A Markovian Approach for INSAR Phase
Reconstruction with Mixed Discrete and Continuous
Optimization

A. Shabou, J.Darbon, and F. Tupin

Abstract—In this paper, we propose a Markovian approach
for INSAR phase reconstruction. Recently, Markovian mode$
based on multichannel INSAR likelihood statistics and Toth
Variation prior have been proposed to reconstruct the noisy
and wrapped phase. Efficient discrete optimization algorihms
based on the graph-cut technique are used to efficiently minize
the energy. Our contribution consists in extending these wis
to cope with continuous label sets providing more precise ah
accurate reconstructed profiles. The proposed approach prades
also a good way to estimate local hyperparameters to adjushe
prior model and well preserve discontinuities in profiles. This
task is useful when working with real INSAR data where the
guantization of the continuous label set leads to a loss of s&
physical information. The proposed method is compared to dter
Markovian approaches with discrete multilabel optimization
algorithms. Experiments show better quality results both @
simulated and real INSAR data.

Index Terms—Multichannel phase unwrapping, MRF, Graph-
cut, continuous optimization.

I. INTRODUCTION

methods to solve this problem is the use of the multichannel
Maximum A Posteriori (MAP) estimation method introduced
in [2]. In this approach, the multichannel likelihood sstitis
are exploited to overcome the problem of phase unwrapping,
and a Markovian a priori is used to regularize the phase. ;Then
the problem is resolved by optimizing the MAP criterion wgsin
optimization algorithms like the simulated annealing one.
Recently, similar multichannel phase unwrapping (MCPU)
approaches have been proposed [3], [4], where new a priori
models are introduced with adapted discrete optimization
algorithms, like the efficiengraph-cut based algorithms [5].
These MAP-MCPU approaches work by transforming the
original problem of phase reconstruction into a labeling.on
To fix notations, let us assume that the estimated phase is
defined on a lattice denoted BY The value of the unwrapped
phaser at the sitep will be referred to as, and is supposed
to take its value in a linearly ordered finite set of phasellbe
L = {li,ls,...,1l;}. This quantization of the phase values is
necessary for most graph-cut optimization algorithms.sThi

Three Dimensional (3D) reconstruction of Earth surface Fomt will be discussed in this paper. Using the Markovian
becoming a task of increasing importance for the last yeaf@malism, the lattice is endowed with a neighborhood syste
thanks to the high resolution of new SAR sensors (TerraSAﬁr-‘d pairwise |nt_er§ct|ons are cc_msndered, where two gites
X, ALOS, CSK, RadarSat-2). The 3D reconstruction is main nd ¢ that are in |nteract|0n_W|th eac_h ‘?the_f are d_enotgd
performed by estimating the absolute phase from the Y (p,q). The set of all con5|der_ed pairwise interactions is
terferograms generated by interferometric synthetic taper '€'€/7€d 10 asc. Then, the labeling problem is solved by
radar (INSAR) systems. First, the observed phase is knoWinimizing an objective function defined as the followingsfir
in the principal interval[—r, [ and has to be unwrappedOrder Markovian energy
and denoised. Then, knowing the parameter acquisitioneof th
INSAR system, the Digital Elevation Model (DEM) of the
observed surface can be computed.

Unwrapping and denoising the INSAR phase is a diffic
inverse problem due to both the multiplicative noise catingp

the observed data and the wrapping operation. More pregis A popular model to regularize the phase while preserving

g:)'fl dl?tzggl??nﬁt ksr;:i\ggego [li]e illle-potshee(ielf ;rhee .S?T;Cg”g??northe discontinuities in the estimated profile is the totalatéon
T jump ﬁV). Some results of this kind of regularization model on

than in the estimated phase profile. height estimation in case of urban area are presented in [6].

Although many methods have been proposed to address ?—:'L'ﬁthermore, this priori model is well adapted to the graph-

problem, robust phase unwrapping and denoising remain%ljat based optimization algorithms

challenge, especially when dealing with highly noisy ifeen- . o . i
grams with high discontinuity rate profiles. One of the polesi _The.graph cut opt|_m_|zat|on approagh_ 'S a vyell known t(.a?h
nigue in computer vision for MRF minimization. A specific
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Winere termsE, encode the multichannel likelihood statistics,
(\eth”e termsE, , correspond to the prior model.



