)−1
= 0. (18)

Expurgation: Fix η ∈ (0, 1− ε− δ] and let M̃ be the set
of messages m that satisfy the following two conditions:

Pr
[
M̂ 6= M |M = m

]
≤ 1− η (19a)

Pr
[
dist(n)

(
Ŝn, Sn

)
> D|M = m

]
≤ 1− η. (19b)

Since the set of messages not satisfying (19a) is at most of
size

ε

(1− η)
2nR, (20)

and similarly also the set of messages not satisfying (19b)
is of size at most δ

(1−η)2
nR, we can deduce that the set M̃

(which is the complement of the union of these two sets) is
of size at least(

1− ε+ δ

1− η

)
2nR =

(1− η − ε− δ)
(1− η)

2nR. (21)

Define the random variable M̃ to be uniform over the set M̃
and let

X̃n = xn(M̃), (22)

and thus
|M̃|
2nR

≥
(

1− ε+ δ

1− η

)
=: γ. (23)

Let T be a uniform random variable over {1, . . . , n},
independent of all other random variables and notice that

PX̃T
(x) =

1

n

n∑
t=1

PX̃t(x)
(24)

=
1

n

n∑
t=1

E[1{X̃t(M̃) = x}] (25)

= E[πxn(M̃)(x)]. (26)

Let now {ni} be an increasing subsequence of blocklengths
so that the probability vector PX̃T

converges and denote the
convergence point by PX :

lim
ni→∞

1

|M̃|
∑
m∈M̃

πxni (m)(x) =: PX(x), ∀x ∈ X . (27)

In the remainder of this proof, we restrict attention to this
subsequence of blocklengths {ni}.

Proof of Channel Coding Bound: We first prove the
converse bound for channel coding. Consider the conditions

g(n)(yn) = m

(28a)∣∣πsn,xn(m),yn(a, b, c)− PS(a)πxn(m)(b)PY |XS(c|a, b)
∣∣ ≤ µn,

(28b)

and define for each message m ∈ M̃ the set

DC,m := {(sn, yn) : (28a) and (28b)}. (29)

Introduce the new random variables (SnC , Y
n
C ) of joint condi-

tional pmf

PSn
CY

n
C |M̃ (sn, yn|m)

=
P⊗nS (sn) · P⊗nY |XS(yn|xn(m), sn)

∆C,m
· 1{(sn, yn) ∈ DC,m},

(30)

for

∆C,m :=
∑
sn,yn

P⊗nS (sn) · P⊗nY |XS(yn|xn(m), sn)

·1{(sn, yn) ∈ DC,m}. (31)

By using Chebyshev’s inequality, see [25, Remark to
Lemma 2.12] and Conditions (19a) and (28), we have:

∆C,m ≥ η −
|S||X ||Y|

4µ2
nn

, ∀m ∈ M̃. (32)

Moreover, for M̃ = m:

PY n
C |M̃=m(yn)

=
∑
sn

P⊗nS (sn) · P⊗nY |XS(yn|xn(m), sn)

∆C,m
· 1{(sn, yn) ∈ DC,m}

(33)

≤
∑
sn

P⊗nS (sn) · P⊗nY |XS(yn|xn(m), sn)

∆C,m
(34)

=
P⊗nY |X(yn|xn(m))

∆C,m
. (35)

Continue to notice that:

R =
1

n
H(M̃)− 1

n
log γ (36)



(a)
=

1

n
I(M̃ ;Y nC )− 1

n
log γ (37)

=
1

n
H(Y nC )− 1

n
H
(
Y nC
∣∣M̃)− 1

n
log γ (38)

≤ 1

n

n∑
i=1

H(YC,i)−
1

n
H
(
Y nC
∣∣M̃)− 1

n
log γ (39)

= H
(
YC,T

∣∣∣T)− 1

n
H
(
Y nC
∣∣M̃)− 1

n
log γ (40)

≤ H(YC,T )− 1

n
H
(
Y nC
∣∣M̃)− 1

n
log γ, (41)

where we defined the random variable T to be uniform over
{1, . . . , n} independent of the other random variables. Here,
(a) holds because M̃ = g(Y nC ) by Condition (28a).

