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Abstract—The aim of this paper is to compare the potential
of two popular flexible laws, the Fisher distribution and the
Generalized Gamma distribution, for the statistical modeling of
high-resolution SAR data through an original “mimicking-based”
approach. The presented study allows to evaluate the ability of
both laws to correctly imitate or “mimic” another reference law,
frequently used for modeling the intensity of SAR images and
chosen for instance as the K law or the Weibull, Beta or log-
normal laws in this work. This study uses log-cumulant statistics
for parameter estimation of the imitating law and involves
quantitative criteria of comparison based on the Kullback-Leibler
divergences between the reference law and the Fisher law or
the Generalized Gamma law. The mimicking capacities of both
distributions are first analyzed for some sets of parameters
describing different studied cases, covering a wide set of possible
mimicked reference laws. The high modeling potential of both
distributions is then illustrated on heterogeneous subscenes from
real SAR intensity data. Pragmatical considerations are also
taken into account to draw up recommendations about the pref-
erential use of a distribution and to highlight complementarities
of both Fisher and Generalized Gamma distributions, along with
limitations of the approach.

Index Terms—Statistical modeling, mimic, high-resolution
(HR) SAR data, Fisher distribution, Generalized Gamma dis-
tribution, K distribution, Beta distribution, Weibull distribu-
tion, log-normal distribution, Kullback-Leibler divergence, log-
cumulants.

I. INTRODUCTION

THE modeling of intensity distributions of SAR data is
essential for several aims in remote sensing, such as im-

age denoising [1], image segmentation [2], image classification
[3], object detection [4] or 3D reconstruction [5], and change
detection [6] [7]. A wide variety of laws [8] [9] [10] [11] -
among which the exponential law, the Gamma law, the Log-
Normal law, the K law, Weibull law, or the Beta law - have
been employed in the literature for this purpose, depending
on the application framework and on the kind of processed
SAR data. Nevertheless, it remains difficult to choose the
good statistical model for intensity SAR image processing.
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The classical laws described by two parameters - such as
the traditional Gamma laws - have proved to be insufficient
in some specific cases, especially for the new generation of
high-resolution (HR) and very high-resolution (VHR) SAR
sensors. This has thus motivated the use of more sophisticated
laws described by three parameters or more to overcome these
limitations.

Indeed, one of the interest of a “generic” distribution is its
ability to describe a large set of homogeneous and heteroge-
neous areas in an image (for instance ground, vegetation, urban
areas, sea, etc.). Instead of a dictionary of distributions dedi-
cated to different behaviors, the use of a well chosen generic
distribution simplifies the processing chain. The selection of
such a distribution remains an open question.

For SAR images, two flexible laws, the Fisher1 distribution
[2] [3] [9] [10] [13] [14] and the Generalized Gamma distribu-
tion [15] [16] [17] [18] [19], are good candidates to be generic
distributions2. These two laws, described by three parameters,
are quite popular in the literature. In [2] and [3], the Fisher
distribution is used respectively for image partitioning and
image classification especially on HR SAR data in urban areas.
In [17] and [19], it is the Generalized Gamma distribution
which is exploited for histogram fitting on SAR data in urban,
agricultural and mountainous areas.

But, how good are comparatively Fisher and Generalized
Gamma distributions to fit different kinds of behaviors? We
propose in this paper to compare their potential through an
original “mimicking-based” approach [22], [23]. We study
their ability to correctly ” mimic”3 a third distribution, which
we have chosen for instance in this work as a K law or a
Weibull or Beta law. Indeed, the K, Weibull or Beta laws
(described by two or three parameters) have been until now
frequently used for the modeling of intensity of SAR imagery
[24] [25] [11], [10] and they can thus be considered as
examples of reference laws. Besides, given that Fisher and
Generalized Gamma distributions can be themselves consid-

1The Fisher distribution is also called the second kind Beta law [10], the
type VI Pearson law [10] or the G0 distribution [12].

2The so-called G distribution is another interesting generic distribution
[12] [20]. However, the probability density function of this distribution is
complex and this fact limits its analytical manipulation and, consequently, its
application. An initial analysis based on it is proposed in [21].

3In this paper, the “mimic” word refers to the ability of a distribution to
correctly imitate or copy another one in terms of probability density function
fitting in a data modeling framework.
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ered as reference laws, it is also interesting to investigate how
Fisher and Generalized Gamma are able to mimic each other.

The presented study uses log-cumulant statistics for parame-
ter estimation of the imitating law and introduces quantitative
criteria of comparison based on the Kullback-Leibler diver-
gence to analyze the capacities of both distributions to mimic
the reference law. We are thus led to derive the analytical
expressions of Kullback-Leibler divergences (KLD) between
the K law and the Fisher law or the Generalized Gamma
law, as well as those of Kullback-Leibler divergences (KLD)
between the Fisher law and the Generalized Gamma law
and reciprocally. It represents a theoretical contribution of
this paper (such expressions can be indeed used for multiple
purposes in statistical image processing). We are also led to
evaluate imitation performances of both distributions on some
sets of parameters (describing different cases of mimicked K
reference laws). To extend this study we also analyze the case
of Weibull, Beta and log-normal laws. We finally illustrate
the high modeling potential of both Fisher and Generalized
Gamma distributions on real SAR subscenes. We draw up
recommendations about the preferential use of a distribution in
particular which represents an other contribution of this paper.

We will use the method of log-cumulants (MLC)4 to esti-
mate Fisher and Generalized Gamma parameters. This choice
is justified by its numerous practical advantages compared
to the classical maximum likelihood method (MLM) or the
method of moments (MM) [2] [28] [29]. For the estimation
of Generalized Gamma parameters, MLC is easier, faster and
more stable than MLM and MM, and offers very competitive
performances, in particular for small sample sizes [28] [29].
For the estimation of Fisher parameters, MLC is easier and
faster than MLM and provides better global performances than
MM, in addition to some other practical benefits [2] ((i) no
applicability restriction relative to moment existence has to be
considered with MLC, unlike with MM; (ii) for a given set of
parameters, the percentage of generated sample realizations for
which the estimated parameters are valid, i.e. positive, called
”acceptance rate” in [2], is higher with MLC than with MM,
especially for small sample sizes).

Besides, let us also underline that the works presented in
this paper provides an enhanced content with respect to the
ones in [22] and [23], where the mimicking concept has been
previously introduced. More precisely, we propose here: (i) to
detail the log-cumulant based mimicking methodology briefly
presented in [22] and [23] and to demonstrate the simplified
analytical expressions of the Kullback-Leibler divergences
involved in the comparison criteria; (ii) to illustrate on several
synthetic datasets the mimicking performances of Fisher and
Generalized Gamma distributions and to carry out an in-depth
analysis of the results. We consider here not only K laws
as reference ones but also alternatively Weibull, Beta and
log-normal laws for instance. This allows us to generalize
to a wider set of mimicked laws the proposed approach.
(iii) to illustrate the intensity modeling potential of both

4The method of log-cumulants has been introduced in [9] and [10]. In [26]
and [27], studies combining the method of log-cumulants and the squared
Mahalanobis distance are proposed in order to obtain a parameter estimation
method and a goodness of fit method based on the Mellin transform.

distributions of interest on real SAR data and to provide
precise and additionnal pragmatical considerations, that can be
useful when dealing with modeling law choice. More precisely,
we discuss applicability conditions for MLC (relative to log-
cumulant locations), numerical instability risks and numerical
precision limitations, in order to raise awareness to practical
difficulties that can be encountered even when using flexible
laws.

