

Bayesian analysis and Markov random fields for image processing

Florence Tupin Télécom Paris

Topics

Image labeling

- > Problem modeling
- > Solution with pixel independence
- > Solution with Markov Random Field
- ▶ Exemples

• Image restoration

- > Problem modeling
- ▶ Line process

• Extensions and links with related topics

Bayesian analysis in image processing Data acquisition process modeling

 $x \to$ Degradation Detection Measure $\to y$ original scene observation $\Pr(Y=y \ / \ X=x)$

Space state

- restoration: y_s and x_s in E (space of gray-levels)
- labeling : y_s in E, x_s in Λ (space of labels)

Posterior distribution

 \circ problem modeling: $y \rightarrow x$?

$$Pr(X = x / Y = y) = \frac{Pr(Y = y / X = x) \cdot Pr(X = x)}{Pr(Y = y)}$$
 [Bayes]

$$\Pr(X = x \mid Y = y) \propto \quad \Pr(Y = y \mid X = x) \quad . \quad \Pr(X = x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
posterior probability formation prior
of x of the observations on the solution

$$\mathbf{MAP \ estimate : } \hat{x} = \arg \max_{x \in \Omega} \mathbf{Pr}(X = x \ / \ Y = y)$$

Punctual (per pixel) bayesian labeling

• Example Let us suppose a brain image labeling with 6 classes

$$\Lambda = \lambda_1, \lambda_2, ..., \lambda_6$$

with background, skin, bone, Gray Matter, White Matter, ventricules

• Per pixel model

Ech pixel is conditionally independent from its neighbors for P(X|Y):

$$P(X|Y) = \Pi_s P(X_s|Y_s)$$

The problem boils down to look for the "best" label maximizing $P(X_s|Y_s)$ for each pixel s.

$$P(X_s|Y_s) \propto P(Y_s|X_s)P(X_s)$$

(per pixel MAP estimate)

Punctual bayesian labeling

\circ Likelihood

Term
$$P(Y_s = y_s | X_s = x_s)$$

depends on the sensor (acquisition process) and considered labels.

⇒ physical modeling, supervised learning by manual selection of region of interest, unsupervised learning by iterative estimation (EM)

• Prior (per pixel)

Term
$$P(X_s = x_s)$$

Prior knowledge on the proportion of classes

Punctual bayesian labeling

Example

Gaussian distributions of the gray levels conditionally to the class no prior on the class proportion

Limits

no spatial coherency

model not adapted for image processing

 \Rightarrow global prior on X= Markov Random Field

Image labeling

Data acquisition process

MAP criterion
$$P(X = x | Y = y) \propto P(Y | X) P(X)$$

 \circ Term P(Y|X) - Hypotheses

$$\Pr(Y = y | X = x) = \prod_{s \in S} \Pr(Y_s = y_s | x) = \prod_{s \in S} \Pr(Y_s = y_s | X_s = x_s)$$

$$P(Y|X) = \exp(-\left[\sum_{s} -\log(P(Y_s|X_s))\right])$$

 \circ Conditional probabilities $P(Y_s|X_s)$

depend on the sensor, on the considered classes

Prior model: properties of real images (image of labels)

(if pixel independence)

$$P(X = x) = \prod_{s \in S} P(X_s = x_s)$$

back to the per pixel bayesian classification

$$P(Y_s = y_s / X_s = x_s) P(X_s) \propto P(X_s = x_s / Y_s = y_s)$$

- \circ MRF hypothesis for X
- \Rightarrow interaction between a pixel and its neighbors (region regularity, ...)

$$\Pr(X = x) = \frac{\exp - U(x)}{Z}$$

with
$$U(x) = \sum_{c} V_c(x)$$

Posterior distribution

new Gibbs distribution

$$\Pr(X = x \mid Y = y) = \frac{\exp -\mathcal{U}(x \mid y)}{Z'}$$

$$\mathcal{U}(x / y) = \sum_{s \in S} -\log(P(Y_s = y_s / X_s)) + \sum_c V_c(x)$$

$$\max_{x \in \Omega} \Pr(X = x \mid Y = y) \iff \min_{x \in \Omega} \ \mathcal{U}(x \mid y)$$

posterior field is also markovian!

