Champs de Markov et optimisation par coupes minimales (graphcuts) Florence Tupin

Introduction

• Historique

- Physique statistique (organisation des cristaux)
- Article de Geman et Geman (84)
- Regain d'intérêt avec les graph-cuts (99)

• Idée fondamentale des champs de Markov

introduire des relations contextuelles en traitement d'images

un voisinage local suffit pour des images naturelles

A priori dans les images naturelles : le contexte spatial

Illustrations - filtrage (Darbon, Sigelle 2006)

Illustrations - détourage (Rother, Kolmogorov et Blake, 2004)

Illustrations - digital tapestry (Rother et al. 2005)

Illustrations - inpainting (Allène, Paragios, 2006)

Champs de Markov et optimisation par coupes minimales (graphcuts)

- Analyse bayésienne et modèles markoviens
- **Optimisation**

Notations

• modèle probabiliste de l'image

 $S = \{s\} \subset \mathbf{Z}^d$ ensemble de sites (fini)

 $x_s \in E$ espace des niveaux de gris

 $(E = \{0..255\} \{0..q - 1\}$ (système de labels) **R**)

 X_s variable aléatoire associée à s

 $X = \{X_s\}_{s \in S}$ champ aléatoire

 $x = \{x_s\}_{s \in S} = \{x_s\} \cup x^s$ configuration (image)

 $\Omega = E^{|S|}$ espace des configurations

• probabilités :

 $P(X_s = x_s)$ probabilité locale $P(X = x) = P(X_1 = x_1, X_2 = x_2 \dots X_s = x_s \dots)$ loi globale (jointe) $P(X_s = x_s | X_t = x_t, t \neq s)$ probabilité conditionnelle (locale)

Analyse Bayesienne en Traitement des Images Loi du processus de formation des observations

• Critère MAP (Maximum A Posteriori)

 $P(X|Y) \propto P(Y|X)P(X)$

- P(Y|X): terme de vraisemblance ("attache aux données")
- P(X): terme a priori, choix d'un modèle pour la solution

Expression énergétique

• Loi du processus de formation des observations

$$P(Y = y | X = x) = \prod_{s \in S} P(Y_s = y_s | x) = \prod_{s \in S} P(Y_s = y_s | X_s = x_s)$$

• Modèle a priori : propriétés désirées sur l'image réelle \Rightarrow interaction entre un site et ses voisins (régularité des régions, ...) $\Rightarrow X$ est un champ de Markov Théorème de Hammersley-Clifford

$P(X = x) = \frac{\exp - U(x)}{Z}$	distribution de Gibbs
$U(x) = \sum_{c \in \mathcal{C}} U_c(x)$	énergie globale
$U_c(x) = U_c(x_s, \ s \in c)$	potentiel de cliques

Distribution a posteriori

• nouvelle distribution de Gibbs

$$P(X = x | Y = y) = \frac{\exp - \mathcal{U}(x|y)}{Z'}$$
$$\mathcal{U}(x|y) = \sum_{s \in S} -\ln(P(Y_s = y_s | X_s)) + U(x)$$
$$\mathcal{U}(x|y) = \sum_{s \in S} V_c(y_s | x_s) + \sum_{\{s,t\}} V_c(x_s, x_t)$$

$$\max_{x \in \Omega} \Pr(X = x | Y = y) \iff \min_{x \in \Omega} \mathcal{U}(x | y)$$

Exemples de modèles markoviens

• Segmentation

Modèle d'Ising : champ binaire $(E = \{0, 1\})$ Modèle de Potts : champ avec plusieurs classes $(E = \{0, ..., K\})$

$$V_c(x_s, x_t) = \beta \delta(x_s \neq x_t)$$

• Restauration $V_c(x_s, x_t) = \phi(x_s - x_t)$ - modèle gaussien (quadratique) $\phi(u) = u^2$ - Geman et Mac Clure 85 $\phi(u) = \frac{u^2}{1 + u^2}$ - Hebert et Leahy 89 $\phi(u) = \log(1 + u^2)$ - Charbonnier 94 $\phi(u) = 2\sqrt{1 + u^2} - 2$ - modèle TV (Variation Totale) $\phi(u) = |u|$

Champs de Markov et optimisation par coupes minimales (graphcuts)

- Analyse bayésienne et modèles markoviens
- **Optimisation**

Méthodes d'optimisation

• Difficultés

Espace Ω des configurations énorme : $Card(\Lambda)^{(np \times nl)}$!

