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A Markovian Approach for InSAR Phase
Reconstruction with Mixed Discrete and Continuous

Optimization
A. Shabou, J.Darbon, and F. Tupin

Abstract—In this paper, we propose a Markovian approach
for InSAR phase reconstruction. Recently, Markovian models
based on multichannel InSAR likelihood statistics and Total
Variation prior have been proposed to reconstruct the noisy
and wrapped phase. Efficient discrete optimization algorithms
based on the graph-cut technique are used to efficiently minimize
the energy. Our contribution consists in extending these works
to cope with continuous label sets providing more precise and
accurate reconstructed profiles. The proposed approach provides
also a good way to estimate local hyperparameters to adjust the
prior model and well preserve discontinuities in profiles. This
task is useful when working with real InSAR data where the
quantization of the continuous label set leads to a loss of some
physical information. The proposed method is compared to other
Markovian approaches with discrete multilabel optimization
algorithms. Experiments show better quality results both on
simulated and real InSAR data.

Index Terms—Multichannel phase unwrapping, MRF, Graph-
cut, continuous optimization.

I. I NTRODUCTION

Three Dimensional (3D) reconstruction of Earth surface is
becoming a task of increasing importance for the last years,
thanks to the high resolution of new SAR sensors (TerraSAR-
X, ALOS, CSK, RadarSat-2). The 3D reconstruction is mainly
performed by estimating the absolute phase from the in-
terferograms generated by interferometric synthetic aperture
radar (InSAR) systems. First, the observed phase is known
in the principal interval[−π, π[ and has to be unwrapped
and denoised. Then, knowing the parameter acquisition of the
InSAR system, the Digital Elevation Model (DEM) of the
observed surface can be computed.

Unwrapping and denoising the InSAR phase is a difficult
inverse problem due to both the multiplicative noise corrupting
the observed data and the wrapping operation. More precisely,
this problem is known to be ill-posed if the so-calledItoh
condition is not satisfied [1], i.e., there are jumps of more
thanπ in the estimated phase profile.

Although many methods have been proposed to address this
problem, robust phase unwrapping and denoising remains a
challenge, especially when dealing with highly noisy interfero-
grams with high discontinuity rate profiles. One of the possible
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methods to solve this problem is the use of the multichannel
Maximum A Posteriori (MAP) estimation method introduced
in [2]. In this approach, the multichannel likelihood statistics
are exploited to overcome the problem of phase unwrapping,
and a Markovian a priori is used to regularize the phase. Then,
the problem is resolved by optimizing the MAP criterion using
optimization algorithms like the simulated annealing one.

Recently, similar multichannel phase unwrapping (MCPU)
approaches have been proposed [3], [4], where new a priori
models are introduced with adapted discrete optimization
algorithms, like the efficientgraph-cut based algorithms [5].

These MAP-MCPU approaches work by transforming the
original problem of phase reconstruction into a labeling one.
To fix notations, let us assume that the estimated phase is
defined on a lattice denoted byV . The value of the unwrapped
phasex at the sitep will be referred to asxp and is supposed
to take its value in a linearly ordered finite set of phase labels
L = {l1, l2, ..., lk}. This quantization of the phase values is
necessary for most graph-cut optimization algorithms. This
point will be discussed in this paper. Using the Markovian
formalism, the lattice is endowed with a neighborhood system
and pairwise interactions are considered, where two sitesp

and q that are in interaction with each other are denoted
by (p, q). The set of all considered pairwise interactions is
referred to asE . Then, the labeling problem is solved by
minimizing an objective function defined as the following first
order Markovian energy

E(x) =
∑

p∈V

Ep(xp) +
∑

(p,q)∈E

Ep,q(xp − xq) , (1)

where termsEp encode the multichannel likelihood statistics,
while termsEp,q correspond to the prior model.

A popular model to regularize the phase while preserving
the discontinuities in the estimated profile is the total variation
(TV). Some results of this kind of regularization model on
height estimation in case of urban area are presented in [6].
Furthermore, thisa priori model is well adapted to the graph-
cut based optimization algorithms.