Posterior distribution

Likelihood term

$$\sum_{s} -\log(P(Y_s = y_s | X_s))$$

Link between the data and the label (data attachment term)

\circ Prior term

$$U(x) = \sum_{c} V_c(xs, s \in c)$$

Regularization term (does not depend on the data) to introduce prior knowledge on the searched for solution

MAP estimate

trade-off between the data attachment term and the regularization term

Optimization

Search for the "optimal" configuration (minimizing the energy)

• Simulated Annealing

Gibbs distribution (for the posterior field) with decreasing temperature Drawback : slow convergence (stochastic algorithm) but global minimum

• ICM (Iterated Conditional Modes)

Drawback: local minimum (deterministic algorithm) but fast convergence

Optimization

• ICM (Iterated Conditional Modes)

- \triangleright Initialization $x^{(0)}$ close to the solution
- \triangleright Sequence of images $x^{(n)}$: at step n (updating of all the sites)
 - random selection of s
 - state updating = max of local probabilities

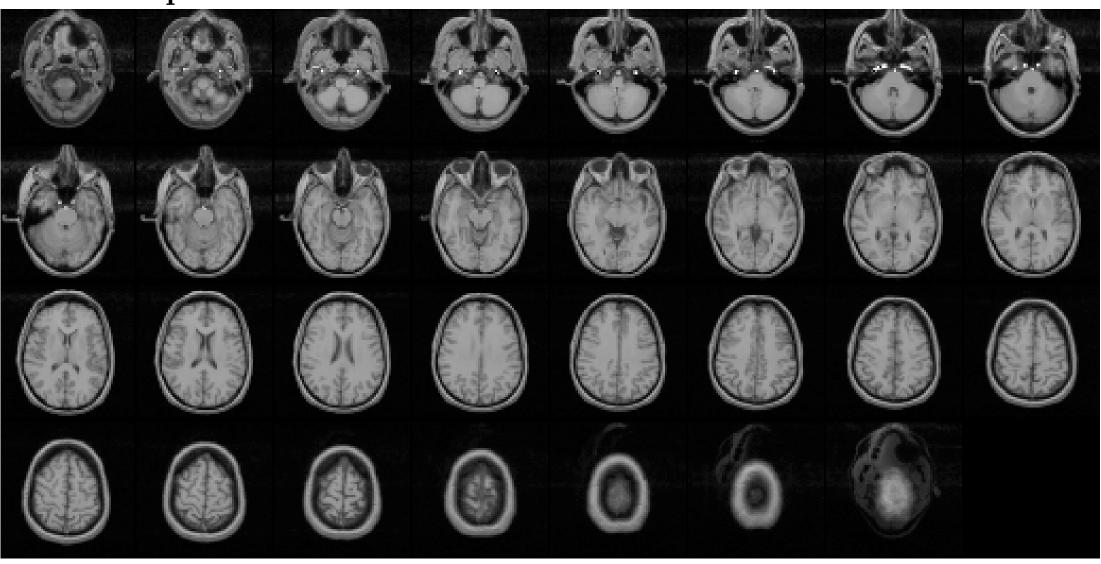
$$x_s^{(n)} = \underset{\xi \in E}{\operatorname{argmax}} P(X_s = \xi \mid y, V_s^{(n-1)})$$

