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Abstract—In this paper, we propose a new complete semi-
automatic processing chain able to provide, from a couple of high-
resolution optical and synthetic aperture radar (SAR) images,
a simple 3-D reconstruction of buildings in urban scenes. A se-
quence of processing, exploring the complementarities of both
optical and SAR data, is developed for building reconstruction.
The chain is decomposed into the main following steps: First,
potential building footprints are extracted from the monoscopic
optical image through global detection followed by a boundary
refinement. Then, the optical footprints are projected and regis-
tered into SAR data to get a fine superposition between optical
and SAR homologous ground features. Finally, the last step, based
on the optimization of two SAR criteria, is performed to deal
with building validation and height retrieval. Each of these steps
is methodologically described and applied on scenes of interest
on Quickbird and TerraSAR-X images. A qualification of each
reconstructed building by a score of confidence is then proposed.
Good results of building detection are obtained, and relevant
height estimations are retrieved.

Index Terms—Building detection, data fusion, footprint extrac-
tion, height estimation, high-resolution (HR) images, Quickbird,
synthetic aperture radar (SAR), TerraSAR-X, urban scenes, 3-D
reconstruction.

I. INTRODUCTION

DURING THE last years, a new generation of satellites
(TerraSAR-X, CosmoSkyMed, Quickbird, Ikonos, etc.)

providing a large amount of optical and synthetic aperture radar
(SAR) data, with metric or submetric resolution, has been born.
New approaches, exploring the high detail level characterizing
high-resolution (HR) images, have been developed in order
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to achieve a better scene analysis and understanding in urban
or semi-urban scenes. For instance, new methods have been
proposed for the detection of various structures and objects
(such as buildings or houses [1], [2], roads [3], and bridges [4])
and for the identification of typical regions (such as vegetation,
water areas, and shadows [5], [6]).

In particular, challenges are born in the domain of building
boundary extraction and building height retrieval for the 3-D
reconstruction of buildings in urban areas [7]–[9]. Several
techniques, based on optical and SAR imagery, have been
developed to deal with this problem and have proved to provide
efficient results.

In the optical field, methods for accurate building detec-
tion and reconstruction have been presented in a monoscopic
context [10]–[12] or in a stereoscopic context (with two or
more input images) [13]. For building detection, these meth-
ods mostly use different criteria, giving clues about building
presence (such as shadow adjacency [1], [14]) and making
easier the extraction of building boundaries (such as geometric
constraints [1], [15] or morphological and spectral properties
[14], [16], [17]). For building height estimation, different kinds
of measures have been proposed depending on the input data
(measure of the shadow length [18] or parallax in monoscopy
and measure of the disparity between homologous pixels or
primitives in stereoscopy [19]). Satisfying and relevant results
have been generally obtained from stereoscopy. Other methods
based on the joint use of optical images and auxiliary input data,
such as approximate digital elevation model [20] or cadastral
maps [21], [22], have also been performed. Nevertheless, some
limitations can be pointed out. First, the usefulness of optical
images highly depends on weather conditions. Second, the
auxiliary data or the specific configurations (need of multiple
images), required as input, are not always available in opera-
tional conditions.

In the SAR field, some well-known techniques for building
recognition and height estimation have been proposed in a
monoscopic [23]–[25], radargrammetric [26], or interferomet-
ric [8], [27], [28] framework and also in the context of multi-
aspect SAR data [29], [30]. When only a single SAR image
is available, classical measure-based methods, using layover
[31] or shadow length [23], have been applied for height
retrieval. More recently, new statistical [32], electromagnetic,
[33]–[35] or simulation-based [36], [37] approaches, founded

0196-2892/$26.00 © 2011 IEEE



SPORTOUCHE et al.: EXTRACTION AND RECONSTRUCTION OF BUILDINGS IN URBAN SCENES FROM IMAGES 3933

on the presence of building characteristic areas, have proved to
provide satisfying results for building reconstruction. In SAR
interferometry (InSAR) or radargrammetry, new Markovian [8]
or hypothesis-based methods [38] have been proposed and have
given good results. Nevertheless, because of the scene complex-
ity in dense urban areas and because of the difficulties inherent
to SAR images (speckle noise, geometric deformations, etc.),
these results still remain limited (noisy or incomplete) [39].

In a data fusion context, some techniques for urban building
detection and height retrieval, combining optical and SAR
information, have been recently explored [40]–[43]. Different
configurations of input data have been studied and have gener-
ated several appropriate methodologies.

When a couple of radargrammetric images [44], [45] or
InSAR images [46] and a single optical image are available,
the configuration is particularly well adapted to the extraction
of 3-D height information from SAR data and to the deduction
of building footprint shape from optical data.

When only a couple of a single SAR image and a single op-
tical image is available, the task remains difficult and only few
works have been published on this subject. In such a case, inter-
vention of an operator or addition of some auxiliary input data
is often required. Moreover, the different steps that collaborate
to the 3-D reconstruction of buildings (identification, contour
extraction, and height retrieval) are not always all handled. In
[47], a new process for the detection of building outlines, based
