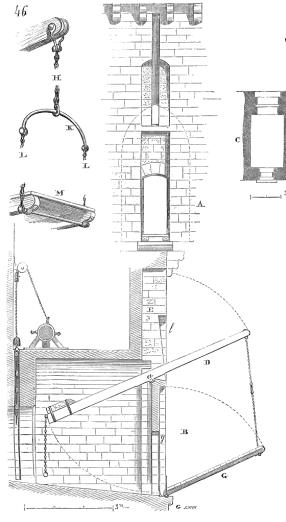


About the Internet of Things (IoT)

• Pretz, K. (2013). "The Next Evolution of the Internet"


The Internet of Things (IoT) is a network of connected things.

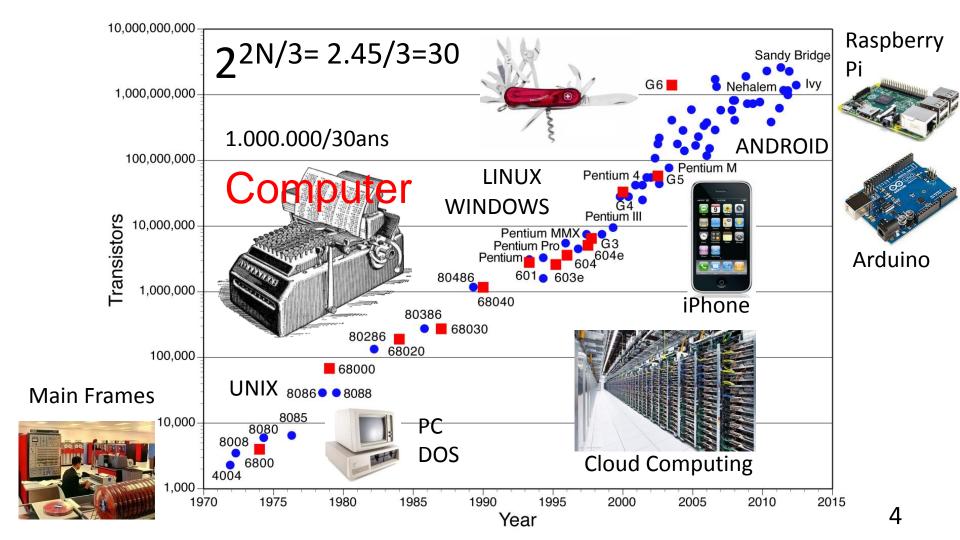
Objet: Chose solide considérée comme un tout, fabriquée par l'homme et destinée à un certain usage

Appareil: Objet, machine, dispositif électrique, électronique, mécanique, etc., formés d'un assemblage de pièces destinées à fonctionner ensemble

Machine: Appareil ou ensemble d'appareils capable d'effectuer un certain travail ou de remplir une certaine fonction, soit sous la conduite d'un opérateur, soit d'une manière autonome.

Pascal Urien 2020

What is a Thing?


- A computer
 - CPU
 - Memories (RAM, ROM, EEPROM, FLASH...)
 - IO buses
- With at least one network interface
 - Wi-Fi, Bluetooth, ZigBee...
- Equipped with sensors and actuators

8-bit Atmel Microcontroller

- 64/128/256KB Flash
- 4KB EEPROM
- 8KB SRAM
- Peripheral Features

3

Beyond The Horizon

- The IoT is the death of the Moore Law.
- Waldrop M. "More Than Moore", Nature February 2016 Vol 530
 - The semiconductor industry will soon abandon its pursuit of Moore's Law.

Beyond The Horizon

- "Rebooting the IT Revolution: A Call to Action" (SIA/SRC), 2015
 - "Security is projected to become an even bigger challenge in the future as the number of interconnected devices increases... In fact, the Internet of Things can be viewed as the largest and most poorly defended cyber attack surface conceived by mankind"
 - "a short list of requirements includes tamper resistance and secure communications and storage".

Rebooting the IT Revolution: A Call to Action September 2015

6

"A short list of requirements includes tamper resistance and secure communications and storage"

Node Integrity

Isolation

- -Multi processors
- SandboxIntrusion prevention

-Secure Boot

Secure update

Secure Communication

Strong Mutual Authentication Privacy

Integrity

Secure Storage

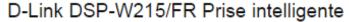
Communication secrets
Tamper Resistant Devices

The Mirai Malware 2016

How is Mirai infecting devices?

Mirai connects via telnet and attempts to login using a list of 60 known credentials.

If the login is successful, the bot software is installed.


It connects to a command and control server, waiting for commands to attack other machines.

It continuously scans for other devices that may be vulnerable, attempting to login with the list of known credentials.

September 2016. Mirai Malware 145.607 cameras 1 Terabit/s 35,000/50,000 HTTP request/s 25,000 IP adresses More than 100 countries

The "Moon" worm: ePlug

de D-link

★★★☆☆ ▼ 25 commentaires client | 3 questions ayant recu une réponse

Prix: EUR 34,99 LIVRAISON GRATUITE Détails

Tous les prix incluent la TVA.

En stock.

Voulez-vous le faire livrer le samedi 16 jan.? Commandez-le dans les 2 h et 34 mins et choisissez la Livraison en 1 jour ouvré au cours de votre commande. En savoir plus.

Expédié et vendu par Amazon. Emballage cadeau disponible.

20 neufs à partir de EUR 34,99 1 d'occasion à partir de EUR 41,77

- Description du produit: D-Link Prise intelligente
- Largeur: 3,93 cm
- Profondeur: 6.6 cm
- Hauteur: 11.7 cm
- Voir plus de détails

Passez la souris sur l'image pour zoomer

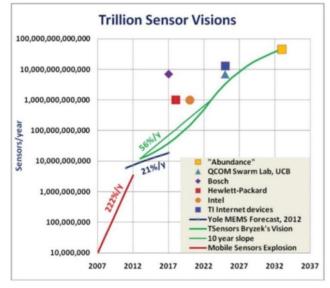
The "Moon" worm

Home Network Administration Protocol (HNAP) is a proprietary network protocol invented by Pure Networks, Inc. and acquired by Cisco Systems which allows identification, configuration, and management of network devices. HNAP is based on SOAP

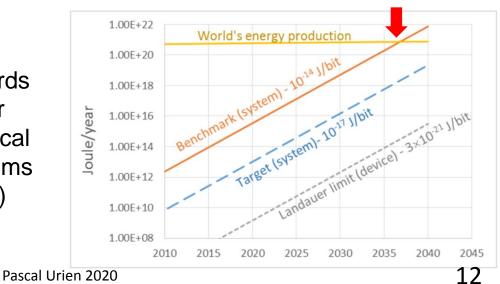
2014 HNAP is used by "The Moon" worm which infects Linksys routers.

Hacking the D-Link DSP-W215 Smart Plug http://www.devttys0.com/2014/05/hacking-the-d-link-dsp-w215-smart-plug/http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm

The "Moon" worm

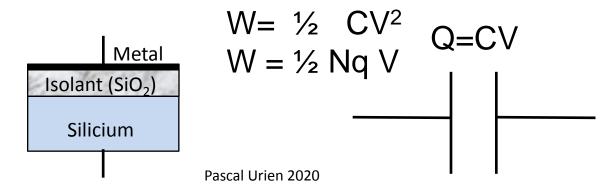

- Two commands are injected thanks to buffer overflow
 - /var/sbin/relay 1 # Turns outlet on
 - /var/sbin/relay 0 # Turns outlet off

11

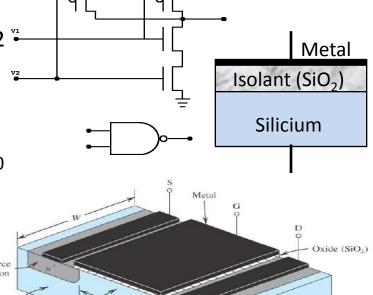

Trillion Sensors

*W=
$$\frac{1}{2}$$
 Nq x V
q = 1,6 10⁻¹⁹
10⁻¹⁴ J == 125,000 electrons

 In current mainstream systems, the lower-edge system-level energy per one bit *transition is ~10⁻¹⁴ J, which is referred as the "benchmark".



Towards Cyber Physical Systems (CPS)


Eléments Physiques

- Permittivité du vide, $\varepsilon 0 = 8,854 \ 10^{-12}$
- Permittivité du Silicium $\varepsilon = \varepsilon r \times \varepsilon 0 = 11,68 \times \varepsilon 0$
- Charge d'un électron q= 1,6 10⁻¹⁹
- Charge commuté (Q_b) de N_e électrons, Q_b = N_e x q
- Energie stockée dans une capacité (en Joule)
- $W_b = \frac{1}{2} \times C_G \times V_H^2 = \frac{1}{2} Q_b \times V_H$
- $W_b = \frac{1}{2} \times N_e \times q \times V_H$
- Energie dissipée par une transition d'un électron sous une tension de 1V, 1,6 10⁻¹⁹
 Joule

Les portes NAND

- Dimensions d'un transistor
 - Longueur (L) de 1 à 3 μm, largeur (W) de 0,2 ^{*-} à 100 μm, épaisseur de l'isolant (tox) de 2 à 50 nm
 - C = L x W x ε / tox, soit 103 10⁻¹⁵ (F) pour L= 1 μm, W=10 μm, tox= 10 nm
 - Sous 1V la charge associée est d'environ 640,000 électrons
- Une commutation (1/0) d'une porte NAND dissipe une énergie W_b
- Si N_c commutations de portes NAND par secondes sont nécessaire alors la puissance (P_c) consommée est égale à
 - $P_c = N_c \times W_b$

Drain region

region

Internet Of Things

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent, data interchange format

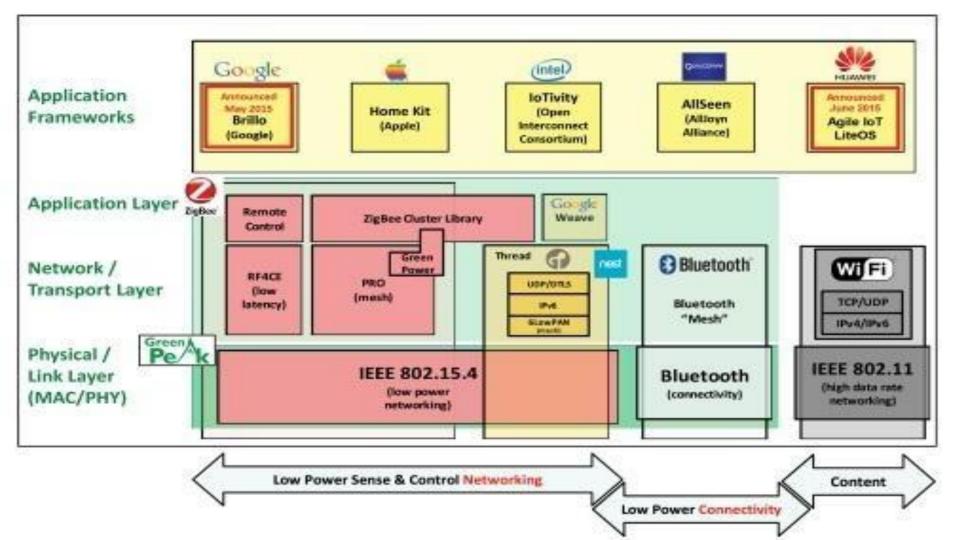
JSON Schema validates a JSON document JSON is used over REST protocols

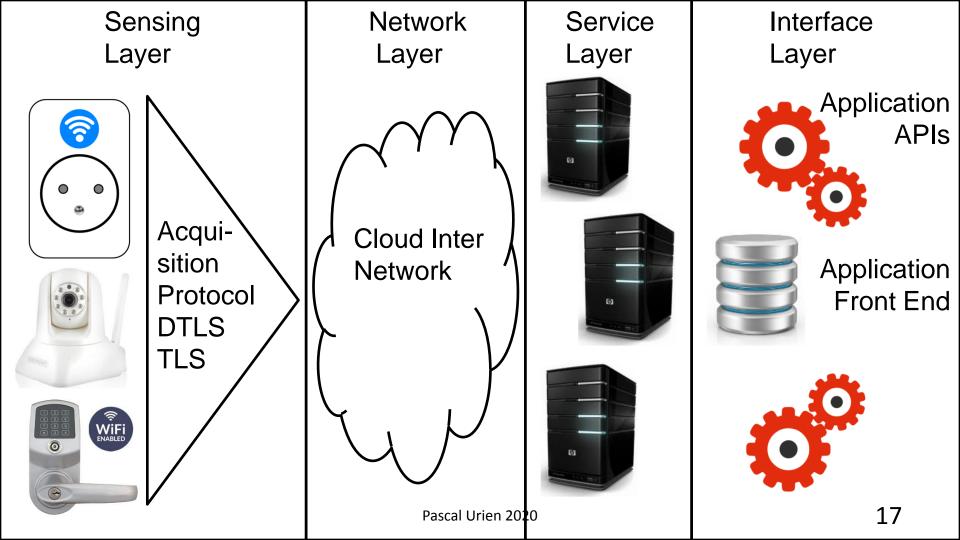
Linux, Contiki, Riot, Iotivity, AllJoyn, Brillo, mbed OS...

Operating System 2

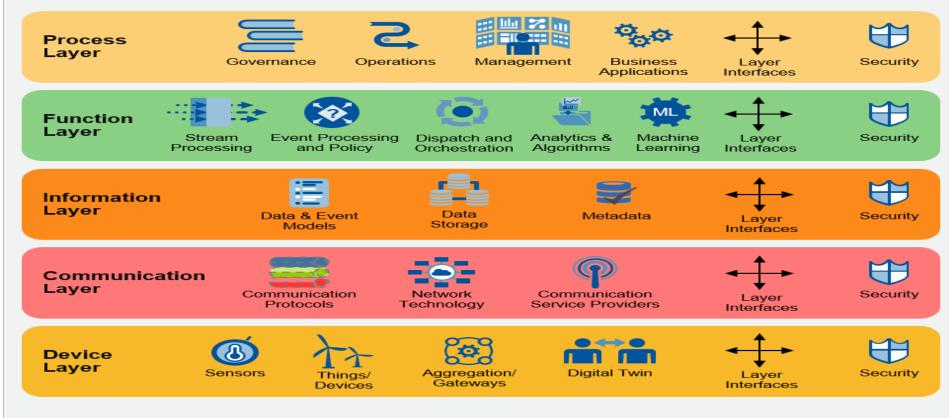
Application Framework

JSON


REST


Communication

Stack


Electronics Board

15

Gartner IoT Reference Model

Platform Tier

- 1) Weak, Guessable, or Hardcoded Passwords
 - Use of easily bruteforced, publicly available, or unchangeable credentials, including backdoors in firmware or client software that grants unauthorized access to deployed systems (https://www.shodan.io/)

- 2) Insecure Network Services
 - Unneeded or insecure network services running on the device itself, especially those exposed to the internet, that compromise the confidentiality, integrity/authenticity, or availability of information or allow unauthorized remote control...

- 3) Insecure Ecosystem Interfaces
 - Insecure web, backend API, cloud, or mobile interfaces in the ecosystem outside
 of the device that allows compromise of the device or its related components.
 Common issues include a lack of authentication/authorization, lacking or weak
 encryption, and a lack of input and output filtering.

4) Lack of Secure Update Mechanism

 Lack of ability to securely update the device. This includes lack of firmware validation on device, lack of secure delivery (un-encrypted in transit), lack of antirollback mechanisms, and lack of notifications of security changes due to updates.

5) Use of Insecure or Outdated Components

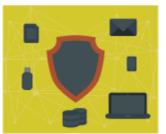
 Use of deprecated or insecure software components/libraries that could allow the device to be compromised. This includes insecure customization of operating system platforms, and the use of third-party software or hardware components from a compromised supply chain

• 6) Insufficient Privacy Protection

 User's personal information stored on the device or in the ecosystem that is used insecurely, improperly, or without permission.

• 7) Insecure Data Transfer and Storage

 Lack of encryption or access control of sensitive data anywhere within the ecosystem, including at rest, in transit, or during processing.


- 8) Lack of Device Management
 - Lack of security support on devices deployed in production, including asset management, update management, secure decommissioning, systems monitoring, and response capabilities.

- Devices or systems shipped with insecure default settings or lack the ability to make the system more secure by restricting operators from modifying configurations.
- 10) Lack of Physical Hardening
 - Lack of physical hardening measures, allowing potential attackers to gain sensitive information that can help in a future remote attack or take local control of the device.