A necessary and sufficient condition for minimizing a firsto a huge graph that is prohibitive for the exact minimizatio
order Markovian energy with the graph-cut approach is thehile binary partition moves minimization algorithms,dikhe
submodularity of the energy [8], [9]. For energies of tharior a-expansion one, reach non good enough local minima [11].
of ), the latter relies on the convexity &, , [9], [10]. One possible solution to get results with good precision is
Our contributions in this work are twofold. First, we im-proposed in [4]. The idea is to perform binary jump partition
prove the discrete optimization step for this class of Markenoves based optimization algorithm with a multiresolution
vian models by exploiting the new optimization algorithmsgpproach, i.e., by suggesting smaller quantified interiral®
introduced in [11] that requires low memory compared to thene iteration to the other. The algorithm is fast thanks ® th
original ones [9], [10]. Secondly, we increase the accucy use of binary moves. However, in case of high discontinsitie
the reconstructed profile by developping a new approach tman good enough local minima may be reached.
improves the efficiency of the optimization step while aliogy ~ Another solution is given in [11], where new multilabel
generating height construction with high precision. This iand large partition moves based optimization algorithnes ar
done thanks to a combination between discrete and continupuoposed. In fact, the continuous label set could be quedtifi
based optimization algorithms of the MAP criterion, thatoal with high precision and to overcome the need of large memory
provides a robust method for local prior hyperparameter edfor the exact minimization, multilabel moves (i.e., implgia
mation. The latter leads to a better discontinuity pres@ma subset of labels fronC) are performed. These moves have
and a reduced loss of contrast due to the &yriori. shown to be able to reach good local minima (in practice,
The remainder of this paper is as follows. In secfidn I, wglobal minima are reached) while keeping memory use low.
briefly review the MAP-MCPU approach. Sectiad 11l describeslowever, using this optimization method is usually not effi-
the discrete optimization based algorithm used to computient for time computation. A large time is needed to reach a
a discrete 3D reconstruction of the surface height. Sorgeod solution in term of precision and optimum quality.
drawbacks of this approach are discussed. Then in sdcflon IVWe propose in the next section a brief review of this
a second step is added to the algorithm allowing DEMptimization approach as well as its limits.
generation with high precision. Finally some experiments o

synthetic and real INSAR data are presented in sefflon V. I1l. M ULTILABEL OPTIMIZATION ALGORITHM
In [11], the proposed optimization algorithm provides good
II. MAP-MCPU WITH TV PRIOR approximate solutions while maintaining a low memory re-

multifrequirement. This is done by performing large and multilabel
smees partition moves (LMPMs) of the estimated solution.

The concept of partition move consists of changing the
imated configuration: iteratively until convergence to a

With InSAR multichannel systems, independent
guencies or multibaselines interferograms related to
scene are provided [2]. The phase reconstruction problem fr

these noisy and wrapped phase data can be well solved uﬁ)ﬁ I minimumz. Each change is obtained by minimizing the

the MAP-MCPU approach. . :
The Markovian energy function proposed in [3] is definec?,nergy functionEy,, defined on a set of labels,,, where

using the multichannel log-likelihood function for datagfity Tfn ISI the S'Z? o::ﬁ"?t' A movehls Ca”?r? .Iarlgg almq mulltllabel i
term and TV for the prior term, as the following ' aarge set of sites can change e 1abels in a farge se

of labels, i.e.,Card(z) > 1 and Card(L,,) > 1. An
M optimal move is obtained if an exact minimization of the
E(zly,v) = Z ZEp(yp-,cﬁp.,ch) + Z Wp,q|Tp — 4 energy function is performed on the considered set of labels
pEV =1 (ra)ee 2 This is possible using graph-cut technique when the prior
(@) function £, ,(-) is convex [10]. If the convexity property is