The paper is organized as follows: In section II, the
analytical probability density functions (pdfs) and the log-
cumulant expressions of Fisher, Generalized Gamma and K
distributions are reminded. In section III, the log-cumulant and
Kullback-Leibler divergence based methodology proposed for
mimicking ability comparison is presented for the reference
K law. In section IV, the results obtained on six studied cases
corresponding to K mimicked examples are in-depth discussed
according to two well-defined points (named as “precision”
and “robustness” in this paper). In section V, mimicking per-
formances of Fisher and Generalized Gamma distributions to
imitate Weibull, Beta and log-normal references law are more
briefly analyzed. In section VI, the approach is applied to the
mimicking of Fisher by Generalized Gamma and vice versa.
In section VII, the interest of using Fisher or Generalized
Gamma law for the intensity modeling of real SAR data
is illustrated on two examples with different heterogeneity
levels and recommendations, jointly based on theoretical and
practical aspects, are given to suggest the preferential use of a
particular distribution and also to highlight some critical cases.
In section VIII, a summary of the main conclusions is drawn
and some precise outlooks are envisaged.

II. PRELIMINARIES

A. Presentation of the Fisher distribution

The Fisher probability density function (pdf)
Fpdf (µF , LF ,MF ) is defined by [9] [10]:

Fpdf (x) =
LF

MFµF

Γ(LF +MF )

Γ(LF )Γ(MF )

(
LFx
MFµF

)LF−1

(
1 + LFx

MFµF

)LF+MF
(1)

where Γ(x) is the Gamma function, µF is a mean parameter
and LF and MF are two shape parameters, weighting respec-
tively the heavy head behavior and the heavy tail behavior of
the Fisher distribution. Indeed, Fpdf (µF , LF ,MF ) can also be
defined as the Mellin convolution [30] [10] between a Gamma
distribution Gpdf (µF , LF ) and an Inverse of Gamma distri-
bution IGpdf (1,MF )5, which allows us to give an intuitive
interpretation to each parameter.

The three first log-cumulants of the Fisher pdf are respec-
tively defined by [9] [10]:

κ̃1Fpdf = ln(µF ) + Ψ(LF )− ln(LF )−Ψ(MF ) + ln(MF )
κ̃2Fpdf = Ψ(1, LF ) + Ψ(1,MF )
κ̃3Fpdf = Ψ(2, LF )−Ψ(2,MF )

(2)

5The Fisher distribution and the G0 distribution were proposed with
the same basic idea, considering both of them a Gamma distribution and
an Inverse of Gamma distribution in a multiplicative model context. The
difference relies only on a re-parametrization process [10] [12].
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where Ψ(x) and Ψ(n, x) represent the Digamma function and
the nth Polygamma function respectively.

B. Presentation of the Generalized Gamma distribution

The Generalized Gamma probability density function (pdf)
GGpdf (µGG , LGG , ηGG) is defined by [10] [19]:

GGpdf (x) = |ηGG |
µGG

L
( 1
ηGG

)

GG
Γ(LGG)

(
L

( 1
ηGG

)

GG x

µGG

)ηGGLGG−1

× exp

(
−

(
L

( 1
ηGG

)

GG x

µGG

)ηGG) (3)

where Γ(x) is the Gamma function, µGG is a mean parameter,
LGG is a shape parameter and ηGG is a power parameter.

The three first log-cumulants of the Generalized Gamma
pdf are respectively defined by [10] [19]:

κ̃1GGpdf = ln(µGG) + Ψ(LGG)−ln(LGG)
ηGG

κ̃2GGpdf = Ψ(1,LGG)
η2GG

κ̃3GGpdf = Ψ(2,LGG)
η3GG

(4)

C. Presentation of the K distribution

The K probability density function (pdf)
Kpdf (µK, LK,MK) is defined by [9] [10]:

Kpdf (x) = 2LKMK
µK

1
Γ(LK)Γ(MK)

(
LKMKx
µK

)LK+MK
2 −1

×BK
(
MK − LK, 2

(
LKMKx
µK

) 1
2

)
(5)

where Γ(x) is the Gamma function, BK(n, x) is the second
kind modified Bessel function of order n, µK is a mean
parameter and LK and MK are two shape parameters. In a
similar way to the Fisher pdf, Kpdf (µK, LK,MK) can also be
defined as the Mellin convolution [30] [10] between a Gamma
distribution Gpdf (µK, LK) and an other Gamma distribution
Gpdf (1,MK).

The three first log-cumulants of the K pdf are respectively
defined by [9] [10]:

κ̃1Kpdf = ln(µK) + Ψ(LK)− ln(LK) + Ψ(MK)− ln(MK)
κ̃2Kpdf = Ψ(1, LK) + Ψ(1,MK)
κ̃3Kpdf = Ψ(2, LK) + Ψ(2,MK)

(6)
The special cases of K distributions where LK = MK

are named “Kc caustic distributions” in this paper. The Kc
probability density function (pdf) is thus defined by:

Kcpdf (x) =
2LKc

2

µKc

1
Γ(LKc )2

(
LKc

2x
µKc

)LKc−1

×BK
(

0, 2
(
LKc

2x
µKc

) 1
2

) (7)

where Γ(x) is the Gamma function, BK(n, x) is the second
kind modified Bessel function of order n, µKc is a mean
parameter and LKc is a shape parameter.

D. Other usual SAR distributions

Among other distributions widely used in SAR imagery,
we have chosen the Weibull distribution, the Beta distribution
and the log-normal distribution to illustrate the mimicking
capacities of the Generalized Gamma and Fisher distributions.

The Weibull pdf (with 2 parameters µW and ηW ) is given
by:

Wpdf (x) =
|ηW |
µW

(
x

µW

)ηW−1

e
−
(

x
µW

)ηW
(8)

As it can be seen, it is a special case of a Generalized Gamma
pdf with LGG = 1 in eq.3.

The Beta pdf (three parameters µB, LB,MB) is given by:

Bpdf (x) = LB
MBµB

Γ(MB)
Γ(LB)Γ(MB−LB)

(
LBx
MBµB

)LB−1(
1− LBx

MBµB

)MB−LB−1

x ∈
[
0; MBµBLB

]
(9)

The log-normal pdf (two parameters µL, σL) is given by:

Lpdf (x) =
1

σL
√

2πx
e

(
− (logx−µL)2

2σ2L

)
(10)

E. Representation of these distributions in the κ̃2−κ̃3 diagram

The so-called κ̃2 − κ̃3 diagram, whose use is well-adapted
when dealing with second kind statistics, allows a simple char-
acterization of the different laws [9] [10] [31]. The positions
of the previously described distributions are presented in this
diagram in figure 1.

The Fisher distributions (described by three parameters)
correspond to the area located above the branches of curves
designating the Gamma and Inverse of Gamma distributions
(described by two parameters).

In order to apply a log-cumulant based method for Fisher
parameter estimation, the condition defined by the following
equation has thus to be satisfied [28] [29]:

κ̂2Fpdf ≥ Ψ
(
1,Φ(2,−

∣∣κ̂3Fpdf
∣∣)) (11)

where Ψ(n, x) and Φ(n, x) represent the nth Polygamma
function and the inverse of the nth Polygamma function
respectively and κ̂2Fpdf and κ̂3Fpdf are the empirical log-
cumulants of the Fisher distribution.

The Generalized Gamma distributions (described by three
parameters) correspond to the larger area located above the
branches of curves defined by the following equation [28]
[29], excluding the ordinate axis (designating the log-normal
distributions):

κ̃2
3
GGpdf

κ̃3
2
GGpdf

=
1

4
(12)

In order to apply a log-cumulant based method for Gener-
alized Gamma parameter estimation, the condition defined by
the following equation has thus to be satisfied [28] [29]):

κ̂2
3
GGpdf

κ̂3
2
GGpdf

>
1

4
(13)

where κ̂2GGpdf and κ̂3GGpdf are the empirical log-cumulants
of the Generalized Gamma distribution.
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The generic characteristic of Fisher and Generalized
Gamma can be seen in the κ̃2 − κ̃3 diagram by the large
areas they are both covering in this space.

The K distributions (described by three parameters) corre-
spond to the smaller area located above the branch of the curve
designating the Gamma distributions and below the branch
of the Kc caustic curve designating the special cases of K
distributions where LK = MK.