▷ stop criterion : change rate < threshold

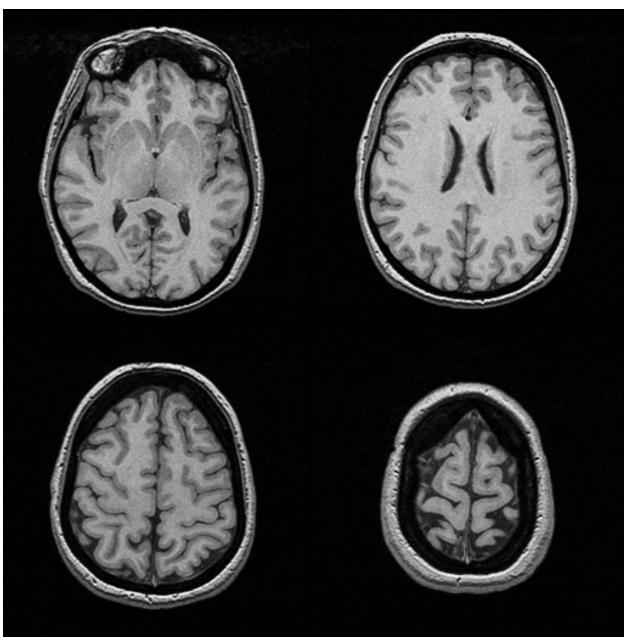
<u>Characteristics</u>

- ▶ Deterministic algorithm, result depends on initialization
- ▶ Fast convergence
- \triangleright No guarantee on the minimum of $\mathcal{U}(x \mid y)$.

Example 1



Example 1



Example 1: brain imaging

likelihood : independence for the conditional probability

$$P(Y = y \mid X = x) = \prod_{s \in S} P(Y_s = y_s \mid X_s = x_s)$$

Gaussian case: supervised leraning of the pdf of each class $i: \mathcal{N}(\mu_i, \sigma_i)$

$$P(Y_s = y_s \mid X_s = i) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left(-\left(\frac{(y_s - \mu_i)^2}{2\sigma_i^2}\right)\right)$$

regularisation

Local interactions between labels: Potts model,

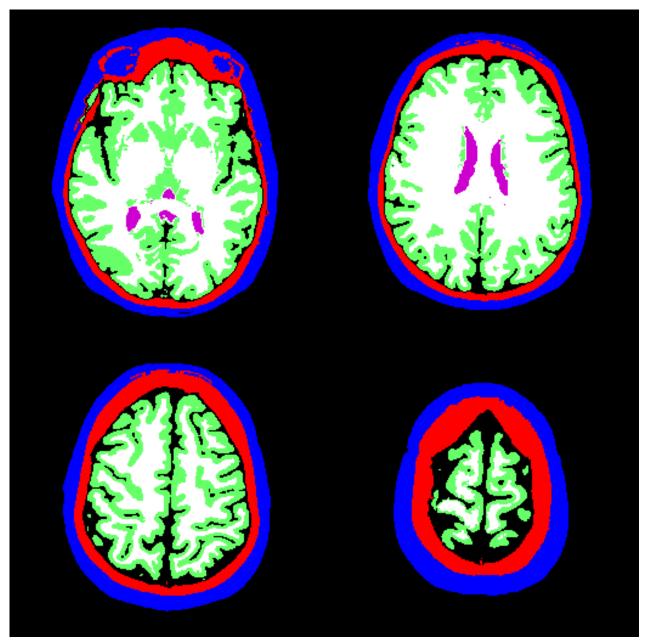
 \Rightarrow Posterior dist. $P(X \mid Y)$: Gibbs dist. with local conditional energy:

$$\mathcal{U}(x_s \mid y, V_s) = \log \sigma_{x_s} + \frac{(y_s - \mu_{x_s})^2}{2\sigma_{x_s}^2} + \beta \sum_{r \in \mathcal{V}_s} 1_{(x_s \neq x_r)}$$

\circ optimization - MAP estimate \hat{x}

Simulated Annealing (random init.); ICM (likehood estimate for initialization)