wher_e z refers to the regu_larlzed phase (unwrapped a tisfied, a specific grapfi,, with specific capacities on arcs
denoised)y. . andy. . respectively encode the observ_ed pha € constructed and a maximum-flow is computed on the graph
and coherence map of thé" channel, one of the/ available to get the s,t-minimum-cut. This cut gives the configuration

cha_nnels. Quantities are some estlmaFed dlsc.:onur.\uny M3Ryith the minimum energy with respect to the considered label
Wh'Ch_ can_be constant or varying spatially, this point wi bset. We show in Fidd1 an example of such a construction. For
described LTV, and more details about the graph topography, we refer the reader

g to [11]. In Fig.[2, the LMPM algorithm is presented.
E cy c|T = _lO ( P, 1 + g , g p
Pl el ! %(1_7’%‘”%(%‘_%)2)( Such an optimization technique is very useful for SAR
wp,CCOS(yp,cfzp)Amcos(vp,cCOS(yp,cfzp)))), (3) applications. Indeed, in case of high dimensional data with
\/l—vﬁyccos(ypyc—mpf

a high range of labels, good approximate minima could be
In [3], the authors exploit two different graph-cut basedeached with a low memory use. In practice, with a good
discrete minimization algorithms: the binary move based aphoice of label set size, a global minimum of the energy is
proximate optimization algorithm-expansion [5] and the reached. However, there is still a problem of computational
multilabel exact optimization algorithm [10]. Neverthgde time if label sets are of large size. The algorithm has tatter
these two algorithms present some limits when coping withn all subsets,,, of the label set, where at each iteration
low coherent interferograms with high discontinuities. Ta maximum-flow is computed on the constructed gréph
overcom this problem, a more refined quantization of the In the next section, a new algorithm is proposed to overcome
continuous phase labels is needed to defin@his fact leads these problems, while providing more accurate reconstmict



regularized phase, could bring us a prior knowledge abaut th
true profile discontinuities. Two kinds of discontinuitiesuld

be identified. The first one is the set of weak discontinuities
related to the under-precision of the reconstructed profile
The second one is the set of sharp discontinuities that are
related to the true profile. So, by thresholding the existing
discontinuities, we are able to define the local hyperpaterse
{wp.q} (p,q)ce 10 adjust the energy function dfl(2), i.e.,

L, (p)

wp,q =1 otherwise

Nen {wp,q =0 if |71, —71,| > p

wherep is a prescribed threshold. Note that in practice, fixing
Fig. 1. Graph construction for an optimal multilabel moven @e left, a ;4 could be performed easily for our case, singe is a

part of the graphy,, defined on three pixels. For each pixel, the column o ; ; ;
nodes correspond to the possible label values chos€n,inA cut is depicted Fegma”zed image. A low phase threshold on the latter ISJIgOO

and arcs in the cut are dotted whereas continuous ones aré patt of the €nough to preserve true profile discontinu_itieslwhi_le srhimgf
graph is highlighted on the right. Capacities on the edgeddafined in [11]. the false ones. Local hyperparameter estimation is a negess

task to overcome the known loss of contrast problem of TV
based regularization approaches. Then, by adjusting tloe pr
energy model off{2) using these hyperparameters and gfartin

Initialization: Initialize z;
For each cyclec do

success := false; from z1, a continuous minimization of the new energy function
For iaf:hrégea‘tﬁemlggel et of size: £0); is performed allowing higher precise reconstruction.
2. Find the optimal LMPM movez(") = argmin E(z);
If (E(z') < E(%)) then e C. Continuous optimization
§u§e§§?;tme; The third step, which is a continuous based minimization
orlg g If algorithm, is based on the gradient-descent technique.els w
If (success == falsehen known, different continuous optimization algorithms ofcku
o et objective function are possible, and for a convex mininérat
end For the gradient-descent one is efficient and sufficient. In ase¢

the first-step optimization algorithm gives usually in giee

an exact discrete minimum if the label set sizeis well
chosen. Thus, only a continuous minimization on a convex
set is needed to reach the nearest continuous minimum. This
IV. PROPOSED APPROACH explains the use of the gradient-descent as a second step min