Let us denote that Fisher distributions and K distributions
share a same border curve, i.e. the branch of curve designating
the Gamma distribution, because it can be mathematically
shown that [10]: given the Mellin convolution-based defini-
tions of Fisher laws and K laws, when MF tends towards the
Infinite, Fpdf (µF , LF ,MF ) tends towards Gpdf (µF , LF ) and
when MK tends towards the Infinite, Kpdf (µK, LK,MK) tends
towards Gpdf (µK, LK).

The K distributions can thus be theoretically mimicked by
a Fisher law as well as by a Generalized Gamma law. The
Weibull distribution is a special case of Generalized Gamma
distribution and can be mimicked by a Fisher distribution. The
log-normal distribution belongs to the domain of Fisher pdf,
but corresponds to a discontinuity for Generalized Gamma.
Finally, the domain of Beta distributions partly overlaps with
Generalized Gamma domain but not with Fisher one.

III. PROPOSED METHOD TO COMPARE FISHER AND
GENERALIZED GAMMA ABILITY TO MIMICK A REFERENCE

K LAW

In this section, a two-stage methodology is proposed to com-
pare the ability of Fisher and Generalized Gamma to mimic
a reference K law. First, the parameters of the mimicking
laws are estimated using the MLC. Second, a qualitative visual
criterion and some quantitative Kullback-Leibler divergence-
based criteria are computed to lead a comparison.

Two cases are distinguished in this study: (i) case 1: we
assume that the parameters of the reference mimicked K law
are known; (ii) case 2: we assume that the parameters of the
reference mimicked K law are unknown, like this is the case
in practice, but that sample values distributed according to this
K law are available (they correspond, for instance on real SAR
data, to some intensity values of pixels belonging to an area,
whose histogram is supposed to be quite well modeled by a
K law).

In all this work we will only focus on the shape parameters
controlling the distribution. As it has been seen previously,
for all the considered pdf, these parameters are given by the
κ̃2 and κ̃3 log-cumulants. After the estimation of the shape
parameters, the exploitation of κ̃1 provides an estimation of
the mean parameter µpdf . In theory, the µpdf value can have
an impact on the mimicking potential of a distribution since
it is also estimated with the shape parameters. Nevertheless
empirical studies showed that the results for the same set of
parameters except for the µpdf value for mimicking / mimicked
laws give very similar results to the case where µpdf equal 1.
Therefore in all the studies of this paper, the mean parameter
will be chosen equal to 1 for the pdf to be mimicked. Besides,
part VII show results on real SAR images with good histogram
fitting whatever the µ values.
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Fig. 1. (a) Representation of the Fisher, Generalized Gamma, Beta,K, Weibull
and log-normal distribution locations in the κ̃2 − κ̃3 diagram. The stars and
the bullets represent the location of the points associated to values used in
section IV for the six studied sets of parameters, respectively on the Kc

caustic curve and in the K area. The triangles represent the location of the
points associated to values used in section VI for the two studied sets of
parameters in the Fisher area (common to Fisher and Generalized Gamma).
The Weibul, Beta and log-normal pdf studied in part V are also indicated (on
the top for Weibul pdf, on the top and bottom for Beta pdf and on the bottom
for log-normal pdf). (b) Zoom on a sub-part of the κ̃2 − κ̃3 diagram.

A. Log-cumulant based estimation of mimicking law parame-
ters

In the case 1, the log-cumulant based parameter estimation
of the mimicking law (here, the Fisher law or the Generalized
Gamma law), likely to imitate the reference K law, can be
directly done using the three first true log-cumulants of the K
distribution through the following steps:

1) Compute the true log-cumulants κ̃2Kpdf , κ̃3Kpdf and
κ̃1Kpdf of the mimicked K law (from equation (6)), given
its known parameters LK and MK.

2) Identify these numerical values with the analytical ex-
pressions of κ̃2Fpdf , κ̃3Fpdf and then κ̃1Fpdf or κ̃2GGpdf ,
κ̃3GGpdf and then κ̃1GGpdf (see equations (2) and (4)), in
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order to estimate respectively the parameters LF , MF
and then µF or LGG , ηGG and then µGG of the mimicking
laws.

In the case 2, the log-cumulant based parameter estimation
of the mimicking law (here, the Fisher law or the Generalized
Gamma law), likely to imitate the reference K law, can be
indirectly done using the three first empirical log-cumulants
of the K distribution through the following steps:

1) Compute the empirical log-cumulants κ̂2, κ̂3 and then
κ̂1 of the mimicked K law, given some sample values
distributed according to the K law, from the following
formula:

κ̂2 = 1
N

∑N
i=1(ln(xi))

2 − 1
N2

(∑N
i=1 ln(xi)

)2

κ̂3 = 1
N

∑N
i=1(ln(xi))

3

− 3
N2

(∑N
i=1 ln(xi)

)(∑N
i=1(ln(xi))

2
)

+ 2
N3

(∑N
i=1 ln(xi)

)3

κ̂1 = 1
N

∑N
i=1 ln(xi)

(14)
where xi is the pixel intensity value and N is the number
of available pixels.

2) As for step 2) of the case 1, identify these numerical
values with the analytical expressions of κ̃2Fpdf , κ̃3Fpdf
and then κ̃1Fpdf or κ̃2GGpdf , κ̃3GGpdf and then κ̃1GGpdf
(see equations (2) and (4)), in order to estimate the
parameters LF , MF and then µF or LGG , ηGG and then
µGG of the mimicking laws.

To invert equations (2) and (4), involving especially
Digamma and Polygamma functions, the algorithm described
in details in [32] has been directly used for the parameter esti-
mation of the Fisher law and easily adapted for the parameter
estimation of the Generalized Gamma one.

B. Qualitative and quantitative criteria of comparison

The evaluation of the Fisher and Generalized Gamma mim-
icking performances is based on qualitative and quantitative
criteria, taking into account all estimated parameters simulta-
neously.

1) Qualitative criterion: For case 1, the adequation be-
tween the pdf of the mimicked K law (given its known pa-
rameters) and the pdf of the mimicking Fisher or Generalized
Gamma law (once its parameters have been estimated using
the true log-cumulants of K) can be visually appreciated by
plotting both of them on a common graph.

2) Quantitative criteria: For cases 1 and 2, we propose a
quantitative criterion based on the Kullback-Leibler divergence
(KLD) [33], that measures the dissimilarity between two dis-
tributions. We remind that the KLD between the distributions
P and Q is defined by

KLD(Ppdf (x),Qpdf (x)) =

∞∫
0

Ppdf (x) ln

(
Ppdf (x)

Qpdf (x)

)
dx

(15)
This non-symmetric version allows us to give to the KLD a
physical interpretation, namely a proximity measure between

an empirical distribution and a distribution (Sanov theorem,
[34] [35]), whose use will be suitable for our mimicking
framework. Indeed, the P distribution - usually corresponding
in such a non-symmetric KLD formulation to an “observed”
distribution or a “true” one - refers in this paper to the
mimicked one (for instance a K one), while theQ distribution -
usually corresponding in such a non-symmetric KLD formula-
tion to a “model” distribution that “describes, approximates or
imitates” - refers in this paper to the mimicking one (i.e. here
Fisher or Generalized Gamma). Therefore the main advantage
of using here this non-symmetric definition is to preserve such
respective roles (reference law/estimated law) and thus to keep
this important and appropriate physical meaning, even if such
a non-symmetric divergence does not match with a distance in
a mathematical sense (which is not required for our purpose).

For case 1, we propose to compute a single KLD between
K and Fisher and a single KLD between K and Generalized
Gamma through the following steps:

1) we fix a set of parameters describing a mimicked K law
2) we estimate the parameters of the mimicking Fisher

(or Generalized Gamma) law through the log-cumulant
based approach detailed in previous section for case 1

3) we compute the KLD between the mimicked K law
(given its fixed parameters) and the Fisher (or Gener-
alized Gamma) law that has been estimated using the
true log-cumulants of K (computed from its known
parameters).