The graph-cut optimization approach is a well known tech-
nique in computer vision for MRF minimization. A specific
graph is constructed, where topology and edge capacities are
defined from the energy terms, in such a manner that a s,t-
minimum-cut on this graph gives the optimal configurationx

(i.e., with the minimal energy value). The s,t-minimum-cutis
obtained by computing the maximum-flow on the graph [7].



A necessary and sufficient condition for minimizing a first
order Markovian energy with the graph-cut approach is the
submodularity of the energy [8], [9]. For energies of the form
of (1), the latter relies on the convexity ofEp,q [9], [10].

Our contributions in this work are twofold. First, we im-
prove the discrete optimization step for this class of Marko-
vian models by exploiting the new optimization algorithms
introduced in [11] that requires low memory compared to the
original ones [9], [10]. Secondly, we increase the accuracyof
the reconstructed profile by developping a new approach that
improves the efficiency of the optimization step while allowing
generating height construction with high precision. This is
done thanks to a combination between discrete and continuous
based optimization algorithms of the MAP criterion, that also
provides a robust method for local prior hyperparameter esti-
mation. The latter leads to a better discontinuity preservation
and a reduced loss of contrast due to the TVa priori.

The remainder of this paper is as follows. In section II, we
briefly review the MAP-MCPU approach. Section III describes
the discrete optimization based algorithm used to compute
a discrete 3D reconstruction of the surface height. Some
drawbacks of this approach are discussed. Then in section IV,
a second step is added to the algorithm allowing DEM
generation with high precision. Finally some experiments on
synthetic and real InSAR data are presented in section V.

II. MAP-MCPU WITH TV PRIOR

With InSAR multichannel systems, independent multifre-
quencies or multibaselines interferograms related to the same
scene are provided [2]. The phase reconstruction problem from
these noisy and wrapped phase data can be well solved using
the MAP-MCPU approach.

The Markovian energy function proposed in [3] is defined,
using the multichannel log-likelihood function for data fidelity
term and TV for the prior term, as the following

E(x|y, γ) =
∑

p∈V

M∑

c=1

Ep(yp,c, γp,c|xp) +
∑

(p,q)∈E

wp,q|xp − xq |

(2)
where x refers to the regularized phase (unwrapped and
denoised),y.,c andγ.,c respectively encode the observed phase
and coherence map of thecth channel, one of theM available
channels. Quantitiesw are some estimated discontinuity map
which can be constant or varying spatially, this point will be
described in IV-B, and

Ep(yp,c, γp,c|xp) = −log
(

1−γ2
p,c

2π(1−γ2
p,c cos (yp,c−xp)2)

(
1 +

γp,c cos (yp,c−xp)Arccos(γp,c cos (yp,c−xp))√
1−γ2

p,c cos (yp,c−xp)2

))
. (3)

In [3], the authors exploit two different graph-cut based
discrete minimization algorithms: the binary move based ap-
proximate optimization algorithmα-expansion [5] and the
multilabel exact optimization algorithm [10]. Nevertheless,
these two algorithms present some limits when coping with
low coherent interferograms with high discontinuities. To
overcom this problem, a more refined quantization of the
continuous phase labels is needed to defineL. This fact leads

to a huge graph that is prohibitive for the exact minimization,
while binary partition moves minimization algorithms, like the
α-expansion one, reach non good enough local minima [11].

One possible solution to get results with good precision is
proposed in [4]. The idea is to perform binary jump partition
moves based optimization algorithm with a multiresolution
approach, i.e., by suggesting smaller quantified intervalsfrom
one iteration to the other. The algorithm is fast thanks to the
use of binary moves. However, in case of high discontinuities,
non good enough local minima may be reached.

Another solution is given in [11], where new multilabel
and large partition moves based optimization algorithms are
proposed. In fact, the continuous label set could be quantified
with high precision and to overcome the need of large memory
for the exact minimization, multilabel moves (i.e., implying a
subset of labels fromL) are performed. These moves have
shown to be able to reach good local minima (in practice,
global minima are reached) while keeping memory use low.
However, using this optimization method is usually not effi-
cient for time computation. A large time is needed to reach a
good solution in term of precision and optimum quality.

We propose in the next section a brief review of this
optimization approach as well as its limits.

III. M ULTILABEL OPTIMIZATION ALGORITHM

In [11], the proposed optimization algorithm provides good
approximate solutions while maintaining a low memory re-
quirement. This is done by performing large and multilabel
partition moves (LMPMs) of the estimated solution.