. .. imization process. Note also that the continuous optirianat
The proposed approach is based on three steps, mixing #;a

¢ d r (imizat laorith th an i y converge quickly since a good initialization is given.
crete and continuous optimization algorithms, with an Bt er continuous minimization algorithms could be applied
local hyperparameter estimation method.

and present more efficient convergence properties, however
this is not the aim of this work.
A. Discrete optimization Let us remind the gradient descent based optimization

The first step consists in a discrete multilabel optimizatic?/90rithm. We first denote by©) the initial guess for the
of the multilabel energy functioriX2), where a reduced siZstimated solution, which is in our case the discrete mimmu
of the original label setZ, through a quantization of theOPtainedatthe end of the first step optimization algoritffi
CONtiNUOUS Seflymin, lmaz], i exploited. The multilabel op- is the mtermeghate solution gt théf |tera}tloq of the gradient
timization is performed using the LMPM approach describedfScent algorithm. At each iteration?) is given by
previously. Since a reduced size of label set is used, aregffic @ _ (i-1) @) (i-1)
optimization, both in terms of computational time and meynor o= —AYVE(z ) )
use, is performed. However, the obtained solution, thatote n\yhere )\ (%) designs the step size of the gradient descent. In
by @, could not be good enough in term of precision due tgractice a line search [12] could be applied to select the ste
the label set quantization. We note that, for the regulétna sjze that gives sufficient decrease in the objective funefio
terms, a global hyperparameter= w4, V(p, q) is used. This Thijs leads to the method of the steepest descents the
scalar could be adjusted manually or automatically thrabgh gradient operator, i.e., derivative respectitoBecause of the
use of thel — curve method [3]. differentiation problem of the TV function ifX2), an approx

imate model need to be used instead. A direct approximation

B. Local hyperparameter estimation of this function could be

The second step consists in estimating discontinuities map TV (x) = Z Wpgr/ |Tp — 4|2 + €, (5)

from z;. Indeed, the latter, as it represents an unwrapped and (,q)

Fig. 2. Optimization algorithm based on the large and naldigl move.



wheree is a precision constant close €o In this work, we
have rather chosen the form of TV, given by

TV (z) = Z \/wp,q(xp —xq)? + wp,r(2p —2r)* +, (6)

(p,a)(p,7)

where pixelsg, r are neighbors te such that ifp = (k,1) I i
theng = (kK + 1,1) andr = (k,I + 1). (k,I) encode @) (b)
the coordinate ofp in the image grid. This form is more
isotropic and appropriate to the gradient descent tecleniqu-
than [®). However, it could not be used in the first step discre =
optimization algorithm (LMPM) since it does not satisfy the ..
submodularity condition, needed by the graph-cut tectmiqu =
In the next section, some experimental results are performe
to highlight the efficiency and accuracy of this algorithm. =

© (d)

V. EXPERIMENTS AND DISCUSSION Fig. 3. Simulated data sets. The 2D view of the (a) osjprofile,[{B)
In this section, several experiments are proposed to shajl one generated interferogram, and the sefohd (c) drigiotile, [[5] and
. one generated interferogram.
the effectiveness and robustness of the proposed apptbath,
we call later (MCPU-DC). First, our method has been tested TABLE |
on simulated INSAR data of different profile scenarios such QUANTITATIVE RESULTS OF THE TWO EXPERIMENTS
as urban structures and mountain elevations. Quantitatide
qualitative evaluations are presented with comparisongter

[ Data [ Approach | MSE | RMSE | Memory [ Time(mn:sec)]

. B [ MCPU-GC | 0.0474] 0.2176 | 16 x 10° 12:09
approaches. Then the method is tested on real INSAR dat%i. (a) [MCPUDC | 0.0071] 0.0840 | 61 x 107 0395
B [ MCPU-GC | 0.0343] 0.1852 [ 12 x 10° 18:14

In the first experiment, we consider a synthetic height profil
Fig. B(@, of size 200 x 400), with a maximum height of