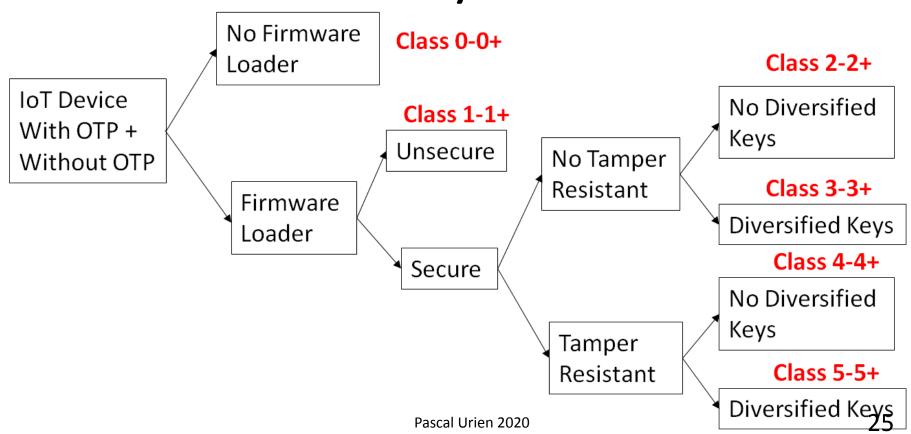
Class 0: RAM<<10KB FLASH<<100KB

- Class 0 devices are very constrained sensor-like motes.
- They are so severely constrained in memory and processing capabilities that most likely they will not have the resources required to communicate directly with the Internet in a secure manner (rare heroic, narrowly targeted implementation efforts notwithstanding).
- Class 0 devices will participate in Internet communications with the help of larger devices acting as proxies, gateways, or servers.
- Class 0 devices generally cannot be secured or managed comprehensively in the traditional sense.
- They will most likely be preconfigured (and will be reconfigured rarely, if at all) with a very small data set. For management purposes, they could answer keepalive signals and send on/ off or basic health indications.

•RFC 7228, Terminology for Constrained-Node Networks

Class 1: RAM 10KB, FLASH 100KB

- Class 1 devices are quite constrained in code space and processing capabilities, such that they cannot easily talk to other Internet nodes employing a full protocol stack such as using HTTP, Transport Layer Security (TLS), and related security protocols and XML-based data representations.
- However, they are capable enough to use a protocol stack specifically designed for constrained nodes (such as the Constrained Application Protocol (CoAP) over UDP) and participate in meaningful conversations without the help of a gateway node.
- In particular, they can provide support for the security functions required on a large network. Therefore, they can be integrated as fully developed peers into an IP network, but they need to be parsimonious with state memory, code space, and often power expenditure for protocol and application usage.


•RFC 7228, Terminology for Constrained-Node Networks

CLASS 2: RAM 50KB, FLASH 250KB

- Class 2 devices are less constrained and fundamentally capable of supporting most of the same protocol stacks as used on notebooks or servers.
- However, even these devices can benefit from lightweight and energy-efficient protocols and from consuming less bandwidth.
- Furthermore, using fewer resources for networking leaves more resources available to applications.
- Thus, using the protocol stacks defined for more constrained devices on Class 2 devices might reduce development costs and increase the interoperability.

•RFC 7228, Terminology for Constrained-Node Networks

Security Classes

IoT Functionality Attack

- The paper* introduces "a new taxonomy of attacks on IoT devices, which is based on how the attacker deviates feature from their official functionality". It defines four types of attacking behavior,
 - 1) Ignoring the functionality,
 - 2) Reducing the functionality,
 - 3) Misusing the functionality,
 - 4) Extending the functionality.

Our experimental setup includes two main parts:

- hat includes a smart LED light bulb, and a controller connected to a PC running our software. Both of them are standard unmodified smart light components.
- A receiving setup that includes a laptop, light sensor, Arduino board and telescope.

*Extended Functionality Attacks on IoT Devices: The Case of Smart Lights, (Invited Paper), Eyal Ronen, Adi Shamir

Pascal Urien 2020

Examples of IoT Systems

- Thread
 - 6LowPAN, DTLS+Password, Commissionner-Joiner architecture, supported by NEST boards
- Open Connectivity Foundation (OCF)
 - 6LowPAN, DTLS+Authentication, Access Control List (ACL), REST API, Iotivity framework
- MBED stack from the ARM company
 - IPv4, 6LoPAN, TLS/DTLS, HTTP, CoAP, MQTT, LWM2M. IBM KIT
- The HAP (HomeKit Accessory Protocol) from Apple
 - BlueTooth, Wi-Fi, HTTP, JSON, application security, Secure Remote Password procedure (SRP, RFC 5054).
- Brillo and Weave from Google
 - Brillo is an OS, 35MB footprint. Weave is a communications platform. 802.15.4 (zigbee, threads), BLE, Wi-Fi, Ethernet. HTTPS. Schema Driven (JSON)associates Weave XMPP requests with application function invocations. OAuth 2.0 Authentication, Google as Authentication Server (AS). Intel® Edison Board.
- Philips Hue Bulbs
 - ZigBee Light Link (ZLL). A same link key is shared by all nodes. Bridge with IP/UDP interface.
- Amazon Dash Button
 - Wi-Fi, Bluetooth, HTTPS, Mobile phone as a bridge with AWS
- IKEA TRADFRI
 - ZigBee Light Link (ZLL). Bridge with IP/UDP/DTLS/CoAP/LWM2M iinterface..

In summary: Security for IoT

- MAC level
 - Wi-Fi (IEEE 802.11i, WPA2)
 - Bluetooth Pairing
 - Zibgee (Unique MasterKey + Shared Link Key)
 - Lora (Client AES Key), SigFox (HMAC Client Key)
- TLS/DTLS Stacks
 - IETF CoAP
 - OCF
 - THREAD
- Applicative security
 - HomeKit Accessory Protocol

- Operating System /Bootloader Security
 - Integrity
 - Secure updates
 - Secure Storage

Application Layer		
UDP + DTLS		
Distance Vector Routing		
IPv6		
6LowPAN		
IEEE 802.15.4 MAC		
(including MAC Security)		
Physical Radio (PHY)		

	HomeKit HomeKit Accessory Protocol		
	Generic Attribute Profile		
	(GATT)	JSON	
	Attribute Protocol (ATT)	HTTP	
	L2CAP	TCP	
	BlueTooth LE	IP	
Pa scal Urien 2020 29			

Example 1. Thread

https://www.threadgroup.org

DTLS + J-PAKE Authentification

Thread

Standard

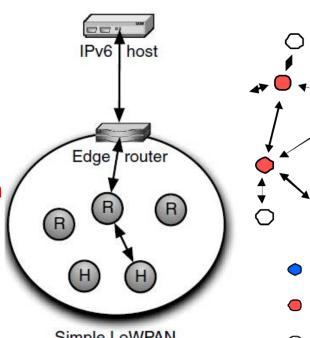
J-PAKE is a passwordauthenticated key exchange (PAKE) with "juggling" (hence the "J"), see RFC 8236 It essentially uses elliptic curve Diffie-Hellmann for key agreement and Schnorr signatures as a NIZK (Non-Interactive Zero-Knowledge) proof mechanism, see RFC 8235

Application Layer UDP + DTLS **Distance Vector Routing** IPv6 6LowPAN IEEE 802.15.4 MAC (including MAC security) Physical Radio (PHY)

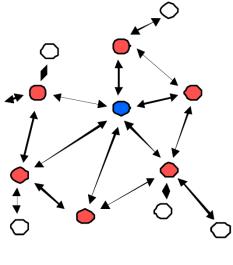
RFC 768, RFC 6347, RFC 4279, RFC 4492, RFC 3315, RFC 5007

RFC 1058, RFC 2080

RFC 4944, RFC 4862, RFC 6282, RFC 6775

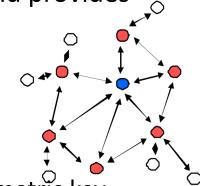

IEEE 802.15.4 (2006)

31


6LoWPAN = IPv6 + Adaptation Layer

IEEE 802.15.4
MAC Frame Size 127 Bytes
IPv6 header 40 Bytes
TCP header 20 Bytes

IEEE 802.15.4. Segmentation/Assembly operations are performed by an Adaption Layer and two kinds of routing mechanisms are supported mesh-under (performed in the adaptation layer) and route-over (performed in the IPv6 layer).



- Coordinator
- Router
- End Device

Pascal Urien 2020 32

IEEE 802.15.4

- Coordinator is assumed to be the Trust Center (TC) and provides
 - Cryptographic key establishment
 - Key transport
 - Frame protection
 - Device management
- Cryptographic Keys
 - Master Key, basis for long term security used for symmetric key establishment. It is used to keep confidential the Link Keys exchange between two nodes in the Key Establishment Procedure (SKKE).
 - Link Key, shared between two network peers for Unicast communication.
 - Network Key, used for broadcast communication security.

Thread Entities

Border Router

 Interface point for the Commissioner when the Commissioner is on a non-Thread Network.

Commissionner

 The currently elected authentication server for new Thread devices and the authorizer for providing the network credentials they require to join the network.

Petitioning

 The process of authenticating and authorizing a Commissioner Candidate onto the Thread Network through a representative (typically the Border Router).

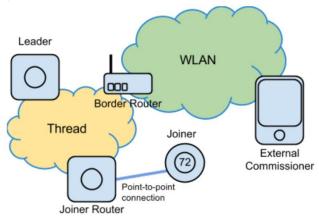
Thread Entities

Joiner

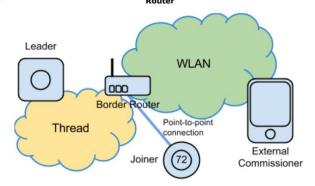
 The device to be added by a human administrator to a commissioned Thread Network. The Joiner does not have network credentials.

Joiner Router

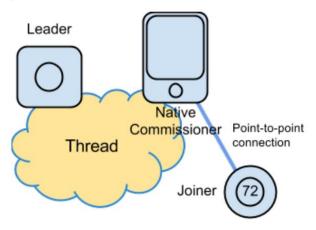
 An existing Thread router or REED (Router-Eligible End Device) on the secure Thread Network that is one radio hop away from the Joiner.

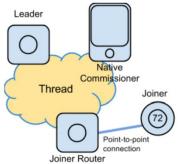

KEK

 Key Establishment Key used to secure delivery of the network-wide key and other network parameters to the Joiner.

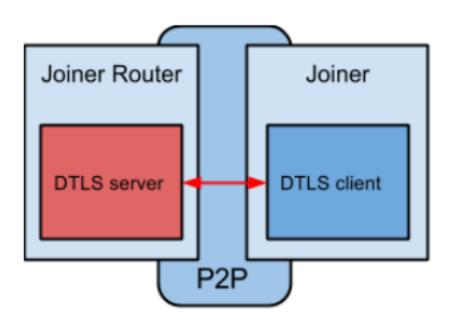

Leader

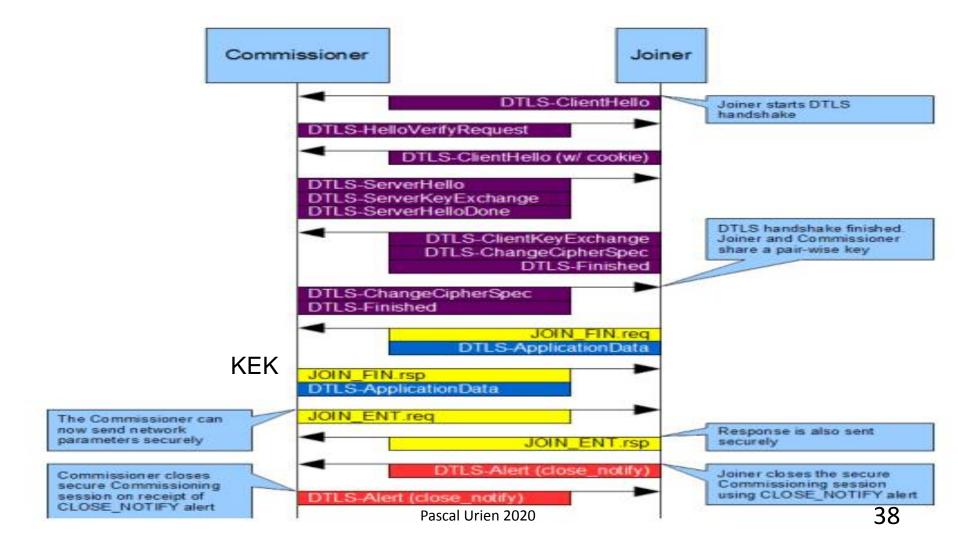
The device responsible for managing router ID assignment.

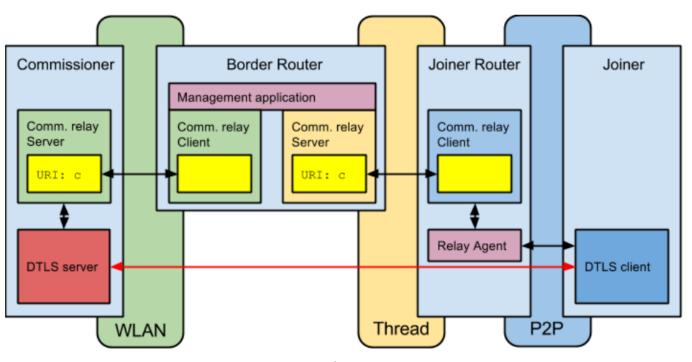

Case 1: External Commissioner connected to the WLAN, Border Router is not Joiner Router

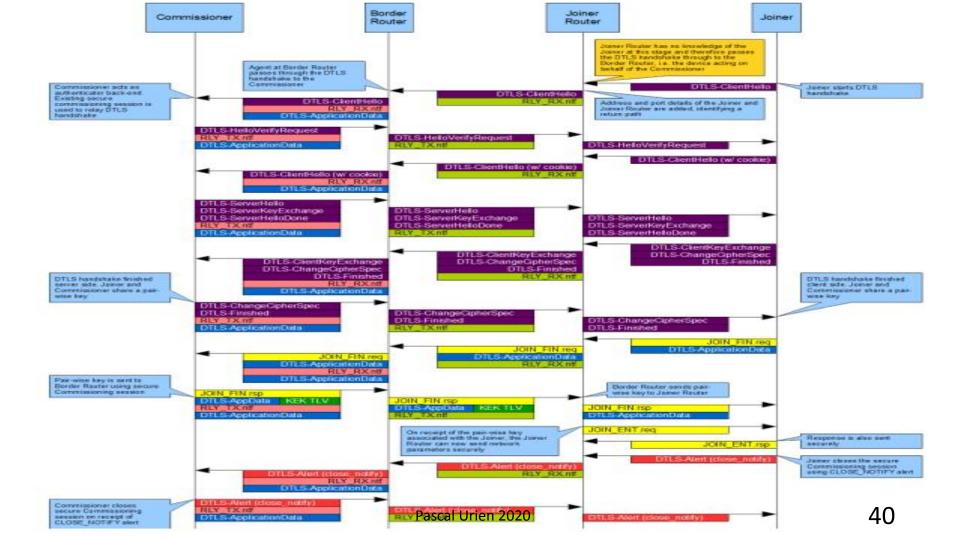

Case 2: External Commissioner connected to the WLAN, Border Router is Joiner Router

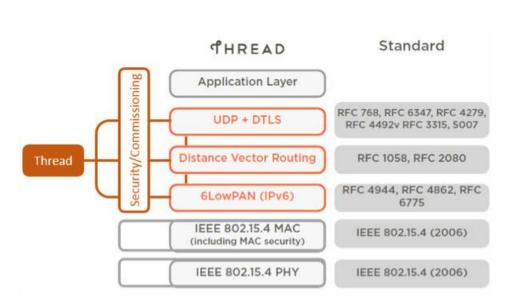
Case 4: Native Commissioner connected to Thread Network, Joiner Router is Commissioner



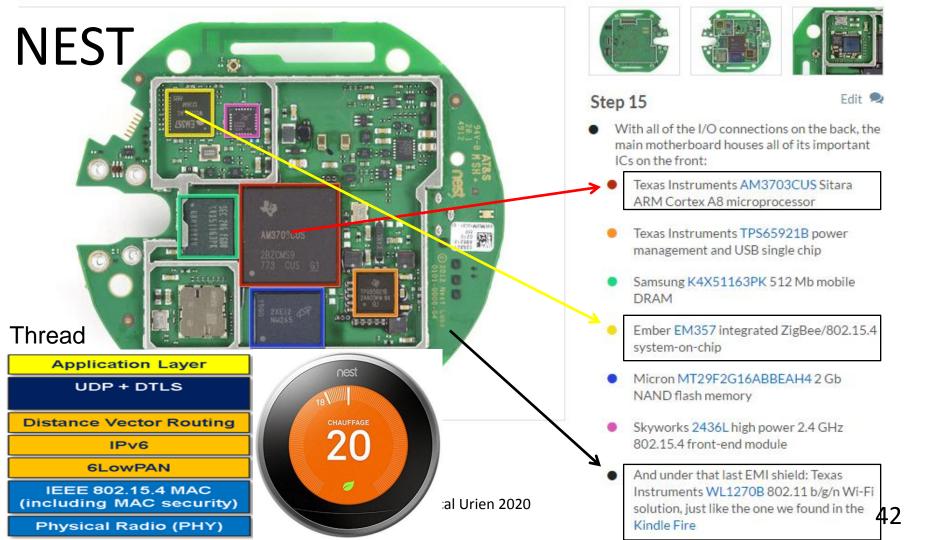

Case 3: Native Commissioner connected to the Thread Network, Joiner Router is not Commissioner

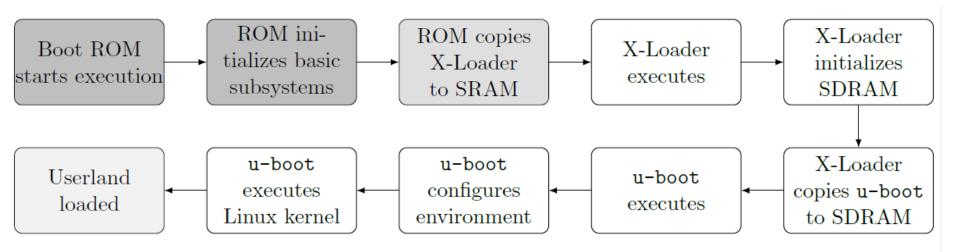

Pascal Urien 2020 36


Joiner Router Is Commissioner



Joiner–Joiner Router–Border Router–Commissioner


THREAD BOARD



http://www.silabs.com/

A global reset of the device can be triggered by pressing its button for about 10 seconds. Among other things, this causes the sys boot 5 pin to go high, triggering peripheral booting. Coincidentally, the sys boot 5 pin is directly exposed in an unpopulated header within the main circuit board, which can be utilized to directly trigger the USB booting behavior. Since the ROM does no cryptographic checks of the code being loaded, it freely executes this code, allowing total control of the device.