• Méthodes

- Recuit simulé (Geman et Geman 84) : algorithme stochastique itératif, solution minimum global, mais lenteur
- ICM (Iterated Conditional Modes) : minimum local, très rapide
- Recherche de la coupe de capacité minimale : rapide et minimum global ! mais pour certaines énergies ...

Méthodes d'optimisation par coupures minimales

- Introduction rappels sur les graphes
- Cas binaire
- Algorithmes approchés
- Algorithmes exacts

Théorie des graphes et coupes

• Coupe d'un graphe

- graphe G = (X, E)
- partition en 2 parties A et B $(A \cup B = X, A \cap B = \emptyset)$

$$- cut(A,B) = \sum_{x \in A, y \in B} w(x,y)$$

Théorie des graphes et coupes

• Coupe d'un graphe avec nœuds terminaux

- ajout de deux nœuds : source s, puits t
- partition en 2 parties S et T, l'une contenant la source et l'autre le puits : st-coupe

$$- cut(S,T) = \sum_{x \in S, y \in T} w(x,y)$$

s-t cut

not a s-t cut

• Coupe de capacité minimale

Parmi toutes les coupes séparant les nœuds terminaux celle de coût minimal

Théorie des graphes et coupes

\circ **Flot**

- $\operatorname{flot}(p,q) \le w(p,q)$
- en un nœud : flot entrant = flot sortant
- -recherche du flot max entre s et t pour des capa données

\circ MinCut = MaxFlow

- flot maximum = coupe de capacité minimale
- valeur du flot = coût de la coupe

Théorie des graphes et coupes

• Algorithme de Ford et Fulkerson (62)

notion de graphe résiduel et recherche de plus court chemin algorithme en $O(nmc_{max})$ (*n* nombre de sommets, *m* nombre d'arcs et c_{max} capacité maximale des arcs)

• Algorithme "Push - relabel" (Goldberg et Trajan)

ne respecte plus flot entrant = flot sortant algorithme en $O(n^3)$ ou $O(n^2\sqrt{m})$

Théorie des graphes et coupes

- Algorithme spécifique TdI (Boykov et Kolmogorov)
- construction de deux arbres, l'un partant de chaque nœud terminal
- rencontre des arbres : existence d'une chaîne augmentante
- mise à jour du graphe résiduel et itération

en pratique : beaucoup plus adapté aux graphes creux du traitement d'images! http://www.adastral.ucl.ac.uk/~vladkolm/software.html Méthodes d'optimisation par coupures minimales

- Introduction rappels sur les graphes
- Cas binaire
- Algorithmes approchés
- Algorithmes exacts

Cas binaire - modèle d'Ising (Greig et al. 89)

• Modèle d'Ising

deux étiquettes 0 (noir) et 1 (blanc)

énergie :

$$U(x|y) = \sum_{s} V_c(y_s|x_s) + \sum_{(s,t)} \beta \delta(x_s \neq x_t)$$

• Création du graphe

- nœuds = tous les pixels p de l'image
- ajout de deux nœuds terminaux (source : label 0, puits : label 1)

- arcs :

- 1. lien avec la source de poids : $w(p,s) = V_c(y_p|0)$
- 2. lien avec le puits de poids : $w(p,t) = V_c(y_p|1)$
- 3. si deux pixels p et q sont voisins en 4 connexité : arc de poids $w(p,q) = \beta$

Cas binaire 1D et 2D (Greig et al. 89)

Cas binaire - modèle d'Ising (Greig et al. 89)