14 rg? ex]tubmng b.Oth smooth and (gs|_<|:ont|nuous are?s. %timization algorithm is performed. Results on both data s
use (_)udr reql:jen(ilgqt%, ?'33’ 7.66,9} ith Z)to getne;ate hour are presented [n 4{fl) 5{d). We show that smooth areas are well
noiSy Independent interterograms with a constant CONreng ., «tyycted while discontinuities are also preservéds iB

of {7pc = 0.6;p,c}. In Fig. (), we show one noisy i e cage in figurds 4ib) afid §(b), where discontinuities a

interferogram. Note that the profile is _ambiguous for the%ﬁell preserved thanks to the TV prior but smooth areas are
frequencies. In fact, there are phase jumps greater tharhoisy, even when a large label set is considered.

violating theltoh condition. . Quantitative measures, in term of reconstruction quality

I_n the se_cond experiment, we_consider_a more repres_enta \é?ng the mean and root mean square deviation errors (MSE,
height profile of natural image Fif_3|c) with the same sizes ?QMSE) and computational time and memory needed for

the previous one, and a maximum height 611 rad exhibiting raph allocation, are presented in tallle I. These resutt& sh

area characterizing highland scenes. The same InSAR par both the accuracy and the efficiency of the two-step
eters as the ones used in the previous experiment are app B mization algorithm and its effectiveness comparedth@n

on th'§ profile to generate independent mterferogrgms. approaches. We also note that improvements in term of MSE
In figures@ andd5, we show the reconstruction resul

obtained respectively on the two scenarios using the prQ-
posed approach. Results given by the multichannel appro

(MCPU-GC) in [3] are also presented in figufes }(b) Bnd]S(h omputational time and qualitative visual results, ourrapph

where the continuous IngI set Is qu_ant|f|eq iat) labels i always more interesting compared to the MCPU-GC one.
and an exact minimization algorithm is applied based on the

Ishikawa graph construction. We note that a huge graph has
to be build to provide an accurate solution. B. Real InSAR data
Reconstructions obtained at the end of the first-step opti-We have tested the new algorithm on a real data set of an
mization approach are presented in figiires 4(cJandl 5(cxevherban scenario. A set af L-Band E-SAR interferograms2(
the continuous label set is quantified imid labels for both interferograms for each of the four polarizations) are @egl
images and the LMPM optimization algorithm is applied usingn the city of Dresden. The smallest orthogonal baseliné is o
label sets of sizes respectively = 8 andm = 16 to converge about8.42m and the biggest is of abodB.34m. Due to the
to a good local minimum of the energy. presence of noise, the Itoh condition is violated in somasre
Starting from these results, local hyperparameters are est We can see in figureg_6]c) ahd §(d) the good quality of the
mated by thresholding the existing discontinuities usihg t reconstructed phase, compared to the result obtained theng
described method iBIVAB. Note that the threshold parametelICPU-GC[G(H). In fact, it is clearly seen that discontinesti

is fixed to § in these experiments. Then the continuous

the first one, since less smooth regions are charactgrizin
E profile. However, we can clearly see that in term of

4
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(b)

(d)

Fig. 4. Results on the simulated dBta 3-(a). 3D viefv df (a)ttginal profile, : . ) .
and the reconstructed phases obtained respec@(bg tise MCPU-GC  Fig. 6. 3 reconstru_ctlon of real INSAR da(a) Th(_e firstsgointer-
approach[T¢) at the end of the first step optimization alori(z; ), and[{d) ferogram [{H) the 2D view of the reconstructed profile wite iCPU-GC

at the end of the continuous minimizatiofa]. approach[(¢) the 2D yiew of the reconstrqcted profile wite tiroposed
approach[_(d) the 3D view of the reconstruction.

algorithm. The proposed algorithm overcomes the limitg tha
characterize other MAP-MCPU approaches both in term of
computational complexity and solution accuracy. We have
tested this approach on simulated and real INSAR data. Good
guantitative and qualitative results are obtained. Futumek

will focus on the exploitation of these approaches for the
differential INSAR applications (D-InSAR).
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