

1. Summary.

T he goal of this project is to release a dotnet smartcard providing authentication services
for network resources such as PPP, Wi-Fi and VPN (Virtual Private Network).

The Extensible Authentication Protocol is an IETF standard1 which is widely used in personal
computers. It is a flexible framework, that supports multiple authentication scenari such as
- EAP-TLS2, a quite transparent transport of the well known SSL protocol.
- EAP-SIM3 (or EAP-AKA4), an extension of SIM (or USIM) services for Wi-Fi
infrastructures. As an illustration this authentication method is used in the emerging UMA5
architecture, a VoIP service over Wi-Fi, in order to establish a secure (IPSEC) tunnel with an
operator gateway.

An open software, OpenEapSmartcard6 was previously released for javacards.
OpenEapSmartcard.NET is an adaptation of this earlier work to dotnet smartcards.

Due to Cryptoflex.NET facilities, the OpenEapSmartcard.NET card offers two kind of
interfaces
- A classical ISO7816 interface, which enables the deployment of this trusted device in
existing software environments (an EAP DLL7 working with smartcards) that cooperate with
smartcards through legacy APDUs.
- An API interface that allows to any .NET developer, to transparently import the
OpenEapSmartcard.NET highly secure services.

In this first prototype, two authentication methods are supported. The first is a simple, but still
working, one way authentication method (based on the SHA1 algorithm), developed for
education purposes. The second is more complex and is an open implementation of the EAP-
TLS method, that fully processes the TLS protocol and that autonomously manages an
embedded certificates store.

The OpenEapSmartcard.NET card is working in XP platform, it may be used in every
network connection dealing with EAP, for advanced security features.

A demonstration is available in which the OpenEapSmartcard.NET device is used as an
authentication token, controlling the access to a Wi-Fi network.

2. OpenEapSmartcard.NET services

T he EAP smartcard services are described by an internet draft8, whose twelfth version was
issued in March 2006., they are classified in four categories,

1 RFC 3748, 2004. Extensible Authentication Protocol, (EAP). Internet Engineering Task Force, IETF.
2 RFC 2716, 1999. PPP EAP TLS Authentication Protocol. Internet Engineering Task Force, IETF.
3 RFC 4186, " Extensible Authentication Protocol Method for Global System for Mobile Communications
(GSM) Subscriber Identity Modules (EAP-SIM) ", 2006
4 RFC 4187, 2006. Extensible Authentication Protocol Method for 3rd Generation Authentication and Key
Agreement (EAP-AKA); Internet Engineering Task Force, IETF
5 Unlicensed Mobile Access (UMA), http://www.umatechnology.org
6 http://www.enst.fr/~urien/openeapsmartcard
7 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/eap/eap/about_extensible_authentication_protocol.asp
8 http://www.ietf.org/internet-drafts/draft-urien-eap-smartcard-11.txt

- The identity service. A smartcard manages several network accounts; the terminal
operating system performs an identity discovery process in order to browse its contents.
- The Network service. EAP messages are processed by the smartcard. At the end of the
authentication method, a session key is computed.
- The security service. This service essentially manages PIN codes (Personal Identification
Number) that are needed for security purposes.
 - The personalization service. This service updates information stored in the smartcard.

Identity
Service

Personalization
Service

Add-Identity()
Delete-Identity()

Security
Service

Verify-PIN()
Modify-PIN()

EAP-ID

Network
Service

Get-Next-Identity()
Get-Current-Identity()
Set-Identity()

Process-EAP()
Get-Session-Key

Reset()

Credentials

password

RSA Keys
Certificates

My-Home

Identity

My-Office

EAP
TLS Other EAP

SHA1

Identity List

Authentication Methods

dad@dot.com TLS

SHA1dad

EAP
TYPE

Figure 1. OpenEapSmartcard.NET services definition

2.1 Identity Service.
An EAP authentication scenario works with a set of three parameters,

- the EAP-ID, a user’s identifier, transmitted in the EAP-Identity.Response message.
- the type (EAP-Type) of the authentication protocol (EAP-MD5, EAP-SIM, EAP-TLS....)
- a set of cryptographic credentials (shared secret, X509 certificates, RSA keys…) used by the
authentication method.

Identity is a pointer to an authentication triplet, similar to the primary key of a relational table.
The Get-Next-Identity command extracts an identity from a circular list. The operating system
discovers all available identities, and selects one of them, or prompts a choice to the user. The
Set-Identity command fixes the current identity managed by the card. Other primitives, like
Get-Current-Identity provide additional facilities.