For case 2, we propose to compute a mean and a variance
on several KLD between K and Fisher and a mean and a
variance on several KLD between K and Generalized Gamma
through the following steps:

1) we fix a set of parameters describing a mimicked K law
and a given sample size

2) we generate several realizations of sample values that
are distributed according to this K law

3) for each realization, we estimate the parameters of the
mimicking Fisher (or Generalized Gamma) law through
the log-cumulant based approach detailed in the previous
section for case 2

4) for each realization, we compute the KLD between
the mimicked K law (given its fixed parameters) and
the Fisher (or Generalized Gamma) law that has been
estimated using the empirical log-cumulants of K (com-
puted from sample values)

5) we compute the mean (for precision analysis purpose)
and the variance (for robustness analysis purpose) on the
different realizations of these KLD (considering either
Fisher or Generalized Gamma as mimicking law).

In this framework, the words “precise” and “robust”, used
to analyze the capabilities of both mimicking laws, refer to
the following respective definitions: a small KLD for case 1
- or a small mean of KLD for case 2 - will be characteristic
of a good precision, while a small variance of KLD for case
2 will be characteristic of a good robustness.

In addition, let us denote that it is possible that the variances
of the estimators, induced by the selected MLC method, have
an influence on the performances observed in terms of KLD
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means and variances, that would then not depend only on
the intrinsic Fisher or Generalized Gamma capacities for K
law mimicking. Thus, the conclusions drawn in the follow-
ing about possible predominance of a given law based on
precision-robustness considerations should be then cautiously
interpreted. It is important to keep in mind that their validity is
limited to a well-defined framework (i.e. based on empirical
KLD mean and variance estimations without accounting for
the variance of the MLC estimator itself). Nevertheless, it
remains interesting to compare such performances because,
in practice, the MLC is often the single usable method, as
explained in section I. Moreover, in order to complete this
outlook, the reader could also refer to [10], where the variances
of different estimators, and in particular the ones induced by
the MLC approach, are analytically and numerically studied
in details. Such a point is however beyond the scope of this
paper.

C. Analytical formula of the Kullback-Leibler divergences
between K / Fisher and between K / Generalized Gamma

The analytical expressions of the KLD between the mim-
icked K law and the estimated Fisher law or the estimated
Generalized Gamma law have the following simplified forms
(see Appendices A, B and C for more details):

KLD(Kpdf ,Fpdf ) = AK/F
−(BK/F + CK/F +DK/F )

KLD(Kpdf ,GGpdf ) = AK/GG
−(BK/GG + CK/GG +DK/GG)

(16)
with

AK/F =
∞∫
0

Kpdf (x) ln (Kpdf (x)) dx

BK/F = ln
(

LF
MFµF

Γ(LF+MF )
Γ(LF )Γ(MF )

)
CK/F = (LF − 1)

(
ln
(

LF
MFµF

)
+ κ̃1Kpdf

)
DK/F = −(LF +MF )

∞∫
0

Kpdf (x) ln
(

1 + LFx
MFµF

)
dx

(17)
and

AK/GG =
∞∫
0

Kpdf (x) ln (Kpdf (x)) dx

BK/GG = ln

(
|ηGG |
µGG

L
( 1
ηGG

)

GG
Γ(LGG)

)

CK/GG = (ηGGLGG − 1)

(
ln

(
L

( 1
ηGG

)

GG
µGG

)
+ κ̃1Kpdf

)
DK/GG = − LGG

µGG
ηGG

∞∫
0

Kpdf (x)xηGG dx

(18)
where Γ(x) is the Gamma function and κ̃1Kpdf is the log-
cumulant of order 1 of the K law.

For given values of the parameters, it is possible to have
a numerical evaluation of these analytical expressions using
for instance Maple software or Python routines with mpmath
library [36].

IV. RESULTS ON DATASETS OF FISHER AND GENERALIZED
GAMMA PERFORMANCES FOR K MIMICKING

In this section, we present the results obtained on six studied
cases to compare the ability of Fisher and Generalized Gamma
to mimick a reference K law.

A. Description of the sets of parameters

The six following sets of parameters have been tested:
K(1, 1, 1) (equal to Kc(1, 1)), K(1, 2, 2) (equal to Kc(1, 2)),
K(1, 4, 4) (equal to Kc(1, 4)), K(1, 1, 3), K(1, 2, 4) and
K(1, 3, 5).
The three first sets correspond to some special cases where
LK = MK and they are thus associated to points located on
the Kc caustic curve (see stars on figure 1). The three last sets
correspond to some general cases and they are thus associated
to points located in the K area (see bullets on figure 1).

The choice of the special Kc caustic case for the three
first sets is motivated by a general outlook larger than the
one exposed in this paper; indeed, this may aim to find a
potential curve in the κ̃2 − κ̃3 diagram likely to delimite
“favored” domains, where the preferential use of either Fisher
or Generalized Gamma distributions could be recommended.
Even if this global goal is out of the focus of this paper, it is
interesting to analyze here the special Kc caustic case because
of the following properties: firstly, the Kc law corresponds to
the more “balanced” one among all the K laws (same weight
attributed to the head and to the tail of the pdf); secondly, the
Kc “intermediate” location in the κ̃2 − κ̃3 diagram makes it
intuitively a good candidate law to lead a comparison between
both Fisher and Generalized Gamma mimicking performances
(indeed, above the Kc curve, when ηGG tends towards zero,
Generalized Gamma is no more analytically defined at the
ordinate axis; while, below the Kc curve, when MF tends
towards the Infinite, Fisher domain is delimited by the Gamma
curve).

B. Presentation of the qualitative and quantitative results

For the case 2, 50 realizations of samples have been
generated using Maple software for each set of parameters and
for each sample size to compute the means and the variances
of the KLD. Different sample sizes Ns have been considered
between 250 and 12500 (Ns = 250, 500, 1000, 5000, 10000,
12500).

In figure 2 (a)-(f) are presented the fittings between the pdfs
of the K mimicked laws and the pdfs of the Fisher or Gen-
eralized Gamma mimicking laws, that are estimated in case 1
(i.e. using the true log-cumulants of K). In figure 3 (a)-(f) are
presented the evolutions in function of sample sizes Ns of the
means of the KLD computed between the K mimicked laws
and the Fisher or Generalized Gamma mimicking laws, that
are estimated in case 2 (i.e. using the empirical log-cumulants
of K). On the same graphs are superimposed the constant
values of the KLD computed between the K mimicked laws
and the Fisher or Generalized Gamma mimicking laws, that
are estimated in case 1 (i.e. using the true log-cumulants of
K). In figure 4 (a)-(f) are presented the evolutions in function
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of sample sizes Ns of the variances of the KLD computed
between the K mimicked laws and the Fisher or Generalized
Gamma mimicking laws, that are estimated in case 2 (i.e. using
the empirical log-cumulants of K).

C. Observations and discussion

For the six sets of parameters, the Generalized Gamma law
mimicks visually the reference K law slightly better than the
Fisher law, although both laws provide a very good adequation
(see figure 2 (a)-(f)).
This slight predominance is confirmed by the quantitative
study. The constant KLD values computed between the mim-
icked K law and the Generalized Gamma law estimated in
case 1 are smaller for the six sets of parameters than those
computed between the mimicked K law and the Fisher law
estimated in case 1 (see figure 3 (a)-(f)). The KLD means
computed between the mimicked K law and the Generalized
Gamma or Fisher laws estimated in case 2 converge towards
the constant KLD values estimated in case 1, when the sample
size Ns tends towards the Infinite. For each Ns value, we
observe that the KLD means computed with the Generalized
Gamma laws estimated in case 2 are below those computed
with the Fisher laws estimated in case 2. This demonstrates
that, for the six sets of parameters, Generalized Gamma is
slightly better than Fisher in precision for mimicking the K
law, if we restrict our point of view to a study exclusively
based on empirical KLD mean and variance estimations with-
out accounting for the variance of the MLC estimator itself. Fi-
nally, concerning the KLD variances, the observed tendencies
depend on the considered set of parameters (see figure 4 (a)-
(f)). For the first set (K(1, 1, 1)), the KLD variances computed
with the Generalized Gamma laws estimated in case 2 are
slightly below those computed with the Fisher laws estimated
in case 2 for each Ns value. Nevertheless, for the last five
sets, this is true only for Ns values large enough (when Ns
is respectively over 1000, 5000, 500, 1000 and 5000). This
demonstrates that, for these last five sets, Fisher is slightly
better than Generalized Gamma in robustness for mimicking
the K law for small Ns values and this is the opposite for
large Ns values, once again from a restricted point of view.