"Smart Nest Thermostat: A Smart Spy in Your Home", Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin

43

Example 2. Open Connectivity Foundation (OCF)

https://openconnectivity.org/

The Open Connectivity Foundation (OCF) is creating a specification and sponsoring an open source project to make this possible.

The OCF sponsors the IoTivity open source project which includes a reference implementation of our specification available under the Apache 2.0 license.

The OCF sponsors the IoTivity open source project which includes a reference implementation of our specification

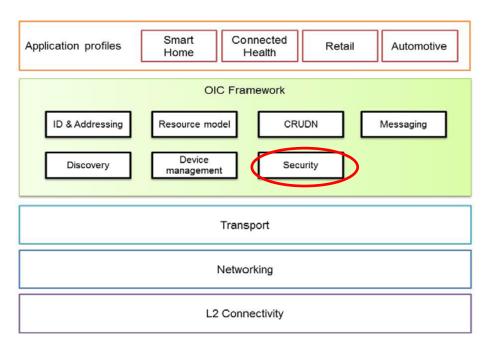
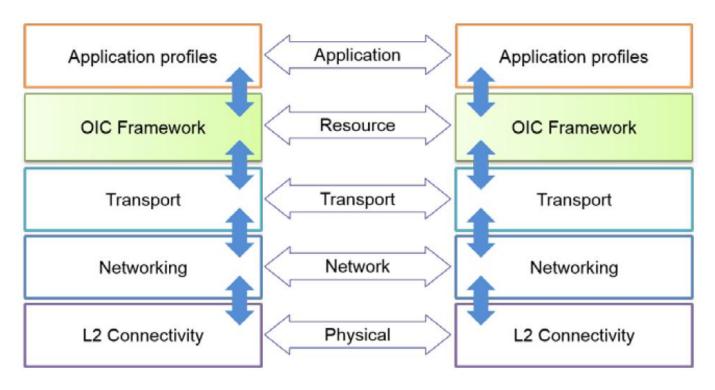



Figure 2: OIC functional block diagram

CRUDN: Create, Read, Update, Delete, Notify OIC: Open Interconnect Consortium

- L2 connectivity: Provides the functionalities required for establishing physical and data link layer connections (e.g., Wi-FiTM or Bluetooth® connection) to the network.
- Networking: Provides functionalities required for Devices to exchange data among themselves over the network (e.g., Internet).
- Transport: Provides end-to-end flow transport with specific QoS constraints. Examples of a transport protocol include TCP and UDP or new Transport protocols under development in the IETF, e.g., Delay Tolerant Networking (DTN).
- OIC Framework: Provides the core functionalities as defined in this specification. The functional block is the source of requests and responses that are the content of the communication between two Devices.
- Application profile: Provides market segment specific data model and functionalities, e.g., smart home data model and functions for the smart home market segment.

OCF Stack

OIC: Open Interconnect Consortium

47

Security

Secure Storage

- It is strongly recommended that IoT device makers provide reasonable protection for Sensitive Data so that it cannot be accessed by unauthorized devices, groups or individuals for either malicious or benign purposes.
- In addition, since Sensitive Data is often used for authentication and encryption, it must maintain its integrity against intentional or accidental alteration.

Security

- Device Authentication with DTLS
 - Device Authentication with Symmetric Key
 Credentials
 - Device Authentication with Raw Asymmetric Key
 Credentials
 - Device Authentication with Certificates

Security

Secure Boot

- In order to ensure that all components of a device are operating properly and have not been tampered with, it is best to ensure that the device is booted properly.
- There may be multiple stages of boot.
- The end result is an application running on top an operating system that takes advantage of memory, CPU and peripherals through drivers.

Access Control List (ACL)

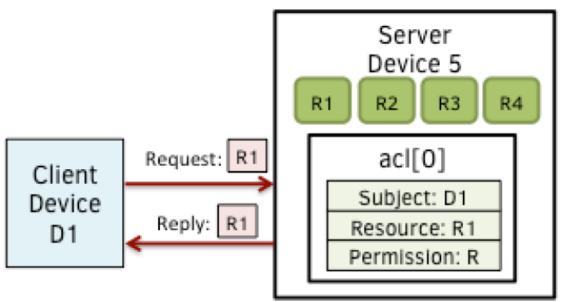
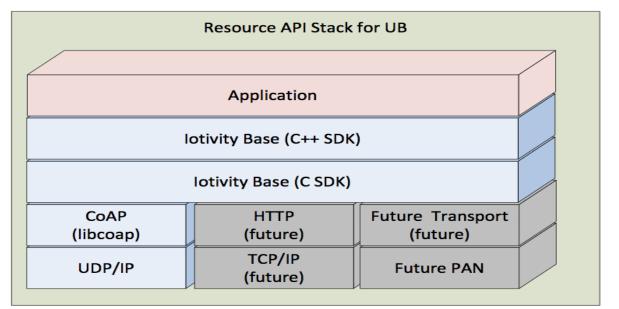
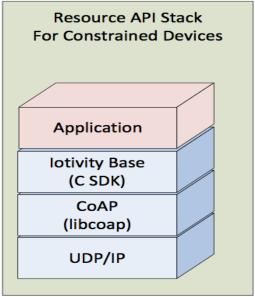



Figure 2 – Use case-1 showing simple ACL enforcement


IOTIVITY

https://www.iotivity.org/

Unified Block (UB) stack

Thin Block (TB) stack

IoTivity is an open source software framework enabling seamless device-todevice connectivity to address the emerging needs of the Internet of Things. It supports multiple operating systems: Linux, Android, Tize, Arduino

52

Unified Resource Identifier

oic://<Authority>/<Path>?<Query>

The usual form of the authority is:

<host>:<port>, where <host> is the name or endpoint network address and <port>
is the network port number.

The *path* shall be unique string that unambiguously identifies or references a resource within the context of the Server

A query string shall contain a list of <name>=<value> segments (aka "name-value pair") each separated by a ';' (semicolon). The query string will be mapped to the appropriate syntax of the protocol used for messaging. (e.g., CoAP).

Resource = URI + Properties

```
/my/resource/example
{
"rt": "oic.r.foobar",
"if": "oic.if.a",
"value": "foo value"
}
```

Properties are "key=value" pairs and represent state of the Resource

URI

Properties

Resource Type ("rt")

Resource Interface ("if")

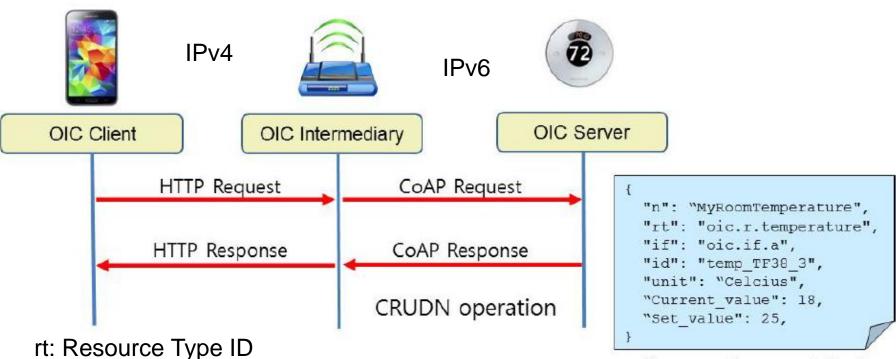
Resource Name ("n")

Resource Identity ("jd"):

Interface	Name	Applicable Methods	Description
baseline	oic.if.baseline	RETRIEVE, UPDATE	The baseline Interface defines a view into all Properties of a Resource including the Meta Properties. This Interface is used to operate on the full Representation of a Resource.
links list	oic.if.ll	RETRIEVE	The 'links list' Interface provides a view into Links in a Collection (Resource).
			Since Links represent relationships to other Resources, the links list interfaces may be used to discover Resources with respect to a context. The discovery is done by retrieving Links to these Resources. For example: the Core Resource /oic/res uses this Interface to allow discovery of Resource "hosted" on a Device.
batch	oic.if.b	RETRIEVE, UPDATE	The batch Interface is used to interact with a collection of Resources at the same time. This also removes the need for the Client to first discover the Resources it is manipulating – the Server forwards the requests and aggregates the responses
read-only	oic.if.r	RETRIEVE	The read-only Interface exposes the Properties of a Resource that may be 'read'. This Interface does not provide methods to update Properties or a Resource and so can only be used to 'read' Property Values.
read-write	oic.if.rw	RETRIEVE, UPDATE	The read-write Interface exposes only those Properties that may be both 'read' and "written" and provides methods to read and write the Properties of a Resource.
actuator	oic.if.a	CREATE, RETRIEVE, UPDATE	The actuator Interface is used to read or write the Properties of an actuator Resource.
sensor	oic.if.s	RETRIEVE	The sensor Interface is used to read the Properties of a sensor ResaggeLyrien 2020

OCF REST

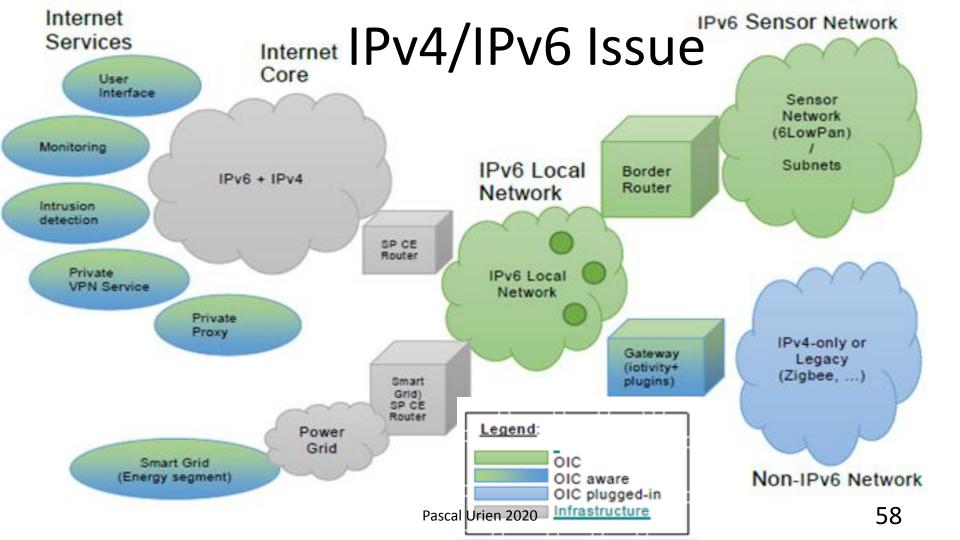
```
Request: GET /a/act/heater?if="oic.if.a"
Response:
{ "prm": {"sensitivity": 5, "units": "C",
"range": "0 .. 10"},
  "settemp": 10,
  "currenttemp": 7
Request: POST /a/act/heater?if="oic.if.a"
{ "settemp": 20 }
Response:
```


oic://server:port

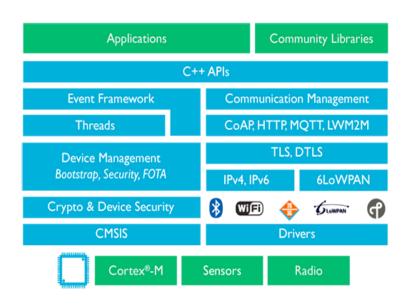
```
/my/resource/example
{
"rt": "oic.r.foobar",
"if": "oic.if.a",
"value": "foo value"
}
Properties
```

Resource Type ("rt")
(Resource) Interface ("if")
(Resource) Name ("n")
Resource Identity ("id"):

56

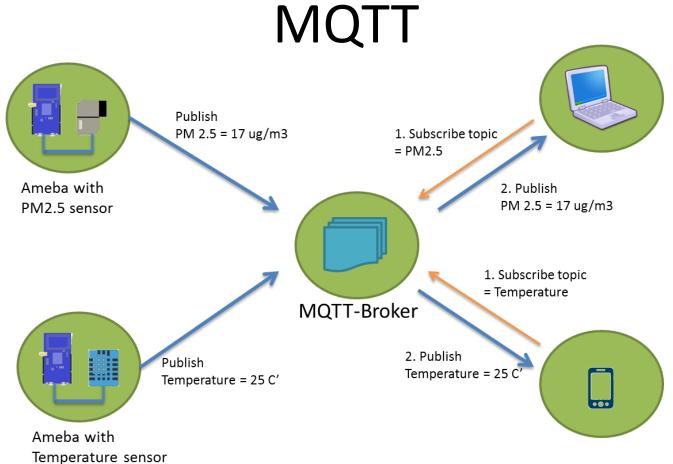

CoAP /HTTP

if: Interface

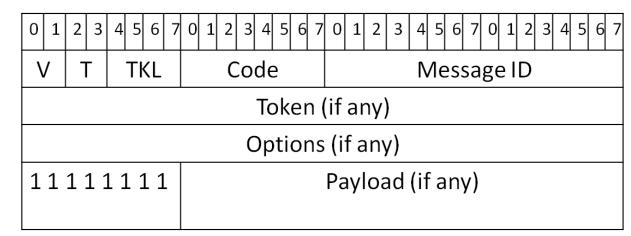

Resource (representation)

Pascal Urien 2020 57

Example 3. MBED


MBED stack from the ARM company

IoT Protocols


- HTTP (most of today IP objects)
 - As an illustration some connected plugs work with the HNAP (Home Network Administration Protocol) protocol based on SOAP and used in CISCO routers. In 2014 HNAP was infected by" The Moon".
- MQTT protocol, is a Client Server publish/subscribe messaging transport protocol that is secured by TLS.

CoAP, RFC 7252

- CoAP (Constrained Application Protocol), RFC 7252 is designed according to the Representational State Transfer (REST) architecture, which encompasses the following six features:
 - 1) Client-Server architecture;
 - 2) Stateless interaction;
 - 3) Cache operation on the client side;
 - 4) Uniform interface;
 - 5) Layered system ;
 - 6) Code On Demand.
- CoAP is an efficient RESTfull protocol easy to proxy to/from HTTP, but which is not understood in an IoT context as a general replacement of HTTP.
 - It is natively secured by DTLS (the datagram adaptation of TLS), and works over a DTLS/UDP/IP stack. Nerveless the IETF is currently working on a CoAP version compatible with a TLS/TCP/IP stack.

CoAP Details

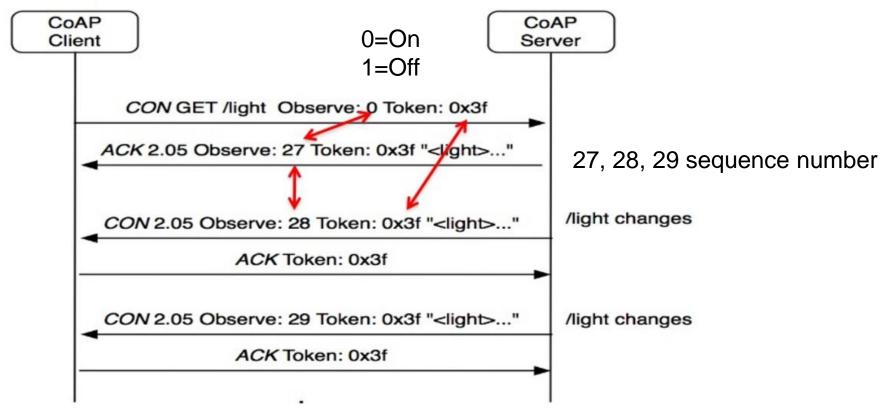
Version (V): protocol version (01).