• Calcul du coût d'une coupe

 ${\cal S}$ l'ensemble des pixels liés à la source

 ${\cal T}$ ensemble des pixels liés au puits

capacité de la coupe :

$$C(S,T) = \sum_{p \in S} V_c(y_s|1) + \sum_{p \in T} V_c(y_s|0) + \sum_{(s \in S, t \in T)} \beta$$

 $\Rightarrow C(S,T) = U(x|y) \text{ pour un étiquetage } x \text{ défini par}$ - si $p \in S : x_p = 1$ - si $p \in T : x_p = 0$ Cas binaire : généralisation (Kolmogorov et Zabih, 2004)

• Formulation de l'énergie

$$U(x|y) = \sum_{s} V_{c}(y_{s}|x_{s}) + \sum_{(s,t)} V_{c}(x_{s}, x_{t})$$

• Condition pour que l'énergie soit graphe-représentable

$$V_c(0,0) + V_c(1,1) \le V_c(0,1) + V_c(1,0)$$

 V_c fonctions "sous-modulaires"

Construction du graphe (Kolmogorov et Zabih, 2004) (si $p \in S x_p = 0$) S $V_p(1) - V_p(0) \text{ (si } \ge 0)$ р ou $V_p(0) - V_p(1) \text{ (sinon)}$

Construction du graphe (Kolmogorov et Zabih, 2004)

A = V(0,0), B = V(0,1), C = V(1,0), D = V(1,1) \Rightarrow Arcs ?

Construction du graphe (Kolmogorov et Zabih, 2004)

On a bien $b \ge 0$ car

 $V(0,0) + V(1,1) \le V(0,1) + V(1,0)$

soit

 $A+D \leq B+C$

Méthodes d'optimisation par coupures minimales

- Introduction rappels sur les graphes
- Cas binaire
- Algorithmes approchés
- Algorithmes exacts

Extension au cas de la classification (Boykov et al, 2001)

$$U(x|y) = \sum_{p} V_{c}(y_{p}|x_{p}) + \sum_{(p,q)} V_{c}(x_{p}, x_{q})$$

 $x_p \in E$ ensemble monodimensionnel fini

• Idée : se ramener au cas ... binaire !

• Contraintes sur la fonction de régularisation

 V_c est une métrique ou une semi-métrique

Semi-métrique $\forall \alpha, \beta \in E^2$:

$$-V_c(\alpha,\beta) = V_c(\beta,\alpha) \ge 0$$

$$-V_c(\alpha,\beta) = 0 \Leftrightarrow \alpha = \beta$$

Métrique si en plus $V_c(\alpha, \beta) \leq V_c(\alpha, \gamma) + V_c(\gamma, \beta)$

Exemples : quadratique tronquée (semi-), modèle de Potts, norme tronquée

• Limites

solution approchée (minimum local)

Extension au cas de la classification : $\alpha - \beta$ swap

• **Définition de l'** $\alpha - \beta$ **swap**

• étiquetage = partition de l'image $\mathbf{P} = \{P_l | l \in E\}$ avec $P_l = \{p \in I | x_p = l\}$

• $\alpha - \beta$ swap : mouvement d'une partition **P** à une partition **P'** telle que $P_l = P'_l \ \forall l \neq \alpha, \beta$ (certains pixels étiquetés α sont étiquetés β et vice-versa)

- $\circ~$ Optimisation de l' $\alpha-\beta$ swap par coupe minimale
- construction d'un graphe à partir des seuls pixels étiquetés α ou β $(S_{\alpha\beta})$
- ajout de deux nœuds terminaux l'un pour α , l'autre pour β

- arcs :

1. lien avec le nœud α de poids :

 $w(p,\alpha) = V_c(y_p|\alpha) + \sum_{q|q \in N_p, q \notin S_{\alpha\beta}} V_c(\alpha, x_q)$

2. lien avec le nœud β de poids :

$$w(p,\beta) = V_c(y_p|\beta) + \sum_{q|q \in N_p, q \notin S_{\alpha\beta}} V_c(\beta, x_q)$$