We summarize below some global conclusions issued from
this study, aiming to compare the abilities of Fisher and
Generalized Gamma to mimick a reference K law (please keep
in mind that these conclusions are valid for a study exclusively
based on empirical KLD mean and variance estimations with-
out accounting for the variance of the MLC estimator itself):
1) A quite good visual mimicking has been obtained with the
Fisher law as well as with the Generalized Gamma law. 2) The
Generalized Gamma law seems slightly better than the Fisher
law in precision for all sample sizes for the six studied sets
of parameters. 3) The predominance in robustess depends on
the considered set of parameters and on the sample size, with
the main following tendency: The Fisher law seems slightly
better than the Generalized Gamma law in robustness for small
sample sizes (as it can be the case sometimes in operational
conditions) and this seems to be the opposite for sufficiently
large sample sizes.

Thus, despite the quasi equivalent visual mimicking ability
of both laws, it appears quantitatively, for the six studied sets
of parameters, that it is preferable to use the Generalized
Gamma law instead of the Fisher law for mimicking purpose
of the K law (when it is possible), if we limit our analysis to
the precision aspect.

V. MIMICKING OTHER USUAL SAR DISTRIBUTIONS:
WEIBULL, BETA AND LOG-NORMAL

In this section, we present the results obtained on three
studied cases to compare the ability of Fisher and Generalized
Gamma to mimick some reference laws. Depending on the
mimicked pdf, Fisher or Generalized Gamma may be more or
less adapted.

The chosen Weibull pdf W(1, 0.8), the chosen Beta
B(1, 1.2, 3.4) and log-normal L(1, 0.6) are indicated in the
κ̃2− κ̃3 diagram of figure 1 (on the Weibull curve, in the Beta
area and near the ordinate axis of log-normal respectively).

Figure 5 (a)-(b)-(c) presents the fittings between the pdfs
of the Weibull, Beta and log-normal mimicked laws and the
pdfs of the Fisher or Generalized Gamma mimicking laws.
In table I are provided the corresponding values of the KLD
numerically computed between the mimicked laws and the
Fisher or Generalized Gamma laws.

Let us denote again that Weibull is a special case of
Generalized Gamma distribution. It is thus perfectly mimicked
by the Generalized Gamma pdf and the KLD is 0. It can also
be seen on figure 5 that the Fisher pdf mimics also very well
the Weibull pdf, with a small KLD value.

Concerning the Beta pdf, both Fisher and Generalized
Gamma give inaccurate estimations but the approximation is
better for the Generalized Gamma pdf than for Fisher. It is
seen both on the figure 5 (specially for the head of the pdf)
and in the KLD values (table I). Since the Fisher pdf does no
cover this part of the κ̃2−κ̃3 diagram, this result was expected.
It confirms the higher generality of the Generalized Gamma
pdf.

When trying to mimick the Log-Normal law, L(1, 0.6),
defined by one mean parameter µL and one standard deviation
parameter σL, we also got a satisfying estimation when
using a Fisher law, but slightly less satisfying when using
a Generalized Gamma law (through the original asymptotical
approach proposed in [22] and [23] for log-normal approxi-
mation and based on a specific constrained parametrization of
the Generalized Gamma), due to a too small ηGG value and
a too big LGG value. Note that when κ3 tends towards 0, the
associated LGG value becomes very high. In practice to avoid
numerical difficulties the LGG value should be limited to 60
(for such a value Γ(L) = 1.38683e+ 80).

VI. FISHER AND GENERALIZED GAMMA MUTUAL
MIMICKING

In this section, we present the results obtained on two
studied cases to compare the ability of Fisher and General-
ized Gamma to mimick each other. Indeed, since Fisher and
Generalized Gamma flexibilities are due to different reasons
(two head/tail weighting shape parameters for the first and one
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(a) K(1, 1, 1) (b) K(1, 2, 2) (c) K(1, 4, 4)

(d) K(1, 1, 3) (e) K(1, 2, 4) (f) K(1, 3, 5)

Fig. 2. Probability density functions of the K mimicked laws (in red-solid) and of the mimicking laws (in green-dash for Fisher and blue-dash for Generalized
Gamma) estimated in case 1 for the six sets of parameters.

TABLE I
NUMERICAL EVALUATIONS OF KULLBACK-LEIBLER DIVERGENCES FOR THE MIMICKED-MIMICKING STUDIED CASES

Mimicked Mimicked Mimicked Mimicked Mimicked
W(1, 0.8) B(1, 1.2, 3.4) L(1, 0.6) F(1, 0.8, 1.2) GG(1, 4.5, 0.25)

Mimicking Fisher law 0.00113 0.0608 0.00004 - 0.011942
Mimicking Generalized Gamma law 0.0 0.0165 0.00141 0.003279 -

shape parameter combined with one power parameter whose
sign is either positive or negative for the second). It is thus
interesting to study if they are able to mimic each other,
in order to determine whether our approach and conclusions
of sections IV and V can be generalized to other kinds of
mimicked laws. Here also, the presented study is restricted to
the situation denoted by case 1 in the previous sections III and
IV.

A. Description of the sets of parameters

The two following sets of parameters have been tested:
F(1, 0.8, 1.2) and GG(1, 4.5, 0.25). Both sets are associated
to points located in the Fisher area (common to Fisher and
Generalized Gamma) and on the part to the left of the ordinate
axis (see triangles on figure 1).

B. Analytical formula of the Kullback-Leibler divergences be-
tween Fisher / Generalized Gamma and Generalized Gamma
/ Fisher

The analytical expressions of the KLD between the mim-
icked Fisher law and the estimated Generalized Gamma law
and between the mimicked Generalized Gamma law and the
estimated Fisher law have the simplified forms respectively
detailed in Appendices D and E, that represent another con-
tribution of this paper.

C. Presentation of the qualitative and quantitative results

In figure 6 (a)-(b) are presented the fittings between the pdfs
of the Fisher and Generalized Gamma laws mutually mimicked
the one by the other and that are here also estimated in case
1 (i.e. using their true log-cumulants). In table I are provided
the corresponding values of the KLD numerically computed
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(a) K(1, 1, 1) (b) K(1, 2, 2) (c) K(1, 4, 4)

(d) K(1, 1, 3) (e) K(1, 2, 4) (f) K(1, 3, 5)

Fig. 3. Evolutions in function of sample sizes Ns of the means of the Kullback-Leibler divergences computed between the K mimicked laws and the
mimicking laws (in green-dash for Fisher and blue-dash for Generalized Gamma) estimated in case 2 for the six sets of parameters. The constant values of
the Kullback-Leibler divergences computed between the K mimicked laws and the mimicking laws (in green-solid for Fisher and blue-solid for Generalized
Gamma) estimated in case 1 are superimposed on the same graphs.

between the Fisher mimicked law and the Generalized Gamma
mimicking law for the first example and between the Gener-
alized Gamma mimicked law and the Fisher mimicking law
for the second example.

D. Observations and discussion

We can appreciate on figures 6 (a) and (b), that, for
both examples, the mimicking law fits visually very well the
reference mimicked law. Besides, despite that the KLD values
obtained on table I for these two examples can not be directly
compared, neither between them (since the used KLD are not
symmetric), nor with the KLD obtained in sections IV and
V (since the mimicked reference laws are not of the same
kind), we can notice nevertheless that their relative order of
magnitude is coarsely similar (about a factor four). We can
thus conclude that, for the considered illustrative studied cases,
Fisher and Generalized Gamma distributions are sufficiently
flexible to correctly mimick each other. By comparison to other
laws, both distributions are thus at the same time flexible,
generic (covering a large area in the log-cumulant diagram)
and usable in a realistic way (only three parameters that need
to be estimated in practice).