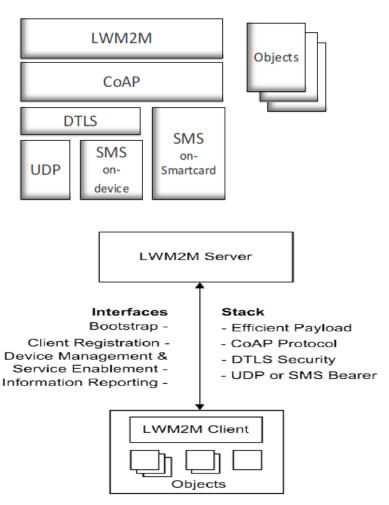
Type (T) message type:

Confirmable (CON), Non-confirmable (NON), Acknowledgement (ACK) or Reset.

Token Length (TKL)/ is the length of the Token field (0-8 bytes).

The Code field: identifies the method and is split in two parts a 3-bit class and a 5-bit detail documented as "c.dd" where "c" is a digit from 0 to 7 and "dd" are two digits from 00 to 31. 0.01 GET, 0.02 POST, 0.03 PUT and 0.04 DELETE.


Message ID: matches messages ACK/Reset to messages CON/NON previously sent.

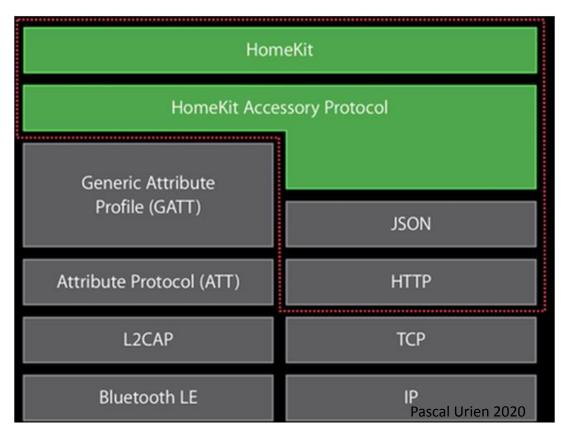

The Token (0 to 8 bytes): is used to match a response with a request.

Options: give additional information such as Content-Format dealing with proxy operations.

64

Observe option (Observe: int value)

M2M Device


LWM2M

- LWM2M (Lightweight Machine to Machine Technical Specification) is a framework based on CoAP dealing with objects hosted by LWM2M clients and communicating with LWM2M servers
- LWM2M manages the following interfaces
 - Bootstrap
 - Client Registration (with servers)
 - Device management
 - Information Reporting
- Two transport mechanism ("transport channel bindings")
 - UDP/IP
 - SMS

66

Example 4. Home Kit

HOME Kit (Apple)

Protocol Security

- End-to-end encryption
- Initial setup secured directly between iOS and accessory
- Perfect forward secrecy
- Standard cryptography

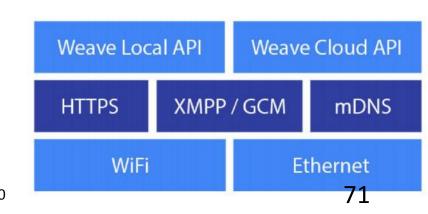
The HAP (HomeKit
Accessory Protocol) initial
pairing exchange is based on
the Secure Remote Password
procedure (SRP, RFC 5054)
which deals with a 8 digits PIN
code available for every
accessory.
68

HAP Security Details

- Secure Remote Password (SRP) Encrypts and authenticates initial pairing key exchange
- Ed25519 Long-term keys for pairing and authentication
- Curve25519 Encrypts initial authentication for each session
- HKDF-SHA-512 Per-session ephemeral encryption key derivation
- ChaCha20-Poly1305 Encrypts and authenticates HAP data

Example 5. Brillo & Weave

Brillo & Weave

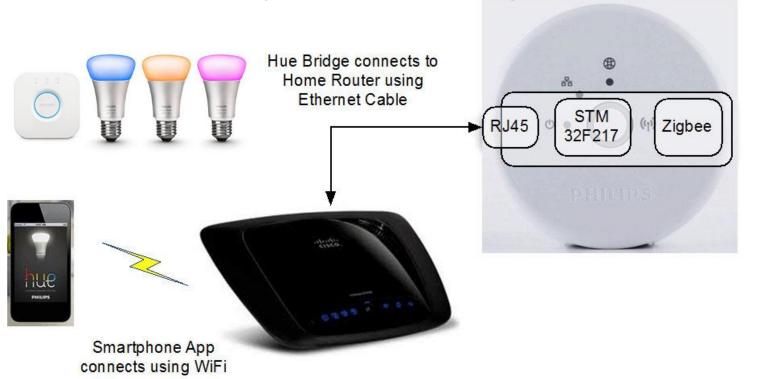

Brillo is an OS from Google for building connected devices.
35MB Memory
Footprint (minimum)

The Intel® Edison Board Made for Brillo.

Weave is a communications protocol that supports discovery, provisioning, and authentication so that devices can connect and interact with one another, the Internet, and your mobile platforms.

Pascal Urien 2020

Brillo and Weave


Weave is a communications platform for IoT devices

- Device setup, phone-to-device-to-cloud communication
- User interaction from mobile devices and the web
- Transports: 802.15.4 (zigbee, threads), BLE, Wi-Fi, Ethernet, Others possible
- Schema Driven (JSON) Associates Weave XMPP requests with application function invocations
- Web apps may be written with Google API support
- OAuth 2.0 Authentication, Google as Authentication Server (AS)

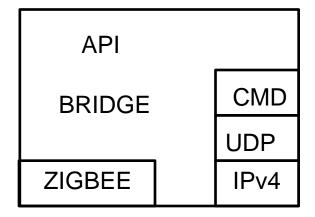
Brillo is Simpler... Smaller...loT Focused

- C/C++ environment
- Binder IPC No Java Applications, framework, runtime
- -No Graphics
- 35MB Memory Footprint (minimum)

Example 6. Philips Hue Bulbs

Hue Bridge using
Zigbee Wireless
network to connect to
Hue Bulbs

73


Hue Bulb System

BULB

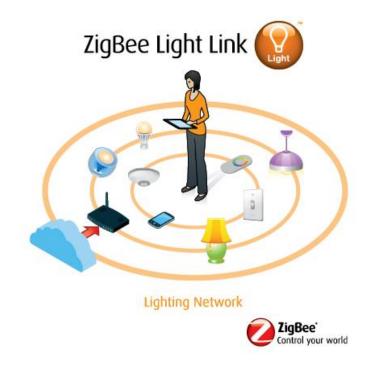
ZIGBEE

BULB

ZIGBEE

The commands are sent in the UDP payload as a short series of bytes with a termination byte of 0x55. For example, the light on command is:

IPHEADER UDPHEADER 0x45 0x00 0x55 and the light off command is:


IPHEADER UDPHEADER 0x41 0x00 0x55

TI 0 (0 (1) 1)

Extended Functionality Attacks on IoT Devices: The Case of Smart Lights (Invited Paper), Eyal Ronen, Adi Shamir

http://www.developers.meethue.com/

Pascal Urien 2020 74

ZigBee Light Link within the Family

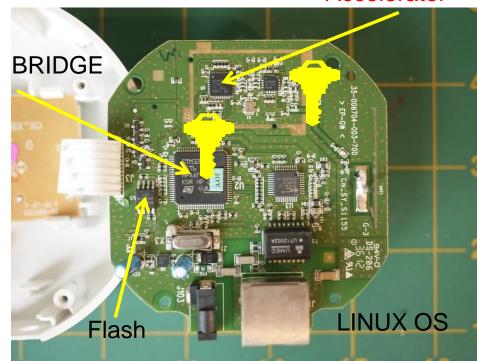
ZGP ZRC ZID Z3S ZIP MAC PHY	ZRC ZigBee Remote Control ZID ZigBee Interface Devices Z3S ZigBee 3D Synch ZIP ZigBee Internet Protocol			ZSE ZigBee Smart Energy ZHA ZigBee Home Automation ZLL ZigBee Ligit Link ZBA ZigBee Building Automation ZTS ZigBee Telecom Services ZRS ZigBee Retail Services ZHC ZigBee Health Care									
		F	RF4CI	E				PRO	,				IP
Appli Profi	ication le	ZRC	ZID	Z3S	ZLL		ZBA		zrs	ZHC	ZSE 1.X		ZSE 2.0
Netw	Network ZigBee RF		4CE		Ü		gBee	PRO			ZigBee IP (IETF based)	Alternate IP Transport	
MAC					IEEE 802.15.4 – MAC				Alternate MAC				
PHY	PHY IEEE 802.15.4 – sub (specified per regi							Alternate PHY					

"The ZLL security architecture is based on using a fixed secret key, known as the ZLL key, which shall be stored in each ZLL device. All ZLL devices use the ZLL key to encrypt/decrypt the exchanged network key."

Pascal Urien 2020 75

https://brandonevans.ca/projects/hacking-the-hue

A LIGHTBULB WORM?, Details of the Philips Hue Smart Lighting Design, Colin O'Flynn – August 1, 2016.

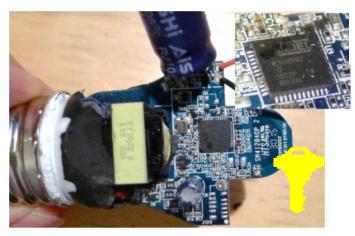

These bridges contain two sections: the main ARM processor, and the Zigbee ZLL solution (referred to as the 'Zigbee SoC').

The main ARM processor is a STM32F217VET6 by ST.

This is a Cortex M3 device, with 512 Kbyte FLASH memory (internal) + 128 Kbyte of SRAM (internal). It contains a number of cryptographic hardware accelerators (AES + 3DES + MD5 + SHA-1).

The ZigBee section is of most interest to us. It contains a CC2530F256 IEEE 802.15.4 SoC, alongside a CC2590 "range extender" (i.e., amplifier)

ZigBee SoC Includes a Hardware Accelerator


BULB

The firmware updates are downloaded Over The Air (OTA).

The firmware file itself can be downloaded from a fixed URL, and contains an encrypted firmware file.

The core processor is an Atmel ATMega2564RFR2.

An IEEE 802.15.4 compliant single chip combines an industry-leading AVR microcontroller and best-in-class 2.4GHz RF transceiver.

- 256K Bytes In-System, Self-Programmable Flash memory, 8K Bytes EEPROM, 32K Bytes SRAM).
- Crypto Engine AES

Our attack proceeds in the following way: We send a unicast Reset to Factory New Request command to our target Philips Hue light....This causes the light to start a ZigBee association process and join our network

Bulb reprogramming from drone


Each firmware update had to be both encrypted and authenticated by AES-CCM (in which AES is used to encrypt a Counter with CBC-MAC); however, all the lamps use the same global key. The key was recovered by a CPA (Correlation Power Analysis) attack.

" IoT Goes Nuclear: Creating a ZigBee Chain Reaction" Eyal Ronen, Colin இரிர்ர்? Adi Shamir and Achi-Or Weingarten (2017)

Example 7. Amazon Dash Button

Button communicates with parker-gatewayna.amazon.com via TLS

When connecting via HTTPS, a certificate signed by the Amazon.com Internal Root Certificate Authority and issued to Amazon.com Infosec CA G2 is presented, which expires 2016-06-22. However, I was not able to successfully connect even after bypassing the certificate error, so it might be using a different protocol over TLS

https://mpetroff.net/2015/05/amazon-dash-button-teardown/

The design seems based on the Broadcom BCM943362WCD4 WICED module reference design, with a Broadcom BCM43362 Wi-Fi module, U9, and an ST STM32F205 microcontroller, U5

Other components on the Dash Button include an InvenSense INMP441 microphone, MP1; a Micron M25P16 16Mbit serial Flash memory module in a UFDFPN8 package, U6

Pascal Urien 2020

Although not mentioned in the documentation, the Dash Button creates a Wi-Fi hotspot when placed in configuration mode, Amazon ConfigureMe, which is used by the Android version of the Amazon Shopping app.

Once connected to this hotspot, a web page is accessible at 192.168.0.1 via HTTP, which allows for configuring the Button's Wi-Fi connection settings.

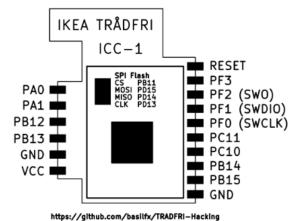
Amazon ConfigureMe

wifi setup

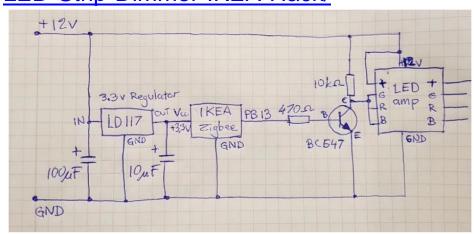
Enter the name and password (if any) of your wireless access point

SSID	add/select a value ▼
Password	
	Configure

https://mpetroff.net/2016/07/new-amazon-dash-button-teardown-jk29lp/



Instead of Broadcom chips, the new Button features an Atmel ATSAMG55J19A-MU ARM microcontroller, U1, and an Atmel ATWINC1500B wireless chip, U19. As a new addition, it also has a Cypress CYBL10563-68FNXI Bluetooth Low Energy chip, U22. The flash memory, U15, has been moved to the back of the PCB and doubled in size to 32 Mbit; it appears to be a Micron N25Q032 chip.


Pascal Urien 2020

Example 8 IKEA TRÅDFRI

https://github.com/basilfx/TRADFRI-Hacking

https://www.instructables.com/id/Zigbee-LED-Strip-Dimmer-IKEA-Hack/

https://learn.pimoroni.com/tutorial/sandyj/controlling-ikea-tradfrilights-from-your-pi

The structure of that payload is as follows: the 3311 represents a dimmer and the 5850 is the toggle for on/off, with 0 being off and 1 being on. Let's put that all together into a call to the coap-client that will toggle the light off:

secret

TRÅDFRI Kit de réglage à distance, E27 19.99 € A*

coap-client -m put -u "Client_identity" -k "la2b3c4d5e6f7g8h" -e '{ "3311": [{ "5850": 0 }] }' "c
oaps://192.168.0.10:5684/15001/65537"

Network Security

LTN: Low Throughput Network

SIGFOX & LORA

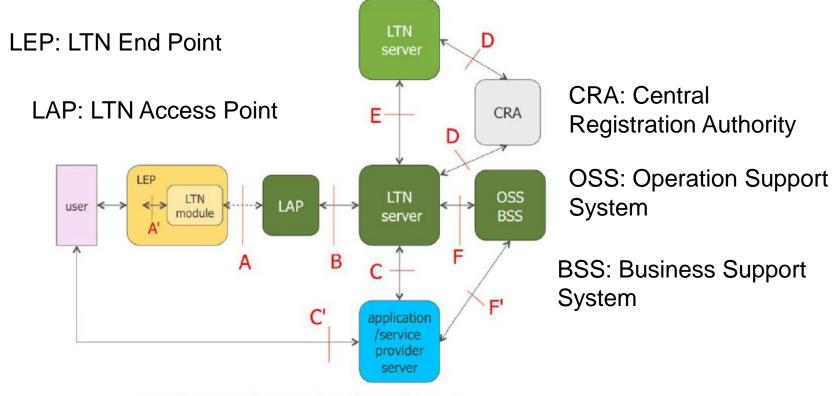


Figure 1: Overall LTN architecture and defined interfaces

LTN: Low Throughput Network

Sigfox

Abonnement; entre un et neuf euros par an et par capteur 140 messages de 12 octets/jour

Pascal Urien 2020

Sigfox: Ultra Narrow Band Network

Radio frequencies

 The SIGFOX network operates in the unlicensed ISM radio bands. The ISM is available worldwide governed by regulation bodies such as ETSI (Europe) and the FCC (USA).

 The exact frequencies can vary depending on national regulations, but in Europe the frequency is generally 868MHz and in the US it is 915MHz.

Uplink and downlink

 SIGFOX provides mono and bidirectional communication.

 The capacity to provide monodirectional communication is very unique and allows extremely low power consumption in use cases where bi-directional communication is not required.