Notice next that

PX̃TSC,T YC,T
(x,s,y) (42)

=
1

n

n∑
t=1

PX̃tSC,tYC,t
(x, s, y) (43)

=
1

n

n∑
t=1

E
[
1

{
X̃t, SC,t, YC,t) = (x, s, y)

}]
(44)

= E
[
πxn(M̃)Sn

CY
n
C

(x, s, y)
]

(45)

However, by Condition (28b) for any triple (x, s, y) with pos-
itive PS(s)PY |XS(y|x, s) the following inequality is satisfied
with probability 1:∣∣∣πxn(m)Sn

CY
n
C

(x, s, y)− πxn(m)(x)PY |XS(y|x, s)PS(s)
∣∣∣

≤ µn. (46)

By (27) and (46) and since µni
→ 0 as ni →∞:

lim
i→∞

PX̃TSC,TYC,T
(x, s, y) = PX(x)PS(s)PY |XS(y|x, s), (47)

which by continuity of the entropy functional implies

lim
ni→∞

H(YC,T ) = HPXPSPY |XS
(Y ). (48)

Next, by definition and by (35):

1

ni
H(Y ni

C |M̃ = m)

= − 1

ni

∑
yni∈DC,m

PY ni
C |M̃=m(yni) logPY ni

C |M̃=m(yni) (49)

≥ − 1

ni

∑
yni∈DC,m

PY ni
C |M̃=m(yni) log

P⊗nY |X(yni |xni(m))

∆C,m

(50)

= − 1

ni

ni∑
t=1

∑
yni∈DC,m

PY ni
C |M̃=m(yni) logPY |X(yt|xt(m))

+
1

ni
log ∆C,m, (51)

= − 1

ni

ni∑
t=1

∑
yt∈Y

PYC,t|M̃=m(yt) logPY |X(yt|xt(m))

+
1

ni
log ∆C,m, (52)

= − 1

ni

ni∑
t=1

∑
y∈Y

E
[
1{YC,t = y}

∣∣∣M̃ = m
]

logPY |X(y|xt(m))

+
1

ni
log ∆C,m, (53)

= −
∑
x∈X

∑
y∈Y

E

[
1

ni

ni∑
t=1

1{xt(m) = x, YC,t = y}
∣∣∣M̃ = m

]
· logPY |X(y|x)

+
1

ni
log ∆C,m, (54)

= −
∑
x∈X

∑
y∈Y

∑
s∈S

E
[
πxni (m)S

ni
C Y

ni
C

(x, s, y)
∣∣∣M̃ = m

]
· logPY |X(y|x)

+
1

ni
log ∆C,m, (55)

where PY |X(y|x) =
∑
s∈S PY |XS(y|x, s)PS(s). Averaging

over all messages m ∈ M̃, we obtain:

1

ni
H(Y ni

C |M̃) (56)

≥ −
∑
x∈X

∑
y∈Y

∑
s∈S

E
[
πxni (M̃)S

ni
C Y

ni
C

(x, s, y)
]
· logPY |X(y|x)

+E
[

1

ni
log ∆C,M̃

]
. (57)

By (32) the term E
[

1
ni

log ∆C,M̃

]
vanishes for increasing

blocklengths, and thus using the definition of PX in (27),
fone can follow the same bounding steps as leading to (46)
to obtain:

lim
i→∞

1

ni
H(Ỹ ni |M̃)

= −
∑
x∈X

PX(x)
∑
y∈Y

∑
s∈S

PS(s)PY |XS(y|x, s) logPY |X(y|x)

= HPXPSPY |XS
(Y |X). (58)

Combining (41) with (48) and (58), and since 1
ni

log γ → 0
as n→∞, we can conclude that

R ≤ HPXPSPY |XS
(Y )−HPXPSPY |XS

(Y |X) (59)
= IPXPSPY |XS

(X;Y ). (60)

Proof of Distortion Bound: Consider the two conditions

dist(n)
(
h(n)(xn(m), zn), sn

)
≤ D
(61a)∣∣πsn,xn(m),zn(a, b, c)− PS(a)πxn(m)(b)PZ|XS(c|a, b)

∣∣ ≤ µn,
(61b)

and define for each message m ∈ M̃ the set

DS,m := {(sn, zn) : (61a) and (61b)}. (62)

Recall the definition X̃n = xn(M̃) and the limit in
(27). Define the new random variables (SnS , Z

n
S ) of joint

conditional pmf

PSn
SZ

n
S |M̃ (sn, zn|m)

=
P⊗nS (sn) · P⊗nZ|XS(zn|xn(m), sn)

∆S,m
· 1{(sn, zn) ∈ DS,m},

(63)

for

∆S,m :=
∑
sn,zn

P⊗nS (sn) · P⊗nZ|XS(zn|xn(m), sn)



·1{(sn, zn) ∈ DS,m}. (64)

Notice that by using Chebyshev’s inequality, see [25, Remark
to Lemma 2.12] and Conditions (19b) and (61), we have:

∆S,m ≥ η −
|S||X ||Z|

4µ2
nn

, ∀m ∈ M̃. (65)

Following similar steps to (44)–(47), by (61b) and defini-
tion (27), we can conclude that

lim
ni→∞

PX̃TSS,TZS,T
(x, s, z) = PX(x)PS(s)PZ|XS(z|x, s).