Example 1



$\begin{array}{c} \mathbf{Example} \ \mathbf{2} \end{array}$

Example 2: remote sensing image

Likelihood : conditional independence

$$P(Y = y \mid X = x) = \prod_{s \in S} P(Y_s = y_s \mid X_s = x_s)$$

Gamma pdf

$$P(Y_s = y_s \mid X_s = x_s) = \frac{2L^L}{\Gamma(L)} \frac{y_s^{(2L-1)}}{\mu_{x_s}} \exp\left(-\frac{Ly_s^2}{\mu_{x_s}}\right)$$

regularisation

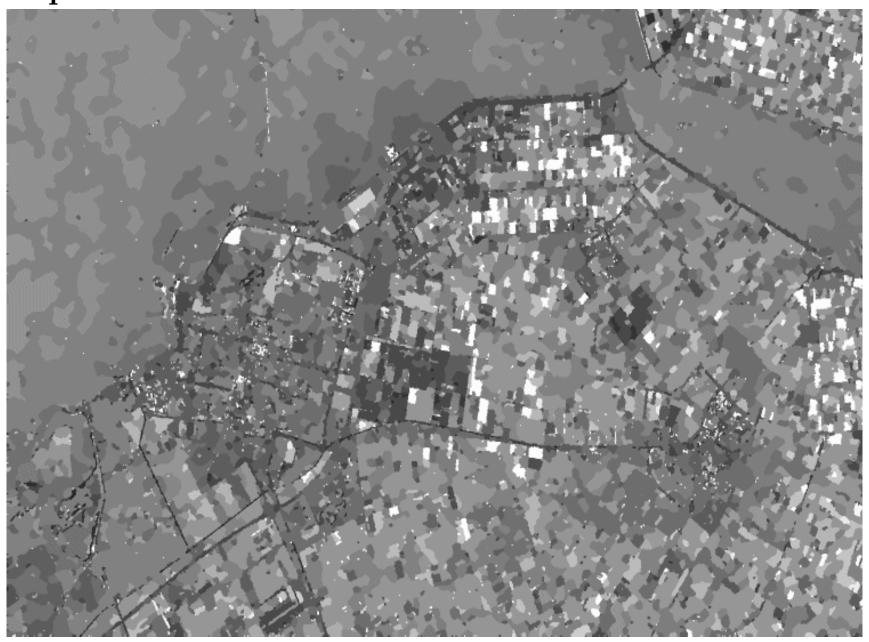
Local interactions between labels: Potts model,

• Posterior: Gibbs distribution Local conditional energy:

$$\mathcal{U}(x_s \mid y, V_s) = L \frac{y_s^2}{\mu_{x_s}} - \log \mu_{x_s} + \beta \sum_{r \in \mathcal{V}_s} 1_{(x_s \neq x_r)}$$

optimization: simulated annealing or ICM

Exemple 2



Example 3: segmentation and data combination

o problem

 $K = \text{nomber of channels (sources)} \Rightarrow \text{vector of attributes } Y = (Y^1, ..., Y^K)$ $M \text{ number of classes } \Lambda = \{\lambda_1, ..., \lambda_M\}$

o likelihood : independent sources

$$p(Y|X) = \prod_{s \in S} P(Y_s|X_s) = \prod_{s \in S} P(\{Y_s^1, Y_s^2, ..., Y_s^K\}|X_s)$$

$$= \prod_{s \in S} P(Y_s^1|X_s) ... P(Y_s^K|X_s) = \prod_{s \in S} \prod_{k=1}^K P(Y_s^k|X_s)$$

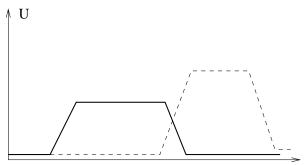
$$\Rightarrow V(y_s|\lambda) = \sum_k V(y_s^k|\lambda)$$

 \circ confidence coefficients (reliability) $C_{(k,\lambda)}$: source $k \to \text{class } \lambda$

$$V((y_s^k)_k|\lambda) = \frac{1}{\sum_k C_{(k,\lambda)}} \sum_k C_{(k,\lambda)} V(y_s^k|\lambda)$$

Segmentation and data combination

 \circ Likelihood $V(y_s^k|\lambda)$ piecewise linear



- \Rightarrow supervised definition (histogram, thresholding,...)
- ⇒ automatic definition (hisogram multi-scale analysis,...)
- \circ weighting coefficients $C_{(k,\lambda)}$ for sensor k relative to λ
- = 0 if k is not significant for λ
- = 0.5 if k is moderately reliable
- = 1 if k is reliable for λ