Downlink baud rate: 600 baud For ETSI-zones, UNB downlink frequency band limited to 869,40 to 869,65 MHz

ETSI GS LTN 003 V1.1.1 (2014-09)

5.2.3.2 UNB MAC frame (downlink)

The format of the downlink UNB MAC frame is the following (see figure 3):

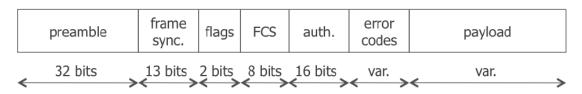


Figure 3: Downlink MAC frame in UNB implementation

5.2.2.2 UNB MAC frame (up-link)

The format of the uplink UNB MAC frame is the following (see figure 2):

HMAC

Figure 2: MAC frame in UNB up-link implementation

A unique identifier, named NID, is given to each UNB end-point. The NID is 32 bit long.

Each UNB end-point has a secret key (SEK). This key is 128 bit long. It is used to authenticate each radio packet transmitted by an UNB end-point.

The SEK authenticates the radio packet but it does not cipher the service payload. Payload ciphering is made at the application level.

SigFox Security

- Sécurité de Sigfox, CAPTRONIC IoT et systèmes embarqués 18 février 2016, Toulouse, Renaud Lifchitz de Digital Security.
- L'équipe de Digital Security est parti d'un modem émetteur Sigfox, et lui a fait émettre des motifs standards (que des 0x00, des 0×55 (suites de 0 et de 1), des 0xAA (suites de 1 et de 0), des 0xFF (suites de 1), et a écouté le signal avec une Software Defined Radio (un Realtek RTL2832U couplé à GnuRadio).
- Ils ont également regardé le firmware du modem avec un debuggeur classique IDA Pro.
- En observant les émissions, ils ont retrouvé que le message est émis 3 fois sur des fréquences légèrement différentes.
- Ils ont également reconstitué le format des trames: elles contiennent l'identificateur de l'émetteur, un compteur de trame sur 12 bits, le message, puis un CRC signé par HMAC.
- On peut donc attendre que le compteur de trames revienne à une valeur que l'on a déjà écoutée et rejouer un message.
- Tous les 4096 messages, donc, ce qui représente tout de même une attente de 29 jours au débit maximal de 140 messages par jour imposé par le réseau.
- À l'aide du debugger et en passant par l'interface physique de debuggage du modem, on arrive également à récupérer la clé secrète utilisée pour la signature du HMAC.
- Le réseau Sigfox présente les vulnérabilités suivantes:
 - Pas de confidentialité
 - Rejeu possible après une attente en écoute passive d'un mois
 - Impersonnification possible après accès physique au modem

LoRaWAN 1.0

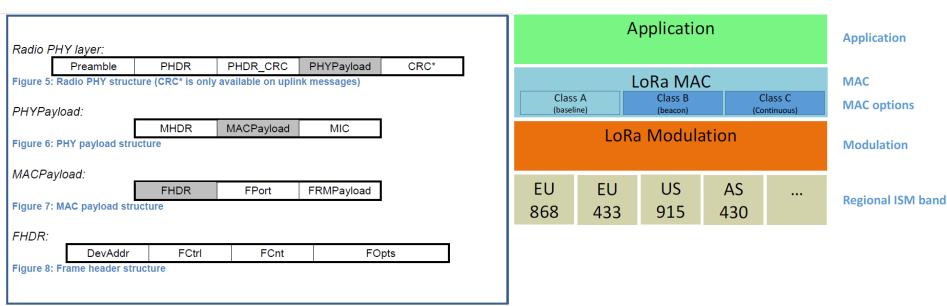


Figure 9: LoRa message format elements

LoRaWAN can use channels with a bandwidth of either 125 kHz, 250 kHz or 500 kHz Maximum MACPayload size length: 11 to 230 bytes depending on the throughput

Pascal Urien 2020 93

Tarifs (pour des quantités < 500)

- Un tarif intégrant la connectivité de la technologie LoRa® et la mise à disposition des données brutes sur Live Objects.
- Un abonnement mensuel par device, intégrant un nombre de messages montants illimité dans le respect du duty cycle (sens de l'Objet vers le réseau).
- En complément, une facturation à l'usage d'envoi de commandes vers les objets (sens descendant du réseau vers l'Objet).
- Une historisation des données du client pendant 1 an.
- Un prix avec engagement 12/24/36 mois, ou sans engagement, avec une facturation globale.

36 mois 1 € / mois

24 mois 1,2 € / mois **12 mois** 1.5 € / mois

sans engagement 2 € / mois

Prix à l'acte pour tous les messages descendants : 0,05 € par message

LoRA Security

The DevEUI is a global end-device ID in IEEE EUI64 address space that uniquely identifies the end-device.

The AppKey is an AES-128 application key specific for the end-device that is assigned by the application owner to the end-device and most likely derived from an application-specific root key

Whenever an end-device joins a network via over-the-air activation, the AppKey is used to derive the session keys NwkSKey and AppSKey specific for that end-device to encrypt and verify network communication and application data

Lora Security

MAC Frame Payload Encryption (FRMPayload)

If a data frame carries a payload, FRMPayload must be encrypted before the message integrity code (MIC) is calculated.

The encryption scheme used is based on the generic algorithm described in IEEE 802.15.4/2006 Annex B using AES with a key length of 128 bits.

The key K used depends on the FPort of the data message

FPort	K
0	NwkSKey
1255	AppSKey
Table 3: FPort list	

The direction field (Dir) is 0 for uplink frames and 1 for downlink frames.

The blocks Ai are encrypted to get a sequence S of blocks Si:

$$Si = aes128 \ encrypt(K, Ai) \ for \ i = 1..k$$

Encryption and decryption of the payload is done by truncating (pld | pad16) xor S, to the first len(pld) octets. 11

96

Lora Join Request

The join procedure is always initiated from the end-device by sending a join-request message.

The join-request message contains the AppEUI and DevEUI of the end-device followed by a nonce of 2 octets (DevNonce).

DevNonce is a random value.

For each end-device, the network server keeps track of a certain number of DevNonce values used by the end-device in the past, and ignores join requests with any of these DevNonce values from that end-device.

Size (bytes)	8	8	2
Join Request	AppEUI	DevEUI	DevNonce

cmac = aes128_cmac(AppKey, MHDR | AppEUI | DevEUI | DevNonce)
MIC = cmac[0..3] 8

Pascal Urien 2020 9

Lora Join Response

No response is given to the end-device if the join request is not accepted.

The join-accept message contains an application nonce (AppNonce) of 3 octets, a network identifier (NetID), an end-device address (DevAddr), a delay between TX and RX (RxDelay) and an optional list of channel frequencies (CFList) for the network the end device is joining.

Size (bytes)	3	3	4	1	1	(16) Optional
Join Accept	AppNonce	NetID	DevAddr	DLSettings	RxDelay	CFList

The AppNonce is a random value or some form of unique ID provided by the network server and used by the end-device to derive the two session keys NwkSKey and AppSKey as follows:

```
NwkSKey = aes128_encrypt(AppKey, 0x01 | AppNonce | NetID | DevNonce | pad16)
```

The MIC value for a join-accept message is calculated as follows:

```
cmac = aes128_cmac(AppKey, MHDR | AppNonce | NetID | DevAddr | RFU | RxDelay | CFList)
```

MIC = cmac[0..3] 31

The join-accept message itself is encrypted with the AppKey as follows:

```
aes128_decrypt(AppKey, AppNonce | NetID | DevAddr | RFU | RxDelay | CFList | MIC)
```

Bluetooth Security

NIST Special Publication 800-121
Revision 2 Guide to
BluetoothSecurity

NIST Special Publication 800-121 Revision 2

Table 2-2. Key Differences Between Bluetooth BR/EDR and Low Energy

Characteristic	Bluetooti	BR/EDR	Bluetooth L	ow Energy
	Prior to 4.1	4.1 onwards	Prior to 4.2	4.2 onwards
RF Physical Channels		n 1 MHz channel cing	40 channels with 2 MHz channel spacing	
Discovery/Connect	Inquiry/	/Paging	Adver	tising
Number of Piconet Slaves	7 (active)/	255 (total)	Unlin	nited
Device Address Privacy	No	one	Private device addressing available	
Max Data Rate	1–3 I	Mbps	1 Mbps via GFSK modulation	
	Prior to 2.1: E21/E22/SAFER+	P-256 Elliptic	AES-128	P-256 Elliptic Curve, AES- CMAC
Pairing Algorithm	2.1-4.0: P-192 Elliptic Curve ⁹ , HMAC-SHA-256	Curve, HMAC- SHA-256		
Device Authentication Algorithm	E1/SAFER HMAC-SHA-256		AES-CCM ¹⁰	
Encryption Algorithm	E0/SAFER+ AES-CCM		AES-CCM	
Typical Range	30	m	50 m	
Max Output Power	100 mW	(20 dBm)	10 mW (10 dBm) ¹¹	

100

Bluetooth Security Modes

Table 3-1. BR/EDR/HS Security Modes

Mode	Security procedures occur during the setup of a	
4	Service	
3	Link	
2	Service	
1	Never	

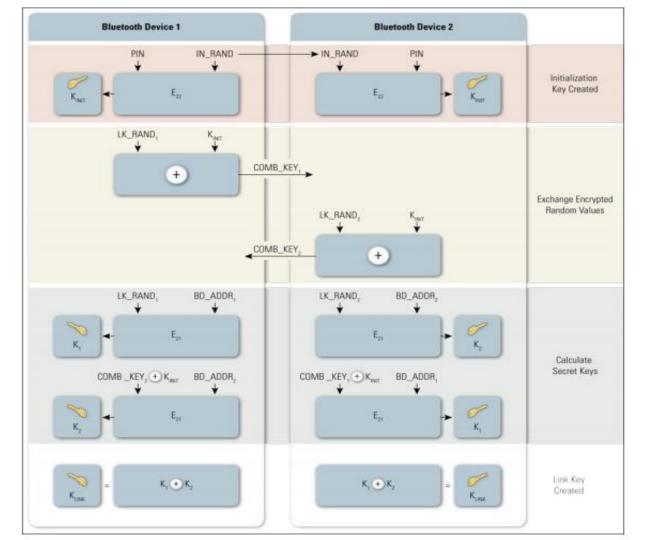
Table 3-2. BR/EDR/HS Security Mode 4 Levels Summary

Mode 4 Level	FIPS approved algorithms	Provides MITM protection	User interaction during pairing	Encryption required
4	Yes	Yes	Acceptable	Yes
3	No	Yes	Acceptable	Yes
2	No	No	Minimal	Yes
1	No	No	Minimal	Yes
0	No	No	None	No

Table 3-3. Most Secure Mode for a Pair of Bluetooth Devices

Local Bluetooth	Most secure Mode connecting to a peer which is			
Version	2.0 or lower	2.1 or higher		
4.2				
4.1				
4.0		Mode 4 (Mandatory)		
3.0				
2.1	Mode 3			
2.0				
1.2		Mode 3		
1.1		wode 3		
1.0				

Table 3-4. Most Secure Level in Mode 4 for a Pair of Bluetooth Devices


Local Bluetooth Version	Most secure Mode 4 <u>Level</u> connecting to a peer which is			
	2.1 – 4.0	4.1 or higher		
4.2		Level 4		
4.1		Level 4		
4.0	Level 3			
3.0		Level 3		
2.1				
2.0				
1.2	N/A	N/A		
1.1	IN/A	IN/A		
1.0				

PIN/Legacy Pairing

- Essential to the authentication and encryption mechanisms provided by Bluetooth is the generation of a secret symmetric key.
 - In Bluetooth BR/EDR this key is called the Link Key
 - In Bluetooth Low Energy this key is called the Long Term Key
- In legacy low energy pairing, a Short Term Key is generated, which is used to distribute the Slave and/or Master Long Term Key, while in low energy Secure Connections, the Long Term Key is generated by each device and not distributed

102

PIN/Legacy Pairing

Secure Simple Pairing SSP

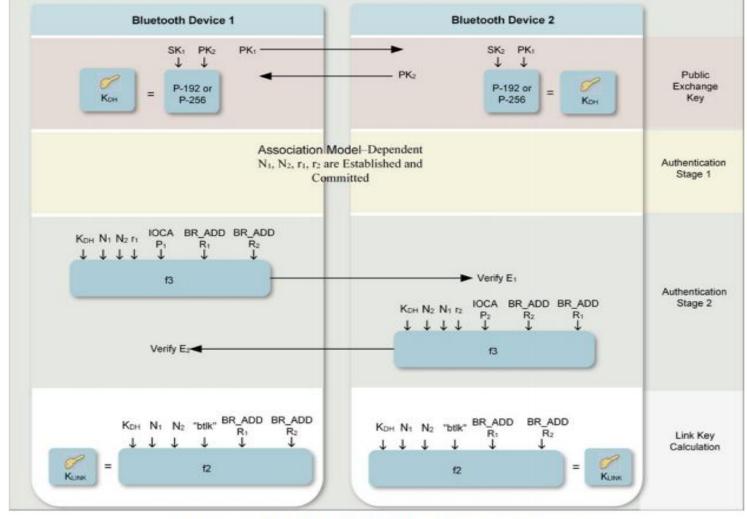
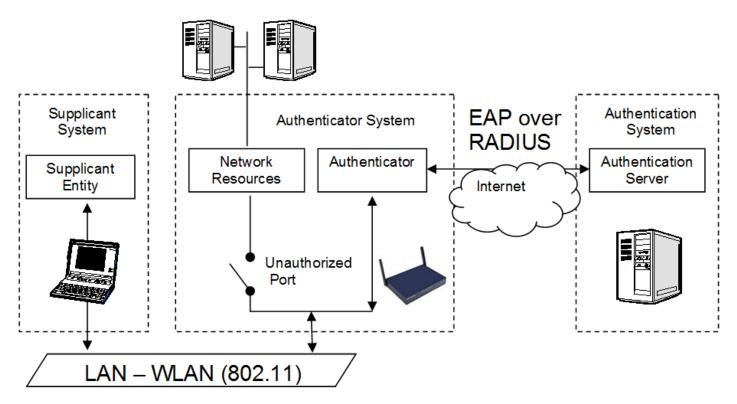
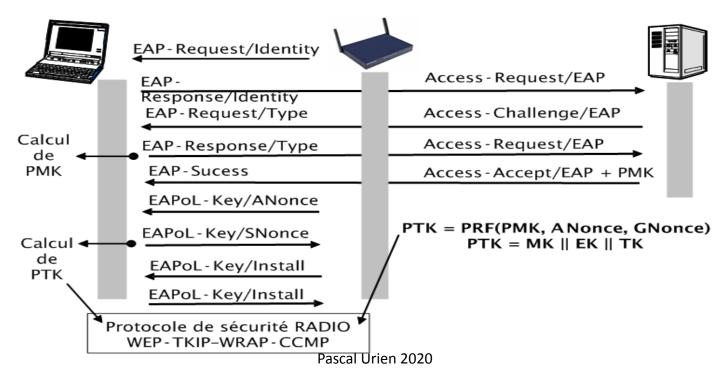



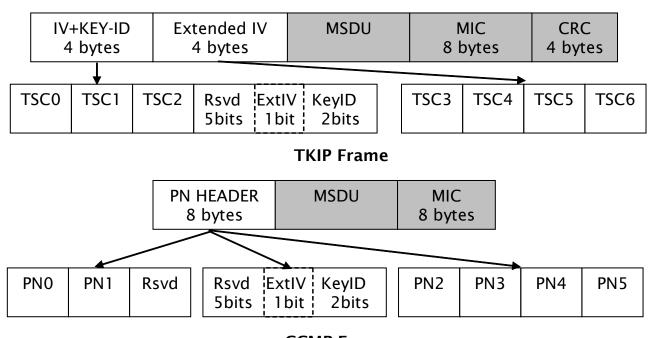
Figure 3-3. Link Key Establishment for Secure Simple Pairing

Wi-Fi Security

IEEE 802.1x



106


IEEE 802.11i: WPA-WPA2-WPA3

- Four ways handshake (PTK).
- Two ways hanshake (GTK).