2.2 Network Service.
An EAP message (request or notification) is encapsulated in the Process-EAP command. The
software which manages a state machine according to the selected type, delivers if necessary
an EAP response message. At the end of the authentication protocol a session key (Master
Session Key, MSK) is computed and read through the Get-Session-Key request.

2.3 Security Service
The embedded application manages two PIN codes, one is hold by the card bearer and the
other by the card issuer. For example if the user’s PIN is activated, the smartcard is locked
(and can’t be used) after three wrong PIN values presentation. PIN management facilities are
similar to those described in the GSM 11.11 specification.

2.4 Personalization Service.
The Add-Identity and Delete-Identity commands personalize EAP applications or modify
embedded credentials.

3. OpenEapSmartcard.NET integration in .NET platforms

T he win32 platform introduced the notion of EAP Provider, e.g. a software dynamic
library (DLL) that implements EAP authentication methods. We developed an

EAPCARD.DLL component that is freely available on the OpenEapSmartcard WEB site. The
Remote Access Service entity (RAS) manages all resident EAP provider objects.

-Upon system boot (1), the EAP provider object is invoked via the method RasEapGetInfo
that returns three pointers to additional procedures named, RasEapBegin,
RasEapMakeMessage and RasEapEnd.
- Human user interacts with the EAP provider through a dialog box, started by the
RasEapInvokeConfigUI procedure. In our experimental implementation this graphical
interface is used to get the smartcard identity list and to select the appropriate one.
- When the operating system detects a wireless cell, identified by its SSID, it performs the
association process with the access point, sends an EAP-Start frame and activates the EAP
provider that had been previously associated to this particular SSID. Then it calls the
RasEapGetIdentity (2) method, which in turn, sends an identity request message to the EAP
smartcard.
- When the EAP identity request message is received, an EAP session is started and the
system calls the RasEapBegin (3) function. At this point the smartcard application is selected
and the bearer enters his PIN code.
 -During an EAP session all EAP requests or notifications are sent to the
RasEapMakeMessage (4) method, which forwards them to the EAP smartcard.
- At the end of the authentication scenario the RasEapEnd (5) method is invoked.

Figure 2. OpenEapSmartcard.NET interaction with a dedicated EAP provider DLL

4. OpenEapSmartCard.NET Architecture

Method.cs

Auth.cs

Credential.cs

EapEngine.cs

draft-eap-smartcard

Cryptographic
Libraries

Security
Management

Network
Interface

Identity
Management

Personalization

EAP services

.NET Standard
Libraries

Methods
Credential

Init
Object

E2PROM

EAP-SHA1

EAP-TLS

Init(Object
Credential)

ProcessEap()

Authentication
Interface

.NET Virtual Machine

2

3

4

.NET Smartcard
Libraries

1

Figure 3. OpenEapSmartcard.NET Architecture

The software architecture mainly comprises four .NET components,

1- The EapEngine which implements the EAP core, and acts as a router that sends and
receives packets to/from authentication methods
2- An Authentication Interface that defines all services offered by EAP methods
3- A Credential Object which stores information needed for method initialization.
4- One or more Methods that instantiate authentication scenari like EAP-TLS or EAP-SHA1

4.1 EapEngine
This object manages several methods and multiple instances of a given method. It implements
the EAP core and acts as a router that sends and receives packets to/from methods. At the end
of an authentication session, each method computes a master cryptographic key which is
collected by the terminal operating system.

4.2 Authentication Interface
This component defines all services that are mandatory in EAP methods in order to
collaborate with the EapEngine. The two main functions are Init() and Process-Eap(). The
first initializes method and returns an Authentication Interface; the second processes incoming
EAP packets. Methods may provide additional facilities (fct()) dedicated to performances
evaluations.

4.3 Credential Objects
Every method is associated to a Credential Object that encapsulates all information required
to process a particular authentication scenario (shared secret, X509 certificates, RSA keys,…)

4.4 Methods
Each authentication method is processed by a specific class. Once initialized, this object
analyses and processes each incoming EAP packet and delivers corresponding response.