Segmentation and data combination

• Contextual term: Markovian label field

$$U(x) = \sum_{c \in C} V_c(x_c)$$

• Prior knowledge on class adjacency : adjacency matrix $(\gamma(\lambda_i, \lambda_j))_{i,j \in \{1,...,M\}}$

regularization potential: $V_{c=(s,t)}(x_s, x_t) = \gamma(x_s, x_t)$

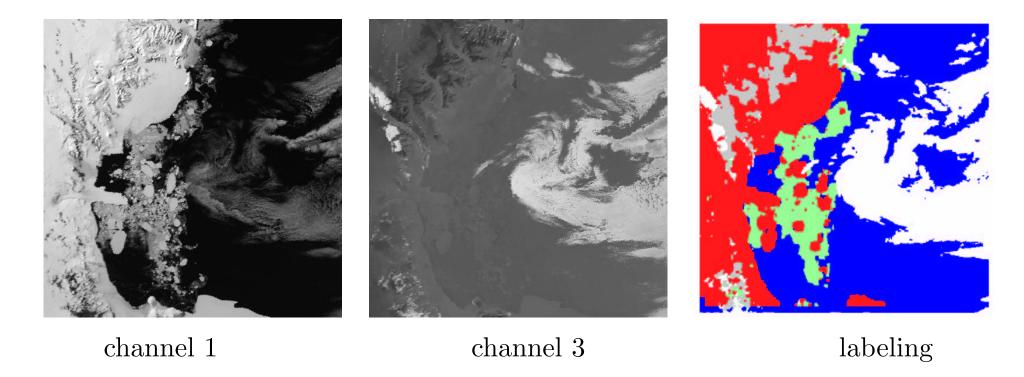
- \diamond forbidden adjacency between λ_1 and $\lambda_3 \Rightarrow \gamma(\lambda_1, \lambda_3) = +\infty$
- \diamond favorable adjacency for λ_1 and $\lambda_2 \Rightarrow \gamma(\lambda_1, \lambda_2) = 0$

Parameter choice

comparison of local energies for different configurations

L-curve

Multi-spectral labeling of AVHR RNOAA ice areas



Degradation Detection Measure

y

original scene

observation

$$Pr(Y=y / X=x)$$

Additive white gaussian noise

$$y = x + \epsilon$$

$$y_s = x_s + \epsilon_s \ \forall s \in S$$

$$\epsilon_s \to \mathcal{N}(0, \sigma^2)$$

$$\Pr(Y = y \mid X = x) =$$

$$\begin{bmatrix} y = x + \epsilon & y_s = x_s + \epsilon_s \ \forall s \in S & \epsilon_s \to \mathcal{N}(0, \sigma^2) \\ \Pr(Y = y \ / \ X = x) & = \prod_{s \in S} \Pr(Y_s = y_s \ / \ X_s = x_s) & \propto \prod_{s \in S} \exp\left(-\frac{(y_s - x_s)^2}{2\sigma^2}\right) \end{bmatrix}$$

$$\prod_{s \in S} \exp - \frac{(y_s - x_s)}{2\sigma^2}$$

Loi du processus de formation des observations (suite)

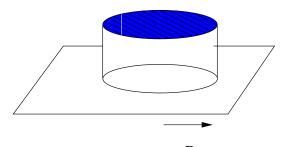
o convolution

$$\int y = h \ x + \epsilon$$

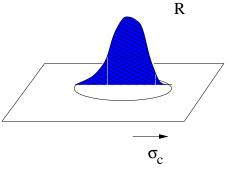
$$y = h \ x + \epsilon$$
 $y_s = \sum_{r \in S} h_{rs} \ x_r + \epsilon_s \ \forall s \in S$ $\epsilon_s \to \mathcal{N}(0, \sigma^2)$

$$\epsilon_s \to \mathcal{N}(0, \sigma^2)$$

- blurring (uniform)



- blurring (gaussian)