VII. RECOMMENDATIONS AND APPLICATION TO THREE
REAL SAR SUBSCENES

In this section, we propose to first discuss general theoret-
ical and practical aspects that should be taken into account
when using a probability density function for real SAR data
modeling. Then, we apply such recommendations on three
applicative examples, to simultaneously: (i) show the very
good potential of both Fisher and Generalized Gamma distri-
butions for high-resolution data modeling; (ii) underline also
the importance of cautiously choosing when possible the best
suitable modeling law and when available the more appropriate
samples for the given log-cumulant based estimation method;
(iii) and discuss the limits of the proposed approach due to
numerical difficulties.

A. Pragmatical recommendations

We propose here to draw up pragmatical recommendations
about the preferential use of a distribution in particular, even
when using a flexible law for intensity data modeling. Three
points are highlighted: (1) As said before, the use of MLC for
parameter estimation should be verified, given the location in
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(a) K(1, 1, 1) (b) K(1, 2, 2) (c) K(1, 4, 4)

(d) K(1, 1, 3) (e) K(1, 2, 4) (f) K(1, 3, 5)

Fig. 4. Evolutions in function of sample sizes Ns of the variances of the Kullback-Leibler divergences computed between the K mimicked laws and the
mimicking laws (in green-dash for Fisher and blue-dash for Generalized Gamma) estimated in case 2 for the six sets of parameters.

(a) W(1, 0.8) (b) B(1, 1.2, 3.4) (c) L(1, 0.6)

Fig. 5. Probability density functions of the Weibull (on the left), Beta (middle) and log-normal (on the right) mimicked laws and of the mimicking laws (in
green-dash for Fisher and blue-dash for Generalized Gamma).

the log-cumulant diagram of the empirically estimated point
(κ̂2, κ̂3) (ususally using a local sliding window):

• for Generalized Gamma parameter estimation, equation
(13) has to be checked (see [19], [28], [29] for practical
cases);

• for Fisher parameter estimation, equation (11) has to be
checked (see [2] for practical cases).

Moreover, the global location of the cloud of points if many es-
timations are computed can be used to help the decision about
the best suitable law. Indeed, if the cloud sprawl is significantly
going below the Gamma and/or Inverse of Gamma curves
(but is staying above the curves designating the Generalized
Gamma limits), the Generalized Gamma distribution seems
more suitable than Fisher for modeling purpose, given its
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(a) F(1, 0.8, 1.2) (b) GG(1, 4.5, 0.25)

Fig. 6. Probability density functions of the mimicked laws (respectively Fisher and Generalized Gamma in red-solid) and of the mimicking laws (respectively
Generalized Gamma in blue-dash and Fisher in green-dash) estimated in case 1 for both sets of parameters.
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Fig. 7. (a) Upper part left: Sentinel sub-scene c©ESA (decametric resolution)
acquired on Marseilles city -urban area- (acquisition date: 2014-11-08, VV
polarization, descending pass, incidence angle 39.19◦, coordinates latitude
43◦17′17′′N and longitude 5◦22′47′′E) - (b) Upper part right: Dispersion in
the log-cumulant diagram of the (κ̂2, κ̂3) points, empirically estimated from
samples. Each red point has been estimated with a 32 by 32 pixels window
size. The black point has been estimated using the whole image of size 1024
by 1024 pixels. - (c) Lower part: Probability density functions of the estimated
modeling laws (Generalized Gamma in blue-dash and Fisher in green-dash)
superimposed on the histogram of intensity data for the whole image.

larger domain of existence.
(2) Similarly, intrinsic limits of distributions have also to be

considered: for instance, Generalized Gamma is theoretically
not defined on the ordinate axis (ηGG sign changing when
crossing it), so it should be checked that the selected (κ̂2, κ̂3)
point used for pdf parameter retrieval is not situated either
along this axis or too close to it. The global location of the
cloud of points can be here also used to help the law choice
in a complementary way. In particular, if the cloud sprawl
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Fig. 8. (a) Upper part left: Sentinel sub-scene c©ESA (decametric resolution)
acquired on Camargue area -vegetation area- (South of France) (acquisition
date: 2014-11-08, VV polarization, descending pass, incidence angle 43.83◦,
coordinates latitude N43◦28′32′′ and longitude 4◦42′31′′E) - (b) Upper
part right: Dispersion in the log-cumulant diagram of the (κ̂2, κ̂3) points,
empirically estimated from samples. Each red point has been estimated with
a 32 by 32 pixels window size. The black point has been estimated using the
whole image of size 1024 by 1024 pixels. - (c) Lower part: Probability density
functions of the estimated modeling laws (Generalized Gamma in blue-dash
and Fisher in green-dash) superimposed on the histogram of intensity data for
the whole image.

is significantly crossing the ordinate axis and is presenting
numerous points very close to it, the Fisher distribution seems
in this case more suitable than Generalized Gamma, given the
discontinuity of this last one.

(3) Eventually, numerical instabilities that can occur during
Polygamma inversion involved in parameter estimation process
or numerical precision limits that can be reached when eval-
uating huge quantities (in particular Γ(x) for large x values)
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Fig. 9. (a) Upper part left: TerraSAR-X sub-scene c©DLR e. V. (2008),
Distribution AIRBUS DS/Infoterra GmbH (metric resolution, SpotLight mode,
area: India, Port of Visakhapatnam, acquisition date 2008-10-12, polarization
VV, ascending pass, incidence angle 41◦98, coordinates latitude 27◦24′00”N,
and longitude 91◦50′31′′E) - (b) Upper part right: Dispersion in the log-
cumulant diagram of the (κ̂2, κ̂3) points, empirically estimated from samples.
Each red point has been estimated with a 32 by 32 pixels window size.
The black point has been estimated using the whole image of size 1024 by
1024 pixels. - (c) Lower part: Probability density functions of the estimated
modeling laws (Generalized Gamma in blue-dash and Fisher in green-dash)
superimposed on the histogram of intensity data for the whole image.

should be kept in mind in some critical areas:

• around the ordinate axis, where LGG tends towards the
Infinite and ηGG tends towards zero;

• and around the Gamma and Inverse of Gamma curves,
where MF tends towards the Infinite.

Indeed, when some parameters are tending toward extreme
values, algorithm speed often significantly decreases (because
of a clearly larger number of iterations required before conver-
gence) and sometimes the estimation can even fail (because
of numerical divergence or impossibility to provide a correct
numerical evaluation). Thus, selecting suitable laws in such
critical cases is an aspect that should not be neglected to
prevent from important errors.

Let us finally underline that, when the computation time has
to be very short, an interesting alternative is the use, when it
is possible, of closed-form estimators, as the one proposed in
[19] for the Generalized Gamma law and based on second-
kind cumulants, for which a second-order approximation of
the Polygamma function allows to avoid iterative process.

B. Application on real SAR data

Even if a complete empirical study on real SAR data is
beyond the scope of this paper, we propose here to illustrate
on two applicative examples (see figures 7 and 9) the potential
of Fisher and Generalized Gamma laws for intensity data
modeling and also to analyze in details on these examples
the aspects introduced in previous section VII-A.

Figures 7, 8 and 9 present three real SAR examples respec-
tively acquired with Sentinel sensor (decametric resolution) -
urban and vegetated areas- and with Terrasar-X sensor (metric
resolution). The heterogeneity level appears more important on
third sub-scene than on the first and second one, in particular
because of the presence of bright targets whose visibility
becomes possible in high-resolution data (leading to rougher
speckle and heavy tailed distributions), while isolating such
targets remains impossible with lower resolution (making SAR
extract to appear less heterogeneous).