IEEE 802.1x

WPA-WPA2 MAC Frame

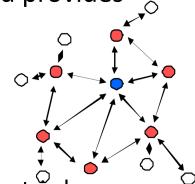
CCMP Frame

Pascal Urien 2020 108

Simple Password Exponential Key Exchange (WPA3)

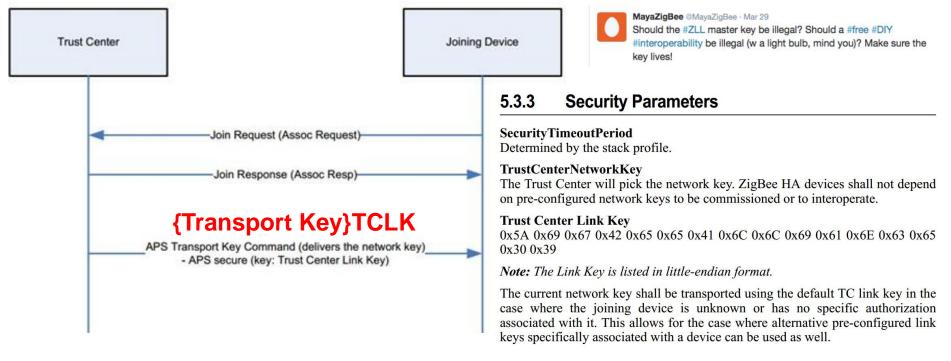
The SPEKE Protocol

	Alice	Bob		
$p \text{ is a safe prime: } p = 2 \cdot q + 1$				
1.	$x \in [1, q - 1]$	$y \in Q$		
2.	$X = (s^2)^x$	\xrightarrow{X}		
3.		$Y = (s^2)^y$		
4.	$K = Y^x = s^{2xy}$	$K = X^y = s^{2xy}$		

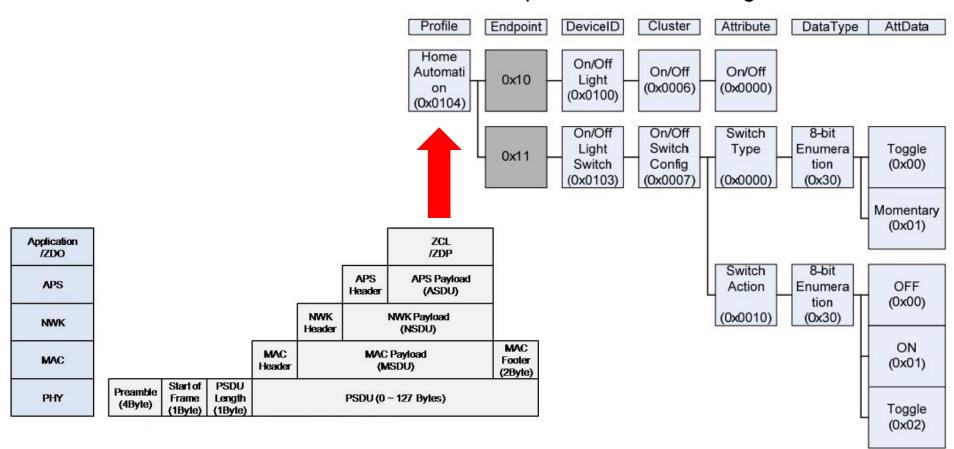

Dragonfly rfc7664 (WPA3)

	Alice		Bob
	$P \in Q$		$P \in Q$
1.	$r_A, m_A \in \{1, \dots, q\}$		$r_B, m_B \in \{1, \dots, q\} \mid$
2.	$s_A = r_A + m_A$		$s_B = r_B + m_B$
3.	$E_A = P^{-m_A}$	$\xrightarrow{s_A, E_A}$	$E_B = P^{-m_B}$
4.		s_B, E_B	
5.	$ss = (P^{s_B}E_B)^{r_A}$	$A = H(ss E_A s_A E_B s_B)$	Verify A
	$=P^{r_Br_A}$	7	$ss = (P^{s_A}E_A)^{r_B}$
6.	Verify B	$B = H(ss E_B s_B E_A s_A)$	$=P^{r_Ar_B}$
7.	Compute the sha	red key: $K = H(ss E_A \cdot E_B $	$(s_A + s_B) \bmod q$

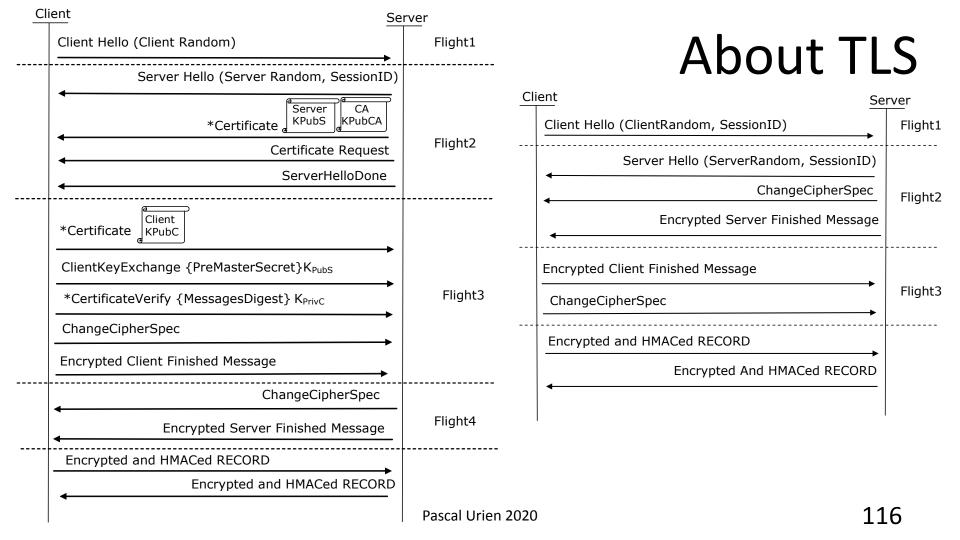
Zigbee Security

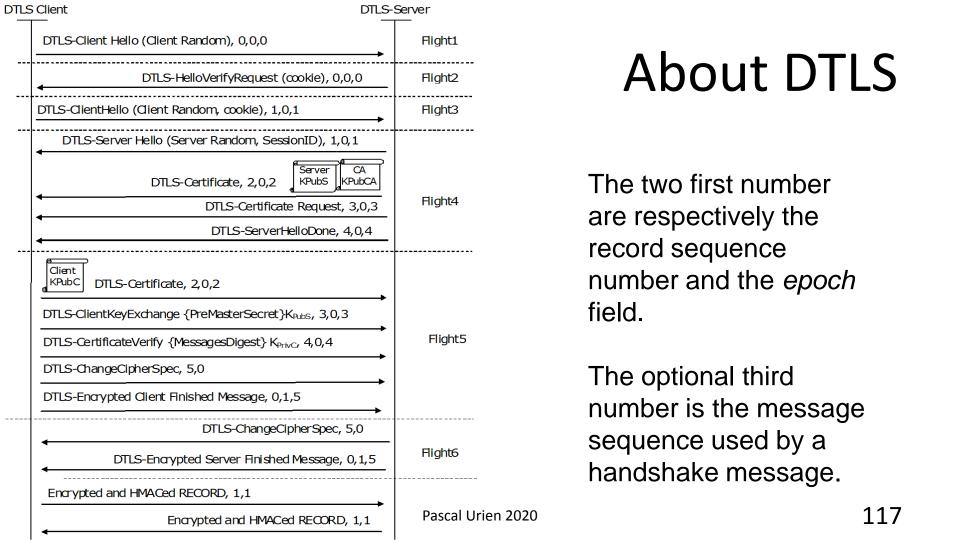

IEEE 802.15.4 & Zig Bee

- Coordinator is assumed to be the Trust Center (TC) and provides
 - Cryptographic key establishment
 - Key transport
 - Frame protection
 - Device management
- Cryptographic Keys
 - Master Key, basis for long term security used for symmetric key establishment. It is used to keep confidential the Link Keys exchange between two nodes in the Key Establishment Procedure (SKKE).
 - Link Key, shared between two network peers for Unicast communication.
 - Network Key, used for broadcast communication security.


ZigBee Security

rt: @MayaZigBee #DIY lover #ZLL master key 9F 55 95 F1 02 57 C8 A4 69 CB F4 2B C9 3F EE 31 #ZigBee #Philips #Hue




http://prog3.com/sbdm/blog/u012993936/article/details/50280963

Exemple de commande ZigBee ZCL

TLS/DTLS

Handshake cryptographic calculations are insensitive to fragmentation operations.

DTLS cryptographic

details

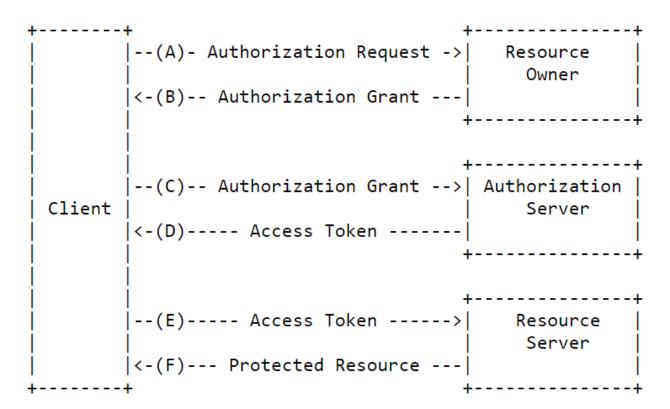
According to finished messages (either client or server) have no sensitivity to fragmentation. There are computed as if each handshake message had been sent as a single fragment, i.e. with *Fragment-Length* set to Length, and *Fragment-Offset* set to zero; the *Message-Sequence* field is not used in these procedures.

It also should be noticed that the DTLS-HelloVerifyRequest message and the previous associated DTLS-ClientHello are not taken into account by the Handshake cryptographic calculation.

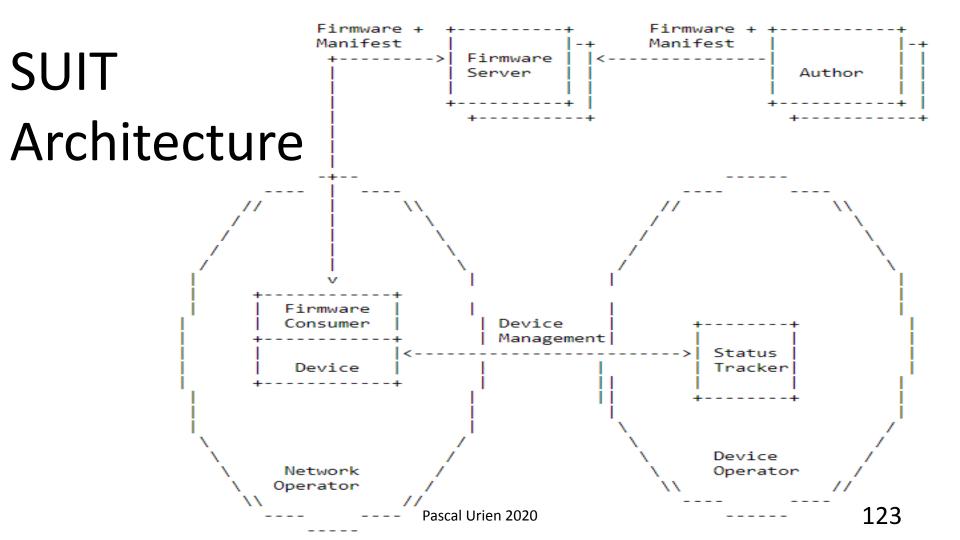
118

DTLS Handshake and Record Layer

Handshake Message			
Туре	1B		
Length	3B		
Message Sequence	2B		
Fragment Offset	3B		
Fragment Length	3B		
Total length	12B		


Record Packet	
Туре	1B
Version	2B
Epoch	2B
Sequence Number	6B
Length	2B
Total Length	15B

IETF Working groups

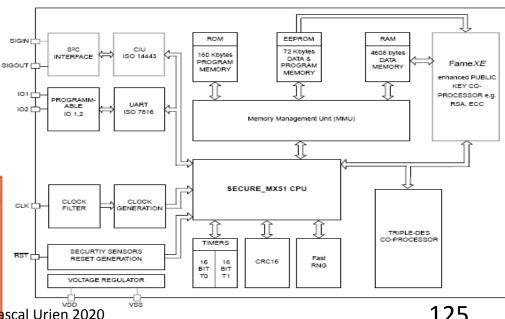

IETF Work Groups

- Constrained RESTful Environments (core)
- Authentication and Authorization for Constrained Environments (ACE)
- Software Updates for Internet of Things (suit)
- Trusted Execution Environment Provisioning (teep)

OAUTH 2.0 RFC 6749

122

Tamper Resistant Devices


USIM, iSIM, TEE

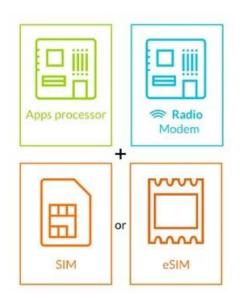
What is a Secure Element?

A Secure Element (SE) is a Secure Microcontroller, equipped with host interfaces such as ISO7816, SPI or I²C.

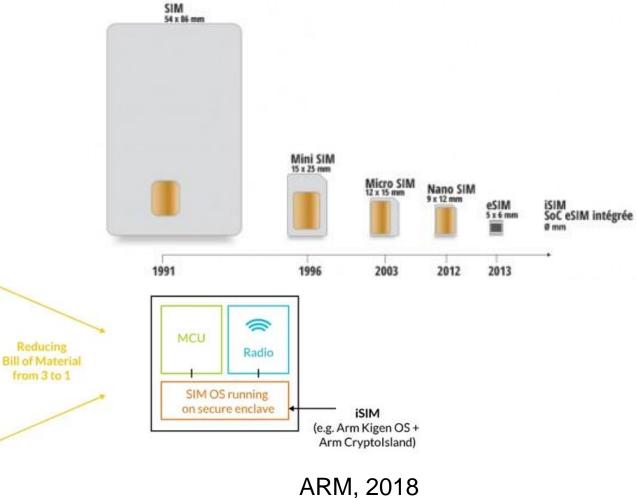
OS JAVACARD JCOP
GP (Global Platform)
ROM 160 KB
EEPROM 72 KB
RAM 4KB
Crypto-processor
3xDES, AES, RSA, ECC
Certification CC (Common Criteria) EAL5+
Security Certificates EMVCo

	NFC secure modules
Product features	PN65L
Embedded NFC IC	PN532
Available host interfaces	serial, SPI, I ² C
Embedded Secure IC	P5CN072
OS for secure device	JCOP or 3rd party
Stacked passive component IC	yes
Package thickness	1.2 mm
Package size	7x7 mm²
Package type	HLQFN48 p

EXAMPLE: NXP PN532

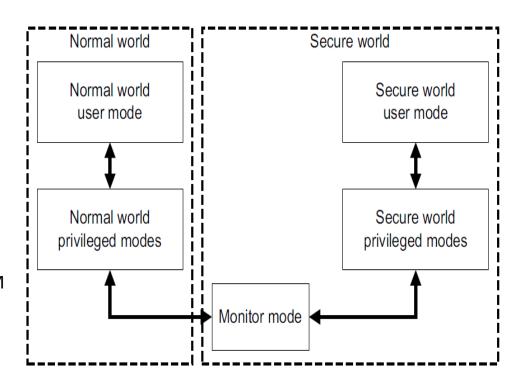

USIM for 3G/4G radio networks

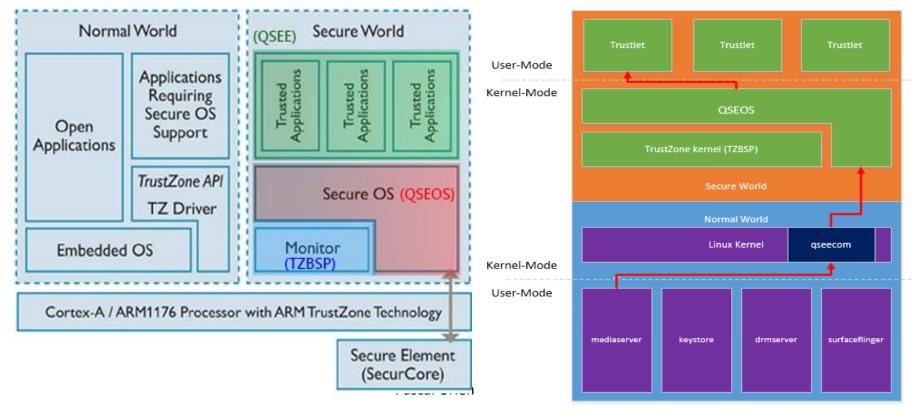
HLR


- UICC modules host USIM applications
 - The list of USIM applications is stored in the EF-DIR file
- At least two concurrent applications may run at the same time
 - The application index is identified by the last two bits of the CLA byte
- 3G/4G authentication is performed thanks to the AUTHENTICATE (INS=88) command
- Example 465b5ce8 b199b49f aa5f0a2e e238a6bc cdc202d5 123e20f6 2b6d676a c72cb318 >> 00 88 00 00 20 || RAND || AUTN RAND= 23553cbe 9637a89d 218ae64d ae47bf35 << DB 28 || SRES || CK || IK || 9000 RAND SQN: Sequence $OP_{c} \rightarrow \bigoplus$ AUTN:= SQN ⊕ AK || AMF || XMAC SQN: ff9bb4d0b607 AMF= b9b9 Number SQN||AMF||SQN||AMF RAND AUTN $OP_C \rightarrow \bigoplus$ $OP_{C} \rightarrow \bigcirc$ $OP_{C} \rightarrow \bigoplus$ OP_C→ OP_C f5 SQN