- 3. si deux pixels p et q sont voisins en 4 connexité et dans $S_{\alpha\beta}$: arc de poids $w(p,q) = V_c(\alpha,\beta)$
- l'étiquette finale d'un pixel correspond au lien coupé

Extension au cas de la classification : $\alpha - \beta$ -swap

Extension au cas de la classification : α -expansion

$\circ~$ Définition de l' α expansion

• α -extension : mouvement d'une partition **P** à une partition **P'** telle que les pixels étiquetés à α le restent et d'autres peuvent prendre l'étiquette α

• **Optimisation de l'\alpha-expansion par coupe minimale** (V_c doit être une métrique)

- construction d'un graphe à partir de tous les pixels
- ajout de deux nœuds terminaux l'un pour α , l'autre pour $\overline{\alpha}$
- l'étiquette finale d'un pixel correspond au lien coupé

Extension au cas de la classification : α -expansion

• Optimisable par graph-cut

 α label 0

 $\overline{\alpha}$ label 1 (pixel p garde le label $x_p = \overline{\alpha}(p)$, pixel q garde le label $x_q = \overline{\alpha}(q)$) Condition de sous modularité :

 $V_{c}(0,0) + V_{c}(1,1) \leq V_{c}(0,1) + V_{c}(1,0)$ $\Rightarrow V_{c}(\alpha,\alpha) + V_{c}(\overline{\alpha}(p),\overline{\alpha}(q)) \leq V_{c}(\alpha,\overline{\alpha}(p)) + V_{c}(\overline{\alpha}(q),\alpha)$ $\Rightarrow 0 + V_{c}(x_{p},x_{q}) \leq V_{c}(\alpha,x_{p}) + V_{c}(x_{q},\alpha)$ vérifié car V_{c} est une métrique !

Illustrations (Boykov et al. PAMI 2001)

Résultats

• Algorithmes

- $\alpha-\beta$ swap : énergie semi-métrique
- α -extension : énergie métrique

• Performances

- converge vers un minimum local (plusieurs itérations)
- beaucoup plus rapide qu'un recuit simulé
- permet des mouvements beaucoup plus importants dans le paysage énergétiques
- résultats théoriques sur la distance au minimum global

Illustrations (Boykov et al. PAMI 2001)

 $(E_2 \text{ Potts}, E_1 \text{ quadratique tronquée})$

mond image (input)

Our method (E_2)

Annealing (E_1)

Our method (E_1)

Cas de la segmentation interactive : contraintes "hard"

• Principe

L'utilisateur définit manuellement ce qui appartient à l'objet et au fond

 \Rightarrow minimisation de l'énergie d'une classification binaire avec contraintes "hard" (= pixels qui ne peuvent changer de classe)

• Méthode

Recherche de la coupe de capacité minimale avec des poids très élevés sur certains liens pour garantir qu'ils n'appartiendront pas à la coupe

• Avantages

- permettent de bien gérer des contraintes difficiles à introduire dans un recuit simulé
- les zones définies permettent de faire l'apprentissage de l'attache aux données également
- algorithme très rapide si de nouvelles marques sont introduites

Construction du graphe (Boykov et Jolly, 2001)

edge	weight (cost)	for	
$\{p,q\}$	$B_{\{p,q\}}$	$\{p,q\}\in \mathcal{N}$	
$\{p,S\}$	$\lambda \cdot R_p(\texttt{``bkg"})$	$p \in \mathcal{P}, \ p \notin \mathcal{O} \cup \mathcal{B}$	
	K	$p \in \mathcal{O}$	
	0	$p \in \mathcal{B}$	
$\{p,T\}$	$\lambda \cdot R_p(\texttt{``obj''})$	$p \in \mathcal{P}, \ p \notin \mathcal{O} \cup \mathcal{B}$	
	0	$p \in \mathcal{O}$	
	K	$p \in \mathcal{B}$	

Poids du graphe (Boykov et Jolly, 2001)

Illustrations (Boykov et Jolly, 2001)