Such different behaviors are depicted by the location in
the log-cumulant diagram of the corresponding (κ̂2, κ̂3) point
clouds. In the first case, the cloud is mainly located above
the Gamma curve in the Fisher area (common to Fisher and
Generalized Gamma) and only on the part to the left of the
ordinate axis. In the second case for vegetation area, the point
cloud is centered near the Gamma curve corresponding to
homogeneous regions. In the opposite, in the third case, the
cloud of points extends everywhere above the Gamma and
Inverse of Gamma curves and is largely crossing the ordinate
axis. Thus, a first fast analysis, based on the global cloud point
location, would orientate us to preferentially use a Fisher law
for modeling the third subscene, and indifferently a Fisher law
or a Generalized Gamma law for modeling the first and second
one, to prevent from any estimation difficulties, as previously
explained.

As can be seen on the figures 7 and 8 with the positionning
of the points, log-normal and Beta distributions are not adapted
for the SAR Sentinel data. For the TerraSAR-X data with
higher resolution on figure 9, some points could be explained
with a log-normal distribution. As already discussed, in this
case, the Fisher pdf is able to mimick efficiently the log-normal
pdf.

By considering for the three cases the black (κ̂2, κ̂3)
point, the parameters of the modeling Fisher and Generalized
Gamma laws can be successfully retrieved based on the log-
cumulant method. The obtained estimated distributions have
been superimposed on the histograms in intensity for the three
sub-scenes. A very good data fitting is observed on the results
for the three examples with both laws, which shows their high
flexibility.

Nevertheless, despite this noteworthy modeling ability, let
us point out some correlated limits of the approach in order to
raise awareness of the reader to difficulties that can be encoun-
tered for some practical cases. The third example illustrates
particularly well the general recommendations discussed in
section VII-A, as follows:
• First, we remind that Generalized Gamma parameter esti-

mation has been done using the black (κ̂2, κ̂3) point. For
this example, this point is not located “too” close to the
ordinate axis, where Generalized Gamma is theoretically
no defined. Thus the selection of such a point allows us
to perform here the inversion successfully. The obtained
estimated values of LGG (tending towards the Infinite) and
ηGG (tending towards zero) are respectively equal to 88.95
and -0.06. However, the inversion could have failed with
another point located closer to the ordinate axis (like it is
the case for many of the empirical points belonging to the
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cloud on this example). We have thus to attentively retain
an appropriate point and, if it is not possible, to select
another more suitable modeling law (here the Fisher law)
to try to handle such configurations.

• Second, given the huge numerical values involved in the
inversion process for such sensitive situations (consider-
ing in particular large LGG values and the corresponding
computations of Γ(LGG)), it is important to notice that the
reached numerical precision will depend on the languages
and softwares used for parameter estimation, and might
be an imprecision factor. For instance, employing double
precision C language will allow us to precisely deal only
with cases where LGG is strictly inferior to 20. Here,
where the estimated value of LGG is equal to 88.95,
parameter retrieval has been done using Python routines
with mpmath library [36].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have compared the ability of two generic
distributions, the Fisher distribution and the Generalized
Gamma distribution, to correctly imitate a reference one,
chosen as the K law or other SAR usual laws. While the
flexibility of the Fisher law relies on its two shape parameters,
the Generalized Gamma law benefits especially from its power
parameter: this offers to both of them an important mimicking
potential, as visually confirmed by the good adequations
observed on multiple examples. The proposed study for K
law mimicking, based on the computation of Kullback-Leibler
divergences, has quantitatively demonstrated that the Gener-
alized Gamma law is slightly better than the Fisher law in
precision for the six studied sets of parameters and for all
sample sizes, while the predominance in robustess depends
on the considered set of parameters and on the sample size,
(such conclusions being valid only from a restricted point
of view). It has thus appeared as slightly preferable to use
the more powerful Generalized Gamma law instead of the
Fisher law, for K mimicking purpose, when it was possible.
The proposed study for other usual SAR laws mimicking
has shown complementarities between both laws but again
with a higher genericity of Generalized Gamma pdf. The
recommendation and application section, based on theoretical
and practical considerations applied to real SAR data, has also
allowed to highlight critical situations, where even generic
distributions can present some fitting limitations and where
the use of given suitable modeling laws and appropriate and
ingenious parameter estimation methods is very important. On
the one hand, the very good potential of both Fisher and
Generalized Gamma distributions for intensity data modeling
has been proved on three various illustrative SAR subscenes.
On the other hand, it has been shown, that independently
on their intrinsic capacities, in some sensitive cases, we can
be led to use preferentially a given modeling law for some
practical aspects. This includes especially numerical precision
limitations (in particular, it has appeared that Fisher could be
more suitable than Generalized Gamma, in some cases where
the (κ̂2, κ̂3) point used for parameter estimation is too close
to the ordinate axis).

In future work, an experimental study on HR or VHR real
SAR images is essential to consolidate our conclusions about
Fisher and Generalized Gamma modeling power.

APPENDIX A
KULLBACK-LEIBLER DIVERGENCE BETWEEN A

REFERENCE LAW AND THE FISHER LAW

According to equation (15), the KLD divergence between a
reference law and the Fisher law is given below, where Rpdf
is the reference pdf.

KLD(Rpdf ,Fpdf ) =

∞∫
0

Rpdf (x) ln

(
Rpdf (x)

Fpdf (x)

)
dx

=

∞∫
0

Rpdf (x) ln (Rpdf (x)) dx

︸ ︷︷ ︸
AR/F

−
∞∫

0

Rpdf (x) ln (Fpdf (x)) dx

︸ ︷︷ ︸
TF2

.

Using equation 1), the term TF2 can be written as:

TF2 = ln

(
LF

MFµF

Γ(LF +MF )

Γ(LF )Γ(MF )

)
︸ ︷︷ ︸

BR/F

+

∞∫
0

Rpdf (x) ln

((
LFx

MFµF

)LF−1
)

dx

︸ ︷︷ ︸
TF3

+

∞∫
0

Rpdf (x) ln

 1(
1 + LFx

MFµF

)LF+MF

 dx

︸ ︷︷ ︸
TF4

.

By developping and simplifying the terms TF3 and TF4, we
obtain that:

TF3 = (LF − 1)
∞∫
0

Rpdf (x) ln
(

LFx
MFµF

)
dx

= (LF − 1)
ln
(

LF
MFµF

)
+

∞∫
0

Rpdf (x) ln (x) dx

︸ ︷︷ ︸
κ̃1Rpdf


= (LF − 1)

(
ln

(
LF

MFµF

)
+ κ̃1Rpdf

)
︸ ︷︷ ︸

CR/F

where κ̃1Rpdf is the first log-cumulant of the reference law,
and

TF4 = − (LF +MF )

∞∫
0

Rpdf (x) ln

(
1 +

LFx

MFµF

)
dx

︸ ︷︷ ︸
DR/F

.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING (SPECIAL ISSUE ON IGARSS 2016), JULY 2017 14

In summary, the KLD divergence using the Fisher distribution
is defined by:

KLD(Rpdf ,Fpdf ) = AR/F
−(BR/F + CR/F +DR/F ).

APPENDIX B
KULLBACK-LEIBLER DIVERGENCE BETWEEN A

REFERENCE LAW AND THE GENERALIZED GAMMA LAW

According to equation (15), the KLD divergence between a
reference law and the Generalized Gamma law is given below,
where Rpdf is the reference pdf.

KLD(Rpdf ,GGpdf ) =

∞∫
0

Rpdf (x) ln

(
Rpdf (x)

GGpdf (x)

)
dx

=

∞∫
0

Rpdf (x) ln (Rpdf (x)) dx

︸ ︷︷ ︸
AR/GG

−
∞∫

0

Rpdf (x) ln (GGpdf (x)) dx

︸ ︷︷ ︸
TGG2

.

Using equation 3), the term TGG2 can be written as:

TGG2 = ln

 |ηGG |
µGG

L
( 1
ηGG

)

GG
Γ(LGG)


︸ ︷︷ ︸

BR/GG

+

∞∫
0

Rpdf (x) ln


L( 1

ηGG
)

GG x

µGG

(ηGGLGG−1)
 dx

︸ ︷︷ ︸
TGG3

+

∞∫
0

Rpdf (x) ln

e
−

L

(
1

ηGG

)
GG x

µGG

ηGG dx

︸ ︷︷ ︸
TGG4

.