Denoising with additive white gaussian noise

$$\Pr(Y = y | X = x) = \prod_{s \in S} \Pr(Y_s = y_s | X_s = x_s) \propto \prod_{s \in S} \exp\left(-\frac{(y_s - x_s)^2}{2\sigma^2}\right)$$

regularity of solution

$$\Pr(X = x) = \frac{\exp -\beta \sum_{(r,s)\in\mathcal{C}} \Phi(x_r, x_s)}{Z}$$

o new Gibbs distribution $Pr(X = x / Y = y) = \frac{\exp -\mathcal{U}(x / y)}{Z'}$!

$$\mathcal{U}(x \mid y) = \sum_{s \in S} \frac{(y_s - x_s)^2}{2\sigma^2} + \beta \sum_{(r,s) \in \mathcal{C}} \Phi(x_r, x_s)$$

$$\max_{x \in \Omega} \Pr(X = x \mid Y = y) \Leftrightarrow \min_{x \in \Omega} \mathcal{U}(x \mid y)$$

 \circ regularization $\Phi(x_r, x_s) = \Phi((x_r - x_s)) = \Phi(u)$

Image denoising : choice of Φ

quatratic regularization

Gaussian field

$$\Phi(u) = u^2$$

good regularization of homogeneous areas edge blurring

- o suppressing the regularization term on discontinuities
 - intuitively : quadratic term \Rightarrow truncated quadratic term
 - introduction of a line process

Restoration taking into account discontinuities

• Line process B

$$B = (B_{st})$$

 $b_{st} = 1$ if there is an edge, else $b_{st} = 0$

o Posterior field

$$P((X,B)|Y) = \frac{P(Y|(X,B))P(X,B)}{P(Y)} = \frac{P(Y|X)P(X,B)}{P(Y)}$$

Prior field energy

$$U(x,b) = \sum_{s,t} (1 - b_{st})(x_s - x_t)^2 + \gamma b_{st}$$

Restoration taking into account discontinuities

 \circ Minimization of the energy in (x,b)

$$\min_{(x,b)} U(x,b) = \min_{x} \sum_{s,t} \min_{b_{st}} f(x_s - x_t, b_{st})$$

$$\min_{b_{st}} f(x_s - x_t, b_{st}) = \min((x_s - x_t)^2, \gamma)$$

$$\min_{(x,b)} U(x,b) = \min_{x} \tilde{U}(x)$$

$$\min_{b_{st}} f(x_s - x_t, b_{st}) = \phi(x_s - x_t)$$

implicit model \Leftrightarrow explicit model

(weak membrane model)

Restoration taking into account discontinuities

\circ examples of regularization functions $\phi(x_s - x_r)$

Geman and Mac Clure 85
$$\phi(u) = \frac{u^2}{1+u^2}$$
 Hebert and Leahy 89
$$\phi(u) = \log(1+u^2)$$

Charbonnier 94 $\phi(u) = 2\sqrt{1 + u^2} - 2$

\circ conditions on ϕ

1.
$$\lim_{u \to 0^+} \frac{\phi'(u)}{2u} = 1$$

$$\lim_{u \to +\infty} \frac{\phi'(u)}{2u} = 0$$

3. $\frac{\phi'(u)}{2u}$ is continuous, strictly decreasing $[0, +\infty[$

Theorem

Soit:

$$\phi: [0, +\infty[\to [0, +\infty[$$

 $\phi(\sqrt{u})$ strictly concave on $]0, +\infty[$ and let

$$L = \lim_{u \to +\infty} \frac{\phi'(u)}{2u}$$
 and $M = \lim_{u \to 0^+} \frac{\phi'(u)}{2u}$

then:

— $\exists \ \psi \ \text{strictly convex and decreasing} : [L, M] \mapsto [\alpha, \beta], \ \text{such that} :$

$$\phi(u) = \inf_{L \le b \le M} \left(bu^2 + \psi(b) \right)$$

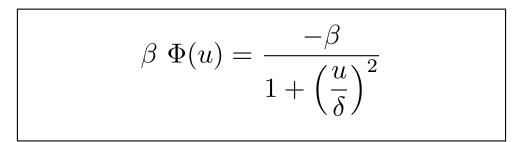
$$\alpha = \lim_{u \to \infty} \phi(u) - u^2 \frac{\phi'(u)}{2u} , \beta = \lim_{u \to 0^+} \phi(u) - u^2 \frac{\phi'(u)}{2u}$$