The concept of partition move consists of changing the
estimated configurationx iteratively until convergence to a
local minimumx̃. Each change is obtained by minimizing the
energy functionEm defined on a set of labelsLm, where
m is the size ofLm. A move is called large and multilabel
if a large set of sites can change their labels in a large set
of labels, i.e.,Card(x) ≫ 1 and Card(Lm) ≫ 1. An
optimal move is obtained if an exact minimization of the
energy function is performed on the considered set of labels.
This is possible using graph-cut technique when the prior
function Ep,q(·) is convex [10]. If the convexity property is
satisfied, a specific graphGm with specific capacities on arcs
is constructed and a maximum-flow is computed on the graph
to get the s,t-minimum-cut. This cut gives the configuration
with the minimum energy with respect to the considered label
set. We show in Fig. 1 an example of such a construction. For
more details about the graph topography, we refer the reader
to [11]. In Fig. 2, the LMPM algorithm is presented.

Such an optimization technique is very useful for SAR
applications. Indeed, in case of high dimensional data with
a high range of labels, good approximate minima could be
reached with a low memory use. In practice, with a good
choice of label set size, a global minimum of the energy is
reached. However, there is still a problem of computational
time if label sets are of large size. The algorithm has to iterate
on all subsetsLm of the label setL, where at each iteration
a maximum-flow is computed on the constructed graphGm.

In the next section, a new algorithm is proposed to overcome
these problems, while providing more accurate reconstruction.
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Fig. 1. Graph construction for an optimal multilabel move. On the left, a
part of the graphGm defined on three pixels. For each pixel, the column of
nodes correspond to the possible label values chosen inLm. A cut is depicted
and arcs in the cut are dotted whereas continuous ones are not. A part of the
graph is highlighted on the right. Capacities on the edges are defined in [11].

Initialization: Initialize ex;
For each cyclec do

success := false;
For each iterationi do

1. Create the label set of sizem: L(i)
m ;

2. Find the optimal LMPM move:x(i) = argmin
x∈X

E(x);

If (E(xi) < E(ex)) then
ex := x(i) ;
success := true ;

end If
end For
If (success == false)then

return ex;
end If

end For

Fig. 2. Optimization algorithm based on the large and multilabel move.

IV. PROPOSED APPROACH

The proposed approach is based on three steps, mixing dis-
crete and continuous optimization algorithms, with an efficient
local hyperparameter estimation method.

A. Discrete optimization

The first step consists in a discrete multilabel optimization
of the multilabel energy function (2), where a reduced size
of the original label setL, through a quantization of the
continuous set[lmin, lmax], is exploited. The multilabel op-
timization is performed using the LMPM approach described
previously. Since a reduced size of label set is used, an efficient
optimization, both in terms of computational time and memory
use, is performed. However, the obtained solution, that we note
by x̃1, could not be good enough in term of precision due to
the label set quantization. We note that, for the regularization
terms, a global hyperparameterβ = wp,q, ∀(p, q) is used. This
scalar could be adjusted manually or automatically throughthe
use of theL − curve method [3].

B. Local hyperparameter estimation

The second step consists in estimating discontinuities map
from x̃1. Indeed, the latter, as it represents an unwrapped and

regularized phase, could bring us a prior knowledge about the
true profile discontinuities. Two kinds of discontinuitiescould
be identified. The first one is the set of weak discontinuities
related to the under-precision of the reconstructed profile.
The second one is the set of sharp discontinuities that are
related to the true profile. So, by thresholding the existing
discontinuities, we are able to define the local hyperparameters
{wp,q}(p,q)∈E to adjust the energy function of (2), i.e.,

{
wp,q = 0 if |x̃1p

− x̃1q
| > µ

wp,q = 1 otherwise,

whereµ is a prescribed threshold. Note that in practice, fixing
µ could be performed easily for our case, sincex̃1 is a
regularized image. A low phase threshold on the latter is good
enough to preserve true profile discontinuities while smoothing
the false ones. Local hyperparameter estimation is a necessary
task to overcome the known loss of contrast problem of TV
based regularization approaches. Then, by adjusting the prior
energy model of (2) using these hyperparameters and starting
from x̃1, a continuous minimization of the new energy function
is performed allowing higher precise reconstruction.