(a) Original B&W photo

(b) Segmentation results

в

в

Méthodes interactives par coupes minimales

- Grab-cut (Rother et al. 2004)
- prise en compte de la couleur
- deux classes pour l'objet et le fond mais avec des mélanges de gaussiennes (plusieurs composantes du fond et de l'objet)
- terme de régularisation pondéré par le gradient entre pixels voisins
- apprentissage des paramètres des distributions de façon semi- supervisée : initialisation par l'utilisateur (définition du fond), puis itérativement après chaque optimisation par graph-cut

Illustrations -GrabCut- (Rother, Kolmogorov et Blake, 2004)

Méthodes d'optimisation par coupures minimales

- \circ Introduction
- \circ Cas binaire
- Algorithmes approchés
- \circ Algorithmes exacts

Cas de la restauration

• Formulation énergétique

$$U(x|y) = \sum_{p} f(y_{p}|x_{p}) + \sum_{(p,q)} g(x_{p} - x_{q})$$

attache aux données + régularisation

- Choix de la fonction de régularisation
- quadratique $(x_p x_q)^2$
- quadratique tronquée $min((x_p x_q)^2, k)$
- Phi-fonction (conditions sur les dérivées)
- variation totale (domaine continu $\int_{\Omega} |\nabla x|)$

V ensemble des pixels, L ensemble des étiquettes

\circ Hypothèses sur g

g est une fonction convexe (sur les entiers)

• Méthode

- Construction du graphe
- nœuds : $X = V \times L \cup \{s, t\}$ (u_{pi} nœud du pixel p pour le label i);
- arcs : de s à tous les nœuds pixels-premier label, puis de tous les pixels-label i aux pixels-label i+1, etc.
- poids des arcs "en colonnes" : $c(s, u_{p1}) = +\infty$, $c(u_{pi}, u_{pi+1}) = f(y_p|i)$, $c(u_{pk}, t) = f(y_p|k) \ (c(u_{pi+1}, u_{pi}) = +\infty \text{ pour empêcher les boucles})$

Terme de régularisation : arcs de pénalité

• Cas simplifié pour le modèle TV :

arcs de coût 0 sauf arcs "horizontaux" de coût $1 \Rightarrow g(x_p - x_q) = |x_p - x_q|$

• Cas général :

ensemble d'arcs liant les nœuds pixels -labels coupés par la coupe

• Cas général

• Terme de pénalité intervenant dans la coupe :

$$g(i,j) = \sum_{a=1}^{i} \sum_{b=j+1}^{k} c(u_{va}, u_{wb}) + \sum_{a=i+1}^{k} \sum_{b=1}^{j} c(u_{wb}, u_{va})$$

• **Proposition** : si g(i, j) définie comme la somme des capacités des pixels adjacents ne dépend que de i - j, $g(i, j) = \tilde{g}(i - j)$ alors \tilde{g} est nécessairement convexe.

Réciproquement si g est convexe alors on peut définir les capacités des arcs de pénalités par :

$$c(u_{vi}, u_{wj}) = \frac{\tilde{g}(i-j+1) - 2\tilde{g}(i-j) + \tilde{g}(i-j-1)}{2}$$

la capacité devient nulle pour des différences de labels suffisamment grandes NB : pas de contrainte sur le terme d'attache aux données

Cas de la restauration - solution exacte (Darbon, Sigelle 2006)

$$U(x|y) = \sum_{p} f(y_{p}|x_{p}) + \sum_{(p,q)} w_{pq}|x_{p} - x_{q}|$$

• Principe

Décomposition de x sur ses ensembles de niveaux (versions seuillées de x)

- \Rightarrow reformulation sous forme de champs de Markov binaires
- \Rightarrow formule de reconstruction sous certaines hypothèses

Décomposition en ensembles de niveaux

• Définitions

Décomposition en ensembles de niveaux

- Reformulation de l'énergie en fonction des coupes
- Terme de régularisation :

$$TV(x) = \sum_{\lambda=0}^{L-2} \sum_{(s,t)} w_{st} |x_s^{\lambda} - x_t^{\lambda}|$$

$$TV(x) = \sum_{\lambda=0}^{L-2} \sum_{(s,t)} w_{st} \left[(1 - 2x_t^{\lambda}) x_s^{\lambda} + x_t^{\lambda} \right]$$