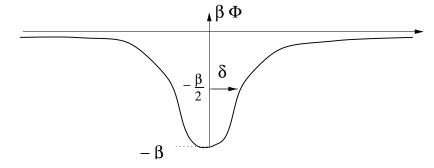
$$\forall u \ b_u = \frac{\phi'(u)}{2u}$$

is the unique value for which infimum is reached

Image restoration: Geman and Reynolds potential

o formulation





 $\begin{cases} \beta : \text{ "range" of the potential} \\ \delta : \text{ "Amplitude" of the potential} \end{cases}$

 $\circ \Rightarrow$ choice of β and δ controlling the regularization

Implicit ϕ -function vs explicit line process

to preserve discontinuitites it is strictly equivalent to minimize

an explicit expression with line process

$$U(x,b|y) = \sum_{s} (y_s - x_s)^2 + \lambda \sum_{(r,s)} b_{rs} (x_s - x_r)^2 + \mu \sum_{(r,s)} \psi(b_{rs})$$

an implicit equivalent expression

$$U(x|y) = \sum_{s} (y_s - x_s)^2 + \lambda' \sum_{(r,s)} \phi(x_s - x_r)$$

 \circ the equivalent b_{rs} is given by

$$b_{rs} = \frac{\phi'(x_s - x_r)}{2(x_s - x_r)}$$

Minimization algorithms

GNC Graduated non convexity (Blake et Zisserman)

- Principle : approximating the energy by a convex function and graduated modification
- deterministic algorithm
- proof of convergence for some cases

MFA Mean Field Annealing

- explicit line process
- temperature decrease and mean field approximation
- iterative estimation of the line process and the solution

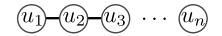
• Artur et Legend

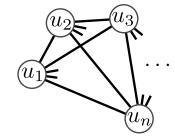
- explicit line process
- itertive computation of the line process (closed form expression) then with fixed b estimation of x (gradient descent)

MRF and graphical models

• Graphical models to capture independence

node = random variable, edge = probabilistic interaction





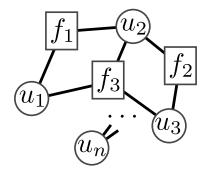
total independence

a Markov random field

complete dependence

Factor graphs

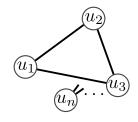
connecting groups of variables through the factor f_k



MRF and graphical models • MRF

Statistical dependence of random variables and factorization

$$P(x) = \prod \psi_c(x_s, s \in c) = \frac{1}{Z} \prod_c \exp(-V_c(x))$$



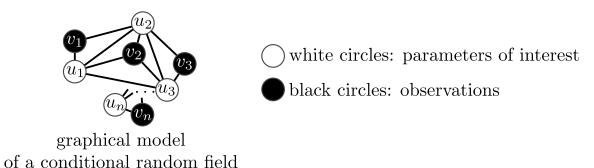
graphical model of a Markov random field

$$(u_1)$$
 \dots (u_3) $+$ (u_1) \dots (u_3) $+$ (u_1) \dots (u_3) $+$ (u_1) \dots (u_3) (u_3) \dots (u_3)

decomposition into cliques

MRF and Conditional Random Fields (CRF)

• Conditional (discriminative) Random Fields



direct modeling of the posterior field

$$P(x|y) = \frac{1}{Z} \exp(-\sum_{c} V_c(x,y))$$

- The clique potentials can depend on the vector of observations (external field)
- Often used in a supervised training context with a learning of $V_c(x_s, y)$ (unitary potentials) and $V_c(x_s, x_t, y)$ pairwise potentials (ex: logistic classifiers)