C. Continuous optimization

The third step, which is a continuous based minimization
algorithm, is based on the gradient-descent technique. As well
known, different continuous optimization algorithms of such
objective function are possible, and for a convex minimization,
the gradient-descent one is efficient and sufficient. In our case,
the first-step optimization algorithm gives usually in practice
an exact discrete minimum if the label set sizem is well
chosen. Thus, only a continuous minimization on a convex
set is needed to reach the nearest continuous minimum. This
explains the use of the gradient-descent as a second step min-
imization process. Note also that the continuous optimization
may converge quickly since a good initialization is given.
Other continuous minimization algorithms could be applied
and present more efficient convergence properties, however
this is not the aim of this work.

Let us remind the gradient descent based optimization
algorithm. We first denote byx(0) the initial guess for the
estimated solution, which is in our case the discrete minimum
obtained at the end of the first step optimization algorithm.x(i)

is the intermediate solution at theith iteration of the gradient
descent algorithm. At each iteration,x(i) is given by

x(i) = x(i−1) − λ(i)∇E(x(i−1)) , (4)

whereλ(i) designs the step size of the gradient descent. In
practice a line search [12] could be applied to select the step
size that gives sufficient decrease in the objective functional.
This leads to the method of the steepest descent.∇ is the
gradient operator, i.e., derivative respect tox. Because of the
differentiation problem of the TV function in (2), an approx-
imate model need to be used instead. A direct approximation
of this function could be

TV (x) =
∑

(p,q)

wp,q

√
|xp − xq|2 + ε , (5)
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whereε is a precision constant close to0. In this work, we
have rather chosen thel2 form of TV, given by

TV (x) =
X

(p,q)(p,r)

p

wp,q(xp − xq)2 + wp,r(xp − xr)2 + ε , (6)

where pixelsq, r are neighbors top such that ifp = (k, l)
then q = (k + 1, l) and r = (k, l + 1). (k, l) encode
the coordinate ofp in the image grid. This form is more
isotropic and appropriate to the gradient descent technique
than (5). However, it could not be used in the first step discrete
optimization algorithm (LMPM) since it does not satisfy the
submodularity condition, needed by the graph-cut technique.

In the next section, some experimental results are performed
to highlight the efficiency and accuracy of this algorithm.

V. EXPERIMENTS AND DISCUSSION

In this section, several experiments are proposed to show
the effectiveness and robustness of the proposed approach,that
we call later (MCPU-DC). First, our method has been tested
on simulated InSAR data of different profile scenarios such
as urban structures and mountain elevations. Quantitativeand
qualitative evaluations are presented with comparisons toother
approaches. Then the method is tested on real InSAR data.

A. Simulated InSAR data

In the first experiment, we consider a synthetic height profile
Fig. 3(a), of size (200 × 400), with a maximum height of
14 rad exhibiting both smooth and discontinuous areas. We
used four frequencies ({5, 6.33, 7.66, 9} GHz) to generate four
noisy independent interferograms with a constant coherence
of {γp,c = 0.6; ∀p, c}. In Fig. 3(b), we show one noisy
interferogram. Note that the profile is ambiguous for these
frequencies. In fact, there are phase jumps greater thanπ

violating theItoh condition.
In the second experiment, we consider a more representative

height profile of natural image Fig. 3(c) with the same sizes as
the previous one, and a maximum height of19.1 rad exhibiting
area characterizing highland scenes. The same InSAR param-
eters as the ones used in the previous experiment are applied
on this profile to generate independent interferograms.

In figures 4 and 5, we show the reconstruction results
obtained respectively on the two scenarios using the pro-
posed approach. Results given by the multichannel approach
(MCPU-GC) in [3] are also presented in figures 4(b) and 5(b),
where the continuous label set is quantified into200 labels
and an exact minimization algorithm is applied based on the
Ishikawa graph construction. We note that a huge graph has
to be build to provide an accurate solution.

Reconstructions obtained at the end of the first-step opti-
mization approach are presented in figures 4(c) and 5(c), where
the continuous label set is quantified into64 labels for both
images and the LMPM optimization algorithm is applied using
label sets of sizes respectivelym = 8 andm = 16 to converge
to a good local minimum of the energy.