• Terme d'attache aux données :

$$f(y_s|x_s) = g_s(x_s) = \sum_{\lambda=0}^{L-2} \left(g_s(\lambda+1) - g_s(\lambda) \right) \underbrace{\mathbb{1}_{\lambda < x_s}}_{(1-x_s^{\lambda})} + g_s(0)$$

Décomposition en ensembles de niveaux

• Reformulation de l'énergie en fonction des coupes

$$U(x|y) = \sum_{\lambda=0}^{L-2} E^{\lambda}(x^{\lambda})$$

$$E^{\lambda}(x^{\lambda}) = \sum_{(s,t)} w_{st} \left[(1 - 2x_t^{\lambda})x_s^{\lambda} + x_t^{\lambda} \right] + \sum_s \left(g_s(\lambda + 1) - g_s(\lambda) \right) \left(1 - x_s^{\lambda} \right) + g_s(0)$$

Optimisation par ensembles de niveaux

 $E^{\lambda}(x^{\lambda})$: champ binaire avec modèle d'Ising (ferro-magnétisme) Soit \hat{x}^{λ} le minimiseur global de $E^{\lambda}(x^{\lambda})$ à λ fixé Pour que $\{\hat{x}^{\lambda}\}_{0 \leq \lambda \leq L-1}$ donne le minimum global de U(x|y) il faut que :

$$\hat{x}^{\lambda} \le \hat{x}^{\mu} \quad \forall \lambda < \mu$$

La solution optimale est alors donnée par :

$$\forall s \qquad \hat{x}_s = \min\{\lambda/\hat{x}_s^\lambda = 1\}$$

Conditions sur les énergies et graphes associés

- Condition de convexité sur les énergies conditionnelles locales
- propriété de reconstruction assurée par des optimisations séparées sur les ensembles de niveaux
- algorithme très rapide par dichotomie sur l'ensemble des niveaux de gris
- Attache aux données quelconque et régularisation nivelable
- propriété de reconstruction assurée par l'ajout d'un terme de couplage entre les niveaux de gris $\sum_s \alpha H(x_s^{\lambda} x_s^{\lambda+1})$
- graphe différent de celui d'Ishikawa mais de taille similaire

bruit gaussien (L2+TV)

bruit gaussien (L2+TV)

Récapitulatif

Auteurs	Espace	Régul.	Graphe	Optimum
Greig et al.	binaire	Ising	pixels + s,t	global
Kolmog. Zabih	binaire	sous-modulaires	pixels + s,t	global
Freedman	binaire	ordre 3		
Boykov et al.	ng	semi métrique	ss-ensbl +s,t	local*
		métrique	pixels +s,t	local*
Ishikawa	ng	convexe de $ x_s - x_t $	S*ng+s,t	global
Darbon et al.	ng	en.loc. convexe	dichotomie	global
		nivelable	S*ng+s,t	global

Bibliographies et figures

Références 0

- Exact Maximum A Posteriori Estimation for Binary Images, D. Greig, B. Porteous, H. Seheult, J. R. Statist. Soc. B, 1989
- Fast Approximate Energy Minimization via Graph Cuts, Y. Boykov, O. Veksler, R. Zabih, PAMI 2001
- Grab-cut Interactive Foreground Extraction using Iterated Graph Cut, C. Rother, V. Kolmogorov, A. Blake, conf. SIGGRAPH 2004
- What energy functions can be minimized via graph cuts?, V. Kolmogorov, R. — Zabih, PAMI 2004
- Exact Optimization for Markov Random Fields with Convex Priors, Ishikawa, PAMI 2003
- Image restoration with discrete constrained total variation, J. Darbon et M. Sigelle, JMIV 2006.
 - **Emprunts figures** 0
 - Exposé de R. Keriven, Ecole des Ponts, CERTIS, Journée du GdR Isis
 - Image restoration with discrete Level Sets, M. Sigelle et J. Darbon, exposé INRIA