 AK **AMF** MAC b9b9 rotate rotate rotate rotate rotate by r1 by r2 by r3 by r4 by r5 AK c3**→**⊕ Check SQN SQN $OP_C \rightarrow \oplus$ $OP_C \rightarrow \bigoplus$ OP_C→ OP_C→ $OP_C \rightarrow C$ USIM XMAC= 4A9FFAC354DFAFB3 f1 f2 F769BCD751044604 A54211D5E3BA50BF 127672711C6D3441 451E8BECA43B Check 01CFAF9FC4F871F9 XMAC=MAC Pascal Wrien 2020 RES XMAC

(U)SIM, eSIM,iSIM

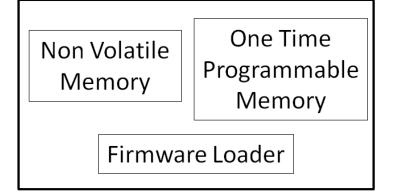

Reducing


127 Pascal Urien 2020

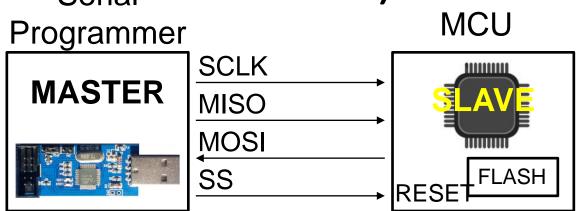
Trusted Execution Environment

- Trusted Zone is an ARM patent
- A processor with two modes:
 - Normal Mode
 - Secure Word
- A monitor entity manages the environment switch between the
- Normal and the Secure word
- Each mode has its own interrupt procedures and a set of registers.
- Never less CPU and memories (SRAM, ROM) are common
- The SRAM size is about 10KB and the ROM size is about 128 KB
- An fuse OTP memory of about 256 bits, stores the hash of a public key
- Trusted Application (Trustlet) are signed

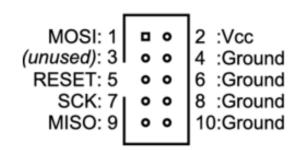
Android QSEE (Qualcomm's Secure Execution Environment)

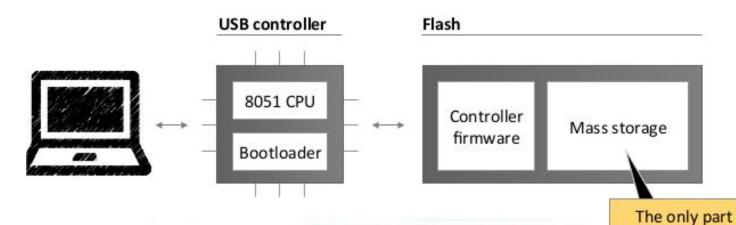

Device Integrity

IoT Architecture


Main Processor

Non Volatile
Memory
One Time
Programmable
Memory
Firmware Loader


Optional Communication Processor


About SPI (Serial Peripheral Serial Interface)


SCLK (Serial Clock)
MOSI (Master Out Slave In)
MISO (Master In Slave Out)
SS (Slave Select)

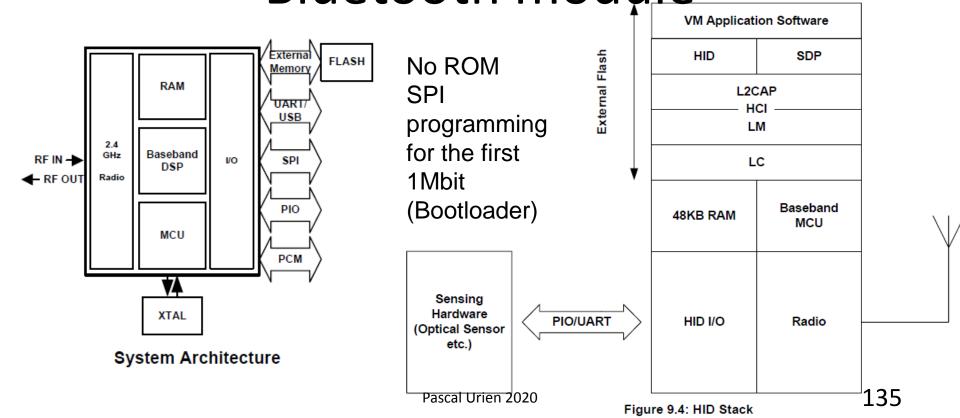
Pascal Urien 2020 132

Nohl, K., KriBler, S., Lell, J. 2014. "BadUSB - On Accessories that Turn Evil", Blackhat 2014 USA

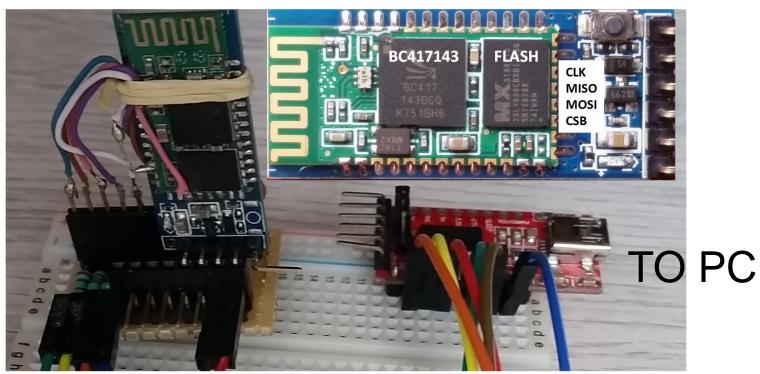
133

visible to the user

FLASH Controller PS2251-33 *Phison Electronics Corporation*

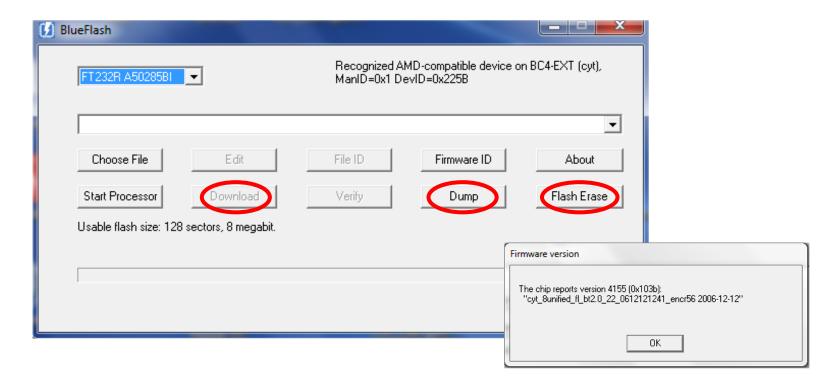

Bootloader in ROM Firmware in FLASH

Jago, D., 2018, "Security analysis of USB drive", Master's thesis report

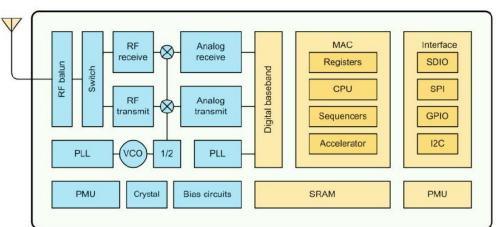


Pascal Urien 2020 134

CSR BC417143 - HC05/HC06 Bluetooth module



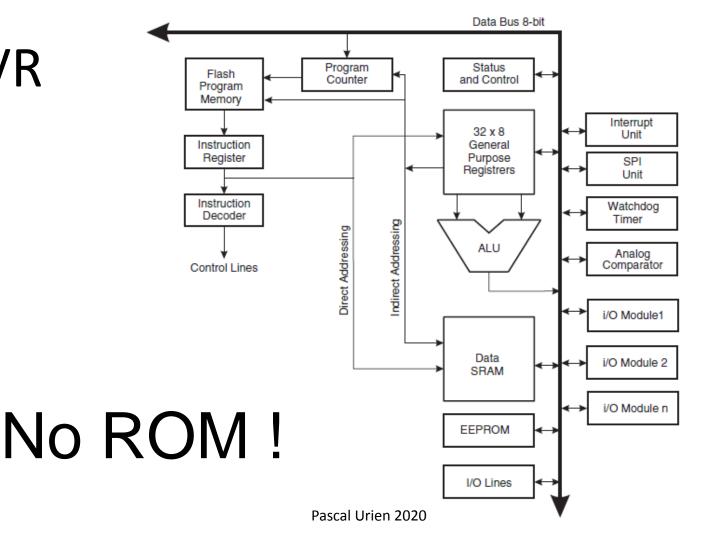
Connecting Blue Flash Software to HC05/HC06


Pascal Urien 2020 136

Blue Flash Software version 2.62

Pascal Urien 2020 137

ESP8266



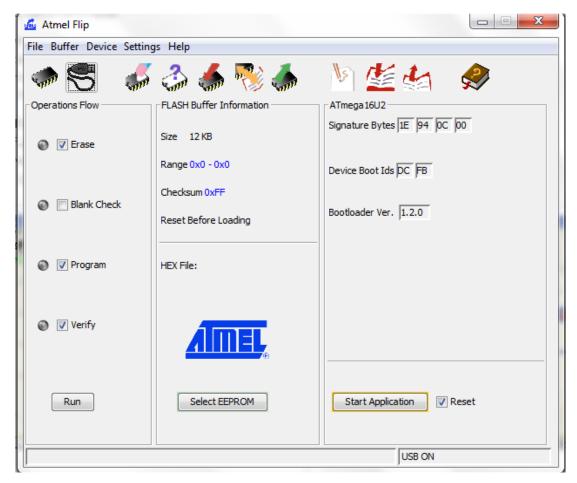
64KB ROM BOOTLOADER

		NLOAD TOOL V3.6					. D X
		HSPIDownload	RFConfig	MultiDownload			
terface SDIO	\esp\sdk154 \[\esp\sdk154 \[\esp\sdk154 \[\esp\sdk154	VAT_bin\boot_v1. VAT_bin\512+512 VAT_bin\esp_init_ VAT_bin\blank.bin VAT_bin\blank.bin vare\AiThinker_E	\user1.1024.ne data_default.b n	Paradose (C.)		@	0 0x01000 0x3fc000 0x7e000 0x3fe000 0x00000
12C	piFlashConfig rystalFreq: 6M SPI SPEED 40MHz 26.7MHz 20MHz 80MHz	CombineBin Default - SPI MODE © QIO © QOUT © DIO © DOUT © FASTRD	FLASH SIZE C 4Mbit C 2Mbit C 8Mbit C 16Mbit C 32Mbit C 16Mbit- G 32Mbit-	SpiAutoSet DoNotChgBin LOCK SETTINGS DETECTED INFO			
DEK	Oownload Panel : IDLE 等待	STOP ERAS	COM:				
scal Urien 2020	•	•	BAOD:	ı	1	3	2

AVR

AVR: locks & Fuses

All memories are erased


Serial Programming (SP) Requires RESET signal Memories Access Fuse: Disable Reset SP & PP

Parallel Programming (PP) Requires RESET signal Fuses Access Fuse: Disable SP from PP only

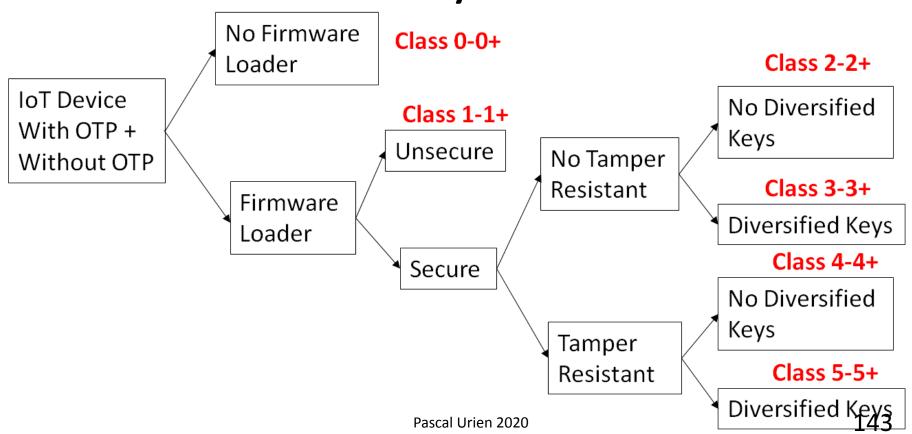
High Voltage Programming clear under any conditions

Bootloader Configuration Fuse: Others Voltage, Clock

140

Pascal Urien 2020

Atmel DFU

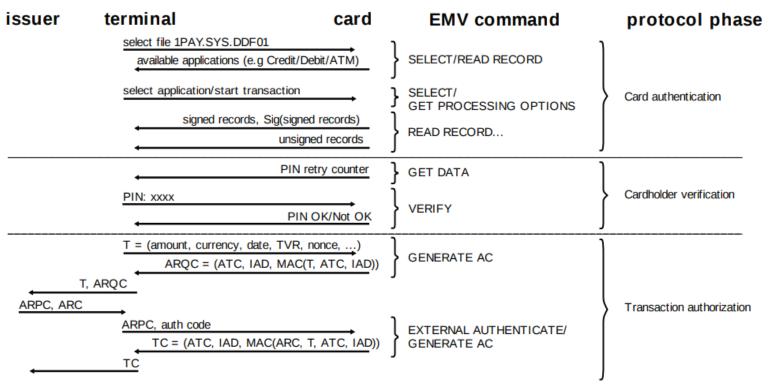

Device Firmware Update

141

Security attributes

- One Time Programming (OTP)
- Firmware Loader (FLD)
- Secure Firmware Loader (FLD-SEC)
- Tamper Resistant Key (TRT-KEY)
- Diversified Key (DIV-KEY)

Security Classes

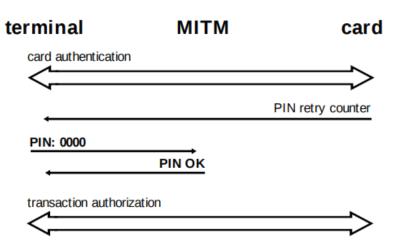


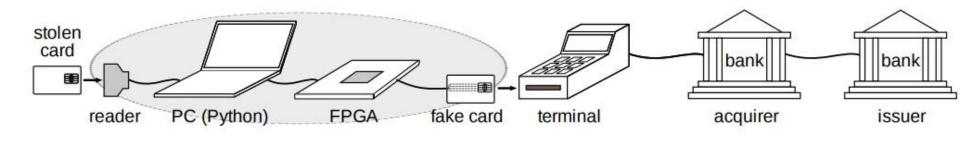
Examples

- AVR micro-controller units (MCU) without bootloader belong to Class0.
- AVR micro-controller units (MCU) with bootloader (for example the "Arduino" family) belong to Class1.
- USB flash drives embedding ROM and bootloader belong to Class1+.
- Philips hue smart bulbs belong to Class2; they embed secure bootloader with a shared single symmetric key.
- The IETF working group SUIT (Software Updates for Internet of Things) target Class2+ devices embedding secure bootloader with public key, and Class3+ devices supporting bootloader and diversified symmetric key.
- Class4+ is a tamper resistant enhancement of Class2+, it could address devices compatible with SUIT of which public key cannot be modified.
- Highly secure devices such as bank cards belong to Class5+.

Relay Attacks

Chip and PIN is Broken



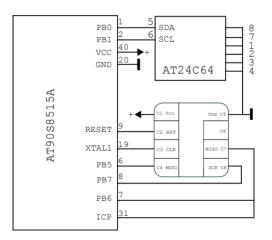

Steven J. Murdoch, Saar Drimer, Ross Anderson, Mike Bond, "Chip and PIN is Broken", 2010 IEEE Symposium on รัยปีน่าสิงใช้ค่ Privacy 146

Chip & PIN is Broken

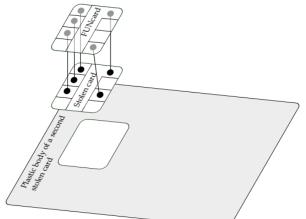
IAD FORMAT, BYTE 5 (BITS 4–1) FROM A VISA VERSION 10 CRYPTOGRAM [8, APPENDIX A-13, P222].

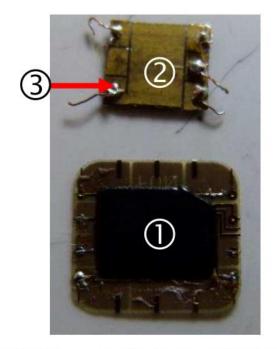
Bit Meaning when bit is set 4 Issuer Authentication performed and failed 3 Offline PIN performed 2 Offline PIN verification failed 1 Unable to go online

FUN MODULE


 In May 2011, the French's bankers Economic Interest Group (GIE Cartes Bancaires) noted that a dozen EMV cards, stolen in France a few months before, were being used in Belgium. A police investigation was thus triggered.