By developping and simplifying the terms TGG3 and TGG4,
we obtain that:

TGG3 = (ηGGLGG − 1)
∞∫
0

Rpdf (x) ln

(
L

( 1
ηGG

)

GG x

µGG

)
dx

= (ηGGLGG − 1)
ln

(
LGG

( 1
ηGG

)

µGG

)
+

∞∫
0

Rpdf (x) ln (x) dx

︸ ︷︷ ︸
κ̃1Rpdf


= (ηGGLGG − 1)

ln

L( 1
ηGG

)

GG
µGG

+ κ̃1Rpdf


︸ ︷︷ ︸

CR/GG

where κ̃1Rpdf is the first log-cumulant of the reference law,
and

TGG4 = − LGG
µGGηGG

∞∫
0

Rpdf (x)xηGG dx

︸ ︷︷ ︸
DR/GG

.

where the term
∞∫
0

Rpdf (x)xηGG dx corresponds to the classical

moment of order ηGG of the reference law.
In summary, the KLD divergence using the Generalized

Gamma distribution is defined by:

KLD(Rpdf ,GGpdf ) = AR/GG
−(BR/GG + CR/GG +DR/GG).

APPENDIX C
PROOFS OF EQUATIONS (16), (17) AND (18)

In this section, the reference law, denoted by Rpdf in
appendices A and B, is replaced by the K law.

The KLD divergences between the K law and the Fisher or
Generalized Gamma law are thus defined by:

KLD(Kpdf ,Fpdf ) = AK/F
−(BK/F + CK/F +DK/F )

KLD(Kpdf ,GGpdf ) = AK/GG
−(BK/GG + CK/GG +DK/GG)

with

AK/F =
∞∫
0

Kpdf (x) ln (Kpdf (x)) dx

BK/F = ln
(

LF
MFµF

Γ(LF+MF )
Γ(LF )Γ(MF )

)
CK/F = (LF − 1)

(
ln
(

LF
MFµF

)
+ κ̃1Kpdf

)
DK/F = −(LF +MF )

∞∫
0

Kpdf (x) ln
(

1 + LFx
MFµF

)
dx

and

AK/GG =
∞∫
0

Kpdf (x) ln (Kpdf (x)) dx

BK/GG = ln

(
|ηGG |
µGG

L
( 1
ηGG

)

GG
Γ(LGG)

)

CK/GG = (ηGGLGG − 1)

(
ln

(
L

( 1
ηGG

)

GG
µGG

)
+ κ̃1Kpdf

)
DK/GG = − LGG

µGG
ηGG

∞∫
0

Kpdf (x)xηGG dx

where Γ(x) is the Gamma function and κ̃1Kpdf is the log-
cumulant of order 1 of the K law.

Moreover, in DK/GG , the term
∞∫
0

Kpdf (x)xηGG dx corre-

sponds to the classical moment of order ηGG of the K law and
can be expressed as [10]:

∞∫
0

Kpdf (x)xηGG dx

= µηGGK
Γ(LK+ηGG)

L
ηGG
K Γ(LK)

Γ(MK+ηGG)

M
ηGG
K Γ(MK)
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Let us notice that the KLD divergences between the Kc
caustic law and the Fisher or Generalized Gamma law can
be directly deduced from equations (16), (17) and (18) by
replacing K by Kc.

APPENDIX D
KLD DIVERGENCE BETWEEN THE FISHER LAW AND THE

GENERALIZED GAMMA LAW

Using appendix B and considering the Fisher law as the
reference law, we can deduce that:

KLD(Fpdf ,GGpdf ) = AF/GG
−(BF/GG + CF/GG +DF/GG)

with

AF/GG =
∞∫
0

Fpdf (x) ln (Fpdf (x)) dx

BF/GG = ln

(
|ηGG |
µGG

L
( 1
ηGG

)

GG
Γ(LGG)

)

CF/GG = (ηGGLGG − 1)

(
ln

(
L

( 1
ηGG

)

GG
µGG

)
+ κ̃1Fpdf

)
DF/GG = − LGG

µGG
ηGG

∞∫
0

Fpdf (x)xηGG dx

where Γ(x) is the Gamma function and κ̃1Fpdf is the log-
cumulant of order 1 of the Fisher law.

Moreover, in DF/GG , the term
∞∫
0

Fpdf (x)xηGG dx corre-

sponds to the classical moment of order ηGG of the Fisher law
and can be expressed as [10]:

∞∫
0

Fpdf (x)xηGG dx

= µηGGF
Γ(LF+ηGG)

L
ηGG
F Γ(LF )

Γ(MF−ηGG)

M
−ηGG
F Γ(MF )

Besides, the first term AF/GG can be developed as:

AF/GG = ln
(

LF
MFµF

Γ(LF+MF )
Γ(LF )Γ(MF )

)
+ (LF − 1)

(
ln
(

LF
MFµF

)
+ κ̃1Fpdf

)
−
∞∫
0

Fpdf (x) ln
(

1 + LFx
MFµF

)(LF+MF )

dx

Finally, using that (see [37], page 558, formula 14):

∞∫
0

Fpdf (x) log
(

1 + LFx
MFµF

)LF+MF
dx

= (LF +MF ) (Ψ(LF +MF )−Ψ(MF ))

we can finally deduce that, after simplifications:

AF/GG = log
(

LF
MFµF

)
+ log

(
Γ(LF+MF )

Γ(LF )Γ(MF )

)
+(LF − 1)Ψ(LF ) + (MF + 1)Ψ(MF )
−(LF +MF )Ψ(LF +MF )

APPENDIX E
KLD DIVERGENCE BETWEEN THE GENERALIZED GAMMA

LAW AND THE FISHER LAW

Using appendice A and considering the Generalized Gamma
law as the reference law, we can deduce that:

KLD(GGpdf ,Fpdf ) = AGG/F
−(BGG/F + CGG/F +DGG/F )

with

AGG/F =
∞∫
0

GGpdf (x) ln (GGpdf (x)) dx

BGG/F = ln
(

LF
MFµF

Γ(LF+MF )
Γ(LF )Γ(MF )

)
CGG/F = (LF − 1)

(
ln
(

LF
MFµF

)
+ κ̃1GGpdf

)
DGG/F = −(LF +MF )

∞∫
0

GGpdf (x) ln
(

1 + LFx
MFµF

)
dx

where Γ(x) is the Gamma function and κ̃1GGpdf is the log-
cumulant of order 1 of the Generalized Gamma law.

Moreover, the first term AGG/F can be developed as:

AGG/F = ln

(
|ηGG |
µGG

L
( 1
ηGG

)

GG
Γ(LGG)

)

+ (ηGGLGG − 1)

(
ln

(
L

( 1
ηGG

)

GG
µGG

)
+ κ̃1GGpdf

)
− LGG
µGG

ηGG

∞∫
0

GGpdf (x)xηGG dx

where the term
∞∫
0

GGpdf (x)xηGG dx corresponds to the

classical moment of order ηGG of the Generalized Gamma
law and can be expressed as [10]:

∞∫
0

GGpdf (x)xηGG dx

= µηGGGG

ACKNOWLEDGMENT

The authors would like to thank Dr Michelle M. Horta
and Pr Nelson D. A. Mascarenhas (Federal University of São
Carlos, Computer Department, São Carlos, Brazil) for their
fruitful discussions and contributions to these works.

They would like to thank the reviewers for their suggestions
to improve the quality of the paper and generalize the original
contribution.

This work has been partially funded by ANR (the French
National Research Agency) and DGA (Direction Générale de
lArmement) under ALYS project ANR-15-ASTR-0002.

REFERENCES

[1] C. A. Deledalle, L. Denis, and F. Tupin, “Iterative Weighted Maximum
Likelihood Denoising with Probabilistic Patch-Based Weights,” IEEE
Transactions on Image Processing, vol. 18, no. 12, pp. 2661–2672, 2009.

[2] F. Galland, J.-M. Nicolas, H. Sportouche, M. Roche, F. Tupin, and
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