(66)

By Condition (61a), we have with probability 1:

D ≥ 1

n

n∑
t=1

d
(
ŝ
(
X̃t, ZS,t

)
, SS,t

)
. (67)

Therefore, for any blocklength ni:

D ≥ 1

ni

ni∑
j=1

E
[
d
(
ŝ
(
X̃j , ZS,j

)
, SS,j

)]
(68)

= E
[
d
(
ŝ
(
X̃T , ZS,T

)
, SS,T

)]
, (69)

and by (66) in the limit as ni →∞:

D ≥ EPXPSPZ|XS
[d(ŝ(X,S) , S)]. (70)

This concludes the proof of the converse.

III. STEIN’S EXPONENT AS A SENSING MEASURE

In this section we assume that the state-sequence Sn

depends on a binary hypothesis H ∈ {0, 1}. Under the null
hypothesis H = 0 it is i.i.d. according to the pmf PS and
under the alternative hypothesis H = 1 it is i.i.d. according
to the pmf QS . The radar receiver attempts to guess the
underlying hypothesis based on the inputs and backscattered
signals, so it produces a guess of the form

Ĥ = h(n)(Xn, Zn) ∈ {0, 1}. (71)

Radar sensing performance is measured in terms of Stein’s
exponent. That means, it is required that the type-I error
probability

αn := Pr
[
Ĥ = 1|H = 0

]
(72)

stays below a given threshold, while the type-II error proba-
bility

βn := Pr
[
Ĥ = 0|H = 1

]
(73)

should decay exponentially fast to 0 with largest possible
exponent.

Definition 2: A rate-exponent pair (R,E) is (ε, δ)-
achievable over the state-dependent DMC (X ,Y, PY |XS)
with state-distribution PS , if there exists a sequence of encod-
ing, decoding, and estimation functions {(φ(n), g(n), h(n))}
such that for each blocklength n the average probability of
error satisfies

lim
n→∞

p(n)(error) ≤ ε, H ∈ {0, 1}, (74)

while the detection error probabilities satisfy:

lim
n→∞

αn ≤ δ, (75)

and
− lim
n→∞

1

n
log βn ≥ E. (76)

Theorem 2: For any ε, δ ≥ 0 satisfying ε + δ < 1, a rate-
exponent pair (R,E) is (ε, δ)-achievable, if and only if, there
exists a pmf PX satisfying

R ≤ min{IPXPSPY |XS
(X;Y ), IPXQSPY |XS

(X;Y )}, (77)

and
E ≤ EPX

[
D(PZ|X‖QZ|X)

]
(78)

where PZ|X and QZ|X denote the conditional marginals of
PSPZ|XS and QSPZ|XS , respectively.

Proof: Achievability follows by standard random coding
for a compound channel and by applying a Neyman-Pearson
test at the radar receiver. The converse is proved in the long
version of this paper [26].

The works in [15], [16] consider degenerate state-
distributions where PS and QS are deterministic distributions.
In this case, our Theorem simplifies as follows.1

Corollary 3: Assume degenerate state-distributions
PS(s0) = 1 and QS(s1) = 1 for two distinct symbols
s0, s1 ∈ S. Then, for any ε, δ ≥ 0 satisfying ε + δ < 1, a
rate-exponent pair (R,E) is (ε, δ)-achievable, if and only if,
there exists a pmf PX satisfying

R ≤ min

{
I
PXP

(s0)

Y |X
(X;Y ), I

PXP
(s1)

Y |X
(X;Y )

}
, (79)

and

E ≤ EPX

[
D(PZ|XS(·|X, s0)‖PZ|XS(·|X, s1)

]
, (80)

where P (s)
Y |X(y|x) , PY |XS(y|x, s) for any triple (x, s, y).

IV. CONCLUSION AND FUTURE DIRECTIONS

In this paper we established the strong converse for two
ISAC problems with bi-static radar whenever ε + δ < 1.
Interesting future research directions include extensions to
mono-static radar systems where the transmitter can apply
closed-loop encodings depending also on past generalized
feedback systems or systems with memory. Analyzing other
sensing criteria is also of interest, such as the minimum
exponential decay-rate over all hypotheses or the estimation
error when the distribution of the state-sequence depends
on a single continuous-valued parameter. The setup where
only part of the state or a noisy version of the state is to
be estimated is also of interest, for instance, in scenarios in
state-dependent fading channels where one has no interest
in estimating the fading. Notice that this setup is included
in the rate-distortion model through an appropriate definition
of the distortion measure. On a related note, our model also
includes as special case the setups where the receiver has
perfect or imperfect channel-state information by including
this state-information as part of the output.
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