Starting from these results, local hyperparameters are esti-
mated by thresholding the existing discontinuities using the
described method in IV-B. Note that the threshold parameter

(a) (b)

(c) (d)

Fig. 3. Simulated data sets. The 2D view of the first (a) original profile, (b)
and one generated interferogram, and the second (c) original profile, (b) and
one generated interferogram.

TABLE I
QUANTITATIVE RESULTS OF THE TWO EXPERIMENTS.

Data Approach MSE RMSE Memory Time(mn:sec)

3 MCPU-GC 0.0474 0.2176 16 × 10
6 12:09

(a) MCPU-DC 0.0071 0.0840 64 × 10
4 03:25

3 MCPU-GC 0.0343 0.1852 12 × 106 18:14
(c) MCPU-DC 0.0325 0.1802 96 × 104 04:27

µ is fixed to π
8 in these experiments. Then the continuous

optimization algorithm is performed. Results on both data sets
are presented in 4(d) 5(d). We show that smooth areas are well
reconstructed while discontinuities are also preserved. This is
not the case in figures 4(b) and 5(b), where discontinuities are
well preserved thanks to the TV prior but smooth areas are
noisy, even when a large label set is considered.

Quantitative measures, in term of reconstruction quality
using the mean and root mean square deviation errors (MSE,
RMSE) and computational time and memory needed for
graph allocation, are presented in table I. These results show
that both the accuracy and the efficiency of the two-step
optimization algorithm and its effectiveness compared to other
approaches. We also note that improvements in term of MSE
and RMSE are less important for the second profile compared
to the first one, since less smooth regions are characterizing
this profile. However, we can clearly see that in term of
computational time and qualitative visual results, our approach
is always more interesting compared to the MCPU-GC one.

B. Real InSAR data

We have tested the new algorithm on a real data set of an
urban scenario. A set of8 L-Band E-SAR interferograms (2
interferograms for each of the four polarizations) are acquired
on the city of Dresden. The smallest orthogonal baseline is of
about8.42m and the biggest is of about28.34m. Due to the
presence of noise, the Itoh condition is violated in some areas.

We can see in figures 6(c) and 6(d) the good quality of the
reconstructed phase, compared to the result obtained usingthe
MCPU-GC 6(b). In fact, it is clearly seen that discontinuities
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(a) (b)

(c) (d)

Fig. 4. Results on the simulated data 3-(a). 3D view of (a) theoriginal profile,
and the reconstructed phases obtained respectively (b) using the MCPU-GC
approach, (c) at the end of the first step optimization algorithm (ex1), and (d)
at the end of the continuous minimization (ex2).

(a) (b)

(c) (d)

Fig. 5. Results on the simulated area 3-(c). 3D views of (a) the original
profile, and the reconstructed phases obtained respectively (b) using the
MCPU-GC approach, (c) at the end of the first step optimization algorithm
(LMPM) (ex1), (d) at the end of the continuous minimization (ex2).

and smooth or homogeneous areas are well preserved using the
mixed discrete and continuous optimization approach, while
using only a discrete optimization algorithm provides results
with low precision. We have to note that only topographic
fringes are present in the processed data. Thus, to deal withdif-
ferential interferograms, other problems need to be adressed,
such as the atmospheric phase contributions. Improvementsin
this direction will be proposed in a future work.

VI. CONCLUSION

In this work, we have developed a new 3D height re-
construction methodology based on a multichannel phase
unwrapping approach and efficient and accurate optimization

(a) (b)

(c) (d)

Fig. 6. 3D reconstruction of real InSAR data. (a) The first noisy inter-
ferogram, (b) the 2D view of the reconstructed profile with the MCPU-GC
approach, (c) the 2D view of the reconstructed profile with the proposed
approach, (d) the 3D view of the reconstruction.

algorithm. The proposed algorithm overcomes the limits that
characterize other MAP-MCPU approaches both in term of
computational complexity and solution accuracy. We have
tested this approach on simulated and real InSAR data. Good
quantitative and qualitative results are obtained. Futurework
will focus on the exploitation of these approaches for the
differential InSAR applications (D-InSAR).
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