5. Implementation details

5.1 Classes diagram.

Figure 4. Classes diagram of the OpenEapSmartcard.NET software implementation

The embedded software comprises the eapengine (eapengine.cs), the authentication interface
(auth.cs), and two authentication methods

- Method.cs and its associated credential object (Credential.cs) realizes a simple one way
authentication scenario based on the SHA1 algorithm. This class comprises the EAP client
entity (client) and the EAP server entity (server). This allows to perform a complete dialog
between server and client parts, within a single smartcard.
- eaptls.cs and its associated credential object (credentialtls.cs) is a standalone
implementation of the EAP-TLS method. Certificates are verified thanks to the
CheckCertificate procedure. With this first implementation, which is not yet optimized, the
processing of a full EAP-TLS authentication scenario costs about 18 seconds.

5.2 Remote services.

5.2.1 API Interface
The "openeapdotnet.uri" service supports the following procedures:

- public bool VerifyPin(byte[] pin), checks the user’s PIN code
- public bool ModifyPin(byte[] oldpin, byte[] newpin), modifies the user’s PIN code
- public byte[] ReadMemory(short offset, short length), reading of the smartcard memory that
stores the bearer’s credentials.
- public bool WriteMemory(short offset,byte[] data), writing of the smartcard memory that
stores the bearer’s credentials.
- public byte[] GetNextIdentity(), gets the next available identity managed by the smartcard
- public byte[] GetIdentity(byte[] idt), retrieves the current identity.
- public byte[] SetIdentity(byte[] idt), sets the new identity
- public bool reset(), resets the current authentication method.
- public byte[] GetKey(), collects the master session key, upon a successful authentication.

- public byte[] ProcessEAP(bool more,byte[] msg), processes an EAP packet, returns an EAP
message.

5.3 Legacy ISO7816 interface
The "A0000000300002FFFFFFFF8931323800" service supports the following procedures,

[APDU("A0200000", Mask = "F000FFFF")],
public void VerifyPin(…), checks the user’s PIN code.

[APDU("A0240000", Mask = "F000FFFF")]
 public void ChangePin(…), modifies the user’s PIN code.

[APDU("A0B00000", Mask = "FC00FFFF")]
public byte[] Read(…), reading of the smartcard memory that stores the bearer’s credentials.

[APDU("A0D00000", Mask = "FC00FFFF")]
public void Write(…), writing of the smartcard memory that stores the bearer’s credentials.

[APDU("A0170001", Mask = "F000FF00")]
public byte[] GetNextIdentity(…), gets the next available identity managed by the smartcard

[APDU("A0180000", Mask = "F000FF00")]
public byte[] GetIdentity(…), retrieves the current identity.

[APDU("A0160080", Mask = "F000FF00")]
public byte[] SetIdentity(…), sets the new identity

[APDU("A0191000", Mask = "F00000FF")]
public void Reset(…), resets the current authentication method.

[APDU("A0A60000", Mask = "F000FFFF")]
public byte[] GetKey(), collects the master session key, upon a successful authentication.

[APDU("A0800000", Mask = "F000FFFF")]
public byte[] ProcessEAP(…), processes an EAP packet, returns an EAP message.

Figure 5. OpenEapSmartcard services using, APIs (left side) or legacy APDUs (right side)

6. Demonstrations

6.1 API interface
The smartcard service is named server5.exe, the .NET program is called console3.exe and
tests the remote used of EAP services (EAP-SHA1 and EAP-TLS) offered by the
OpenEapSmartCard.NET device.

Figure 6. Basic tests of the OpenEapSmartcard.NET services

6.2 Wi-Fi deployment
The smartcard service is named server4.exe, and is associated to the AID
"A0000000300002FFFFFFFF8931323800". In this demonstration the smartcard works with
an associated DLL (eapcard.dll) that is not written in .NET. Therefore this component
communicates with the smartcard via legacy ISO7816 commands.

The OpenEapSmartcard.NET device processes all EAP message and computes the MPPE-
Recv-Key and MPPE-Send-Key that are collected by the operating system in order to ensure
the radio security.

Figure 7. OpenEapSmartcard.NET demonstration in a Wi-Fi environment.

7. Conclusion and further work
This work is the first release of the OpenEapSmartcard.NET software that autonomously
processes EAP methods in dotnet smartcards. Although it is not yet optimized, performances
are sufficient for real Wi-Fi networks. The EAP-TLS support, in a tamper resistant device,
introduces the notion of the pocket PKI, that manages an embedded certificate store, and that
safely computes the TLS protocols and its associated private keys.