"When Organized Crime Applies Academic Results A Forensic Analysis of an In-Card Listening Device" Houda Ferradi, Rémi Géraud, David Naccache, and Assia Tria,


October 2015, Journal of Cryptographic Engineering



FLASH

 ${\bf Fig.\,5.}$ The FUN card's inner schematics.

g. 16. (1) FUN card module; (2) genuine stolen card; (3) welded wire.

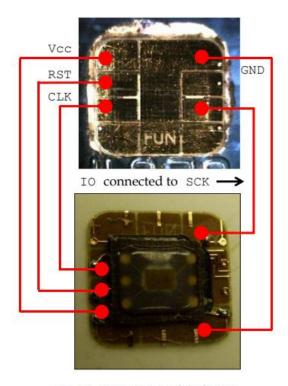
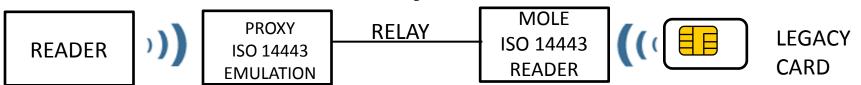
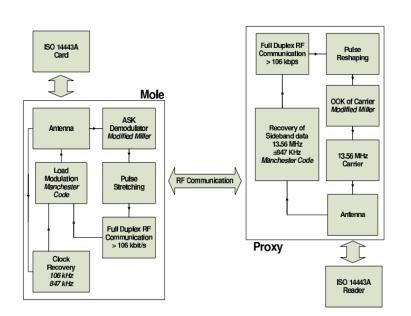




Fig. 18. Wiring diagram of the forgery.

Relay Attack

 Gerhard Hancke "A Practical Relay Attack on ISO 14443 Proximity Cards", 2005

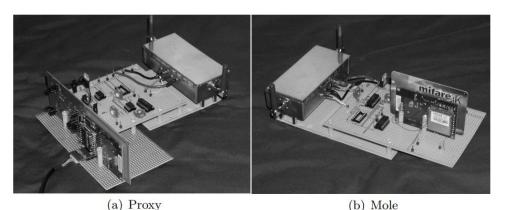
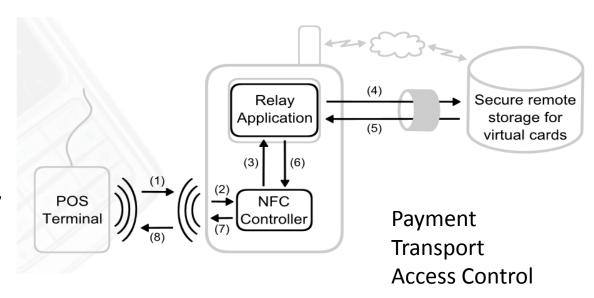
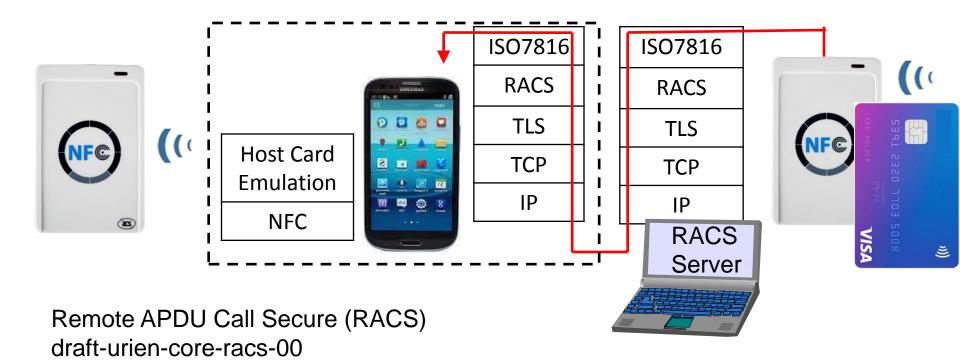



Fig. 1. Functional analysis of the relay system

Pascai urien zuzu

Relays Attacks

 The software card emulation in smartphone enables a new generation of relay attack.



Gerhard P. Hancke, Keith Mayes et Konstantinos Markantonakis, « Confidence in smart token proximity: Relay attacks revisited », *Computers & Security*, 2009

Roland, M., "Software Card emulation in NFC-enabled Mobile Phones: Great Advantage or Security Nightmare?", in proceedings of WSSI/SPMU, 2012.

Pascal Urien 2020

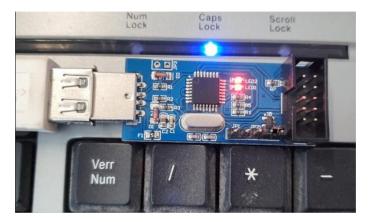
HCE Relay (RACS)

Implants

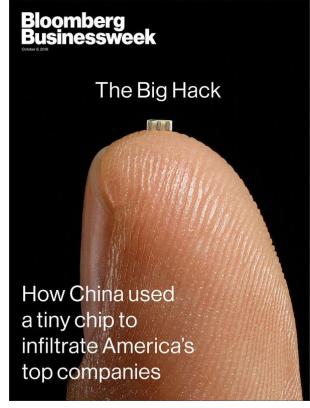
Haunted Cable

ATTIMAS
ATTIMAS

- The Haunted USB Cable
 - http://imakeprojects.com/Projects/haunted-usb-cable/, ATTINY45
- USB Keyboard Injector
 - https://github.com/whiteneon/haunted-usb-1.0, ATTINY85
- USBASP Keyboard
 - https://github.com/Uxio0/usbAspKeyboard, ATMEGA8
 - Simulates a USB HID keyboard that prints out "All work and no * play makes
 Jack a dull boy." This code is only a slightly * modified version of Frank Zhao's
 "USB Business Card" with some * code added from Donald Papp's "Haunted,
 Mystery USB Device" * both of which are based on Christian Starkjohann's "V-USB".
- KEYBOARD + MOUSE Injector



Caps Lock Attack



- 1) A user keys in CAPS lock (or NUM lock) key.
- 2) The keyboard firmware sends the keycode for the key to the PC with an input report.
- 3) The PC sends back an output report for the LED, after accepting above input report.
- 4) The firmware lights the LED, specified by the output report.

Implants Attack (2019)

CS3sthlm, 2020

Monta Elkins

Nation-State Supply Chain Attacks for

Pascal Unen 2020

1

CISCO ROUTER ASA5505

CISCO Attack

- Escape Characters, confreg 0x41
- Boot, Enable
- copy startup-config running-config
- Enable SSH, Add account, Add routing
- no config-register
- ping attack address as notification
- https://www.cisco.com/c/en/us/td/docs/security/asa/asa93/ configuration/general/asa-general-cli/basic-hostname-pw.html

Assistant Light Attack

Light Attack (2019)

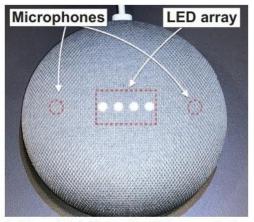


Fig. 3. Acoustic port of (Left) Google Home and (Right) Echo Dot 3rd generation. The ports are located on the top of the devices, and there are meshes inside the port.

Fig. 9. Google Home Mini. Notice the cloth-covered microphone ports.

Takeshi Sugawara, Benjamin Cyr, USara Rampazzi, Daniel Genkin, Kevin Fu "Light Commands: Laser-Based Audio Injection Attacks on Voice-Controllable Systems", 2019

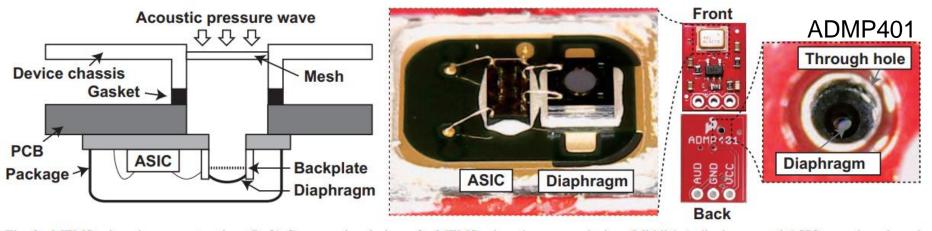
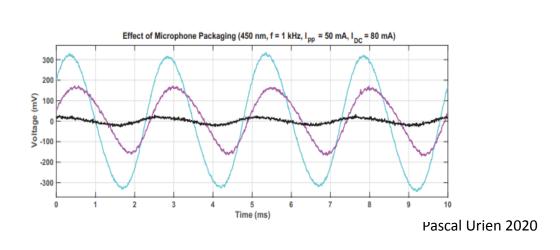
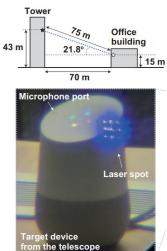
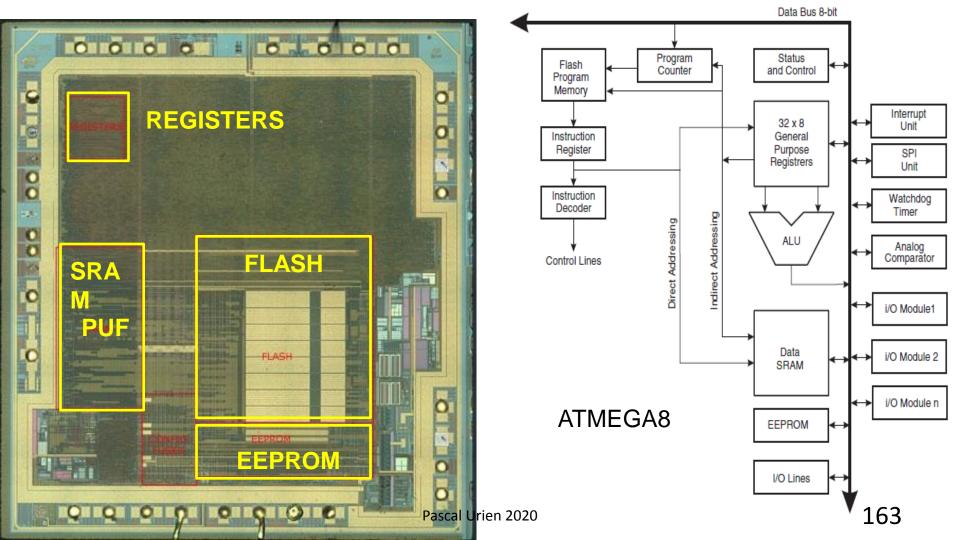
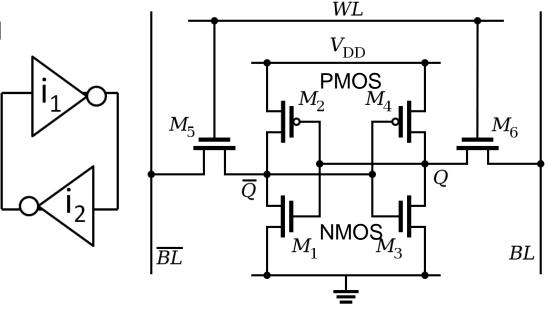
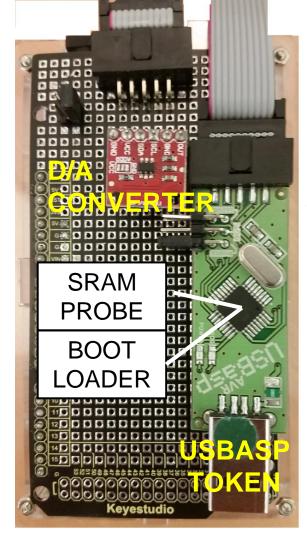
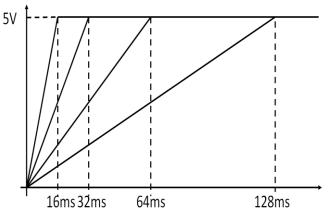




Fig. 2. MEMS microphone construction. (Left) Cross-sectional view of a MEMS microphone on a device. (Middle) A diaphragm and ASIC on a depackaged microphone. (Right) Magnified view of an acoustic port on PCB.




MCU Identity

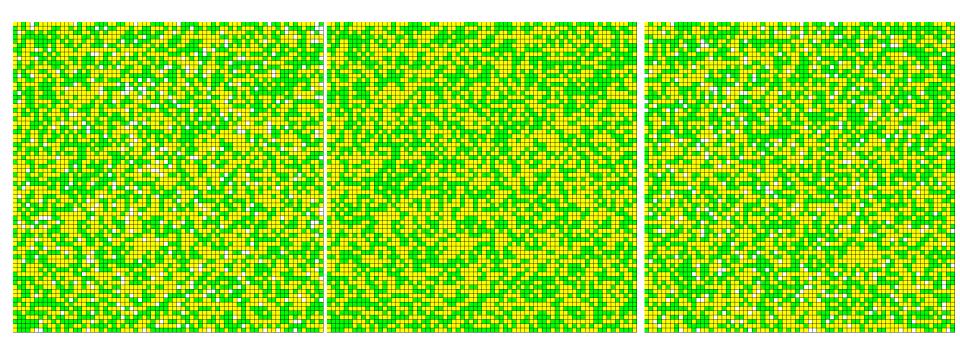

SRAM PUF (Physical Unclonable Function)


About SRAM PUF

- A SRAM memory is made with 6 CMOS transistors, and includes two invertors (i1 and i2) connected in series (i.e. head to tail).
- Due to transistors physical and electrical dissymmetry, some memory cells take a fixed value (non random) after powering up.
- This effect (SRAM PUF) may be used for micro controller unit (MCU) authentication purposes.

Urien, P.; "Innovative ATMEGA8 Microcontroler Static Authentication Based on SRAM PUF", IEEE CCNC 2020

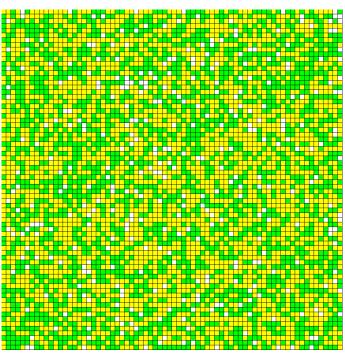
SERIAL USB Arduino Digital Analog MEGA2560 Output input Serial SDA SCL Vcc Gnd MCP4725 D/A converter **USBASP Vcc GND** Serial **SRAM Probe**


ATMEGA8

Pascal Urien 2020

165

Firmware


Static Authentication

DEVICE#1, 250 MEASURES DEVICE#X 1 MEASURE DEVICE#2, 250 MEASURES

Graphical Static Authentication

Flipping bits, red H match, green L match, yellow Other, white

DEVICE#1

DEVICE#2

Device Integrity Self Attestation

Remote Attestation

- Remote attestation is a process whereby a trusted entity (verifier) remotely measures internal state of a untrusted possible compromised device (prover).
- The ICE verification function is a self-check summing code, i.e. a sequence
 of instructions that compute a checksum over themselves in a way that the
 checksum would be wrong or the computation would be slower if the
 sequence if instruction is modified

$$ICE = Checksum(A(P(0) || A(P(1) || ... || A(P(i)) ... || A(P(m-1)))$$

Asokan, N. et al. "ASSURED: Architecture for Secure Software Update of Realistic Embedded Devices.". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.11 (2018): 2290-2300.

Seshadri, A. et al. "SCUBA: Secure Code Update By Attestation in sensor networks.", in Radha Poovendran & Ari Juels, ed., "Workshop on Wireless Security", ACM, , pp. 85-94 (2006).

Pascal Urien 2020

Permutation in Z/pZ*

$$P(x) = x + x^2 \lor C \mod 2^n \qquad \text{A. SHAMIR \& AL, 2002} \\ P(x) = a_0 + a_1 x + \dots + a_d x^d \mod 2^w \qquad \text{R.L. RIVEST, 2001} \\ P(x) = 1 + x + x^2 + \dots + x^d \mod p^e \qquad \text{R. MATTEWS, 1994}$$

A. Klimov, and A. Shamir. "A New Class of Invertible Mappings.", . CHES, volume 2523 of Lecture Notes in Computer Science, page 470-483. Springer, (2002)

R. L. Rivest, "Permutation polynomials modulo 2^w ". Finite Fields And Their Applications, 7, 287-292 (2001). Matthews R., "Permutation Properties Of The Polynomials $1 + x + ... + x^k$ Over A Finite Field"; Proceedings of the American Mathematical Society, Volume 120, Number 1, January 1994

bMAC

 bMAC computes a fingerprint of a set of memories (m)such as FLASH, SRAM, EEPROM, according to a pseudo random order, fixed by a permutation P

$$bMAC(P) = h(A(P(0) || A(P(1) || ... || A(P(i)) ... || A(P(m-1)))$$

- bMAC works with exponential permutations based on generators in Z/pZ*, p prime (p>m)
 - $x \epsilon [1, p-1], F(x) = g^x \mod p$
 - $y \epsilon [0, m-1], P(y) = F(y+1)-1$

$$F(x) = g_2^{s_1 g_1^{x} \mod p} \mod p, \ x, s_1 \in [1, p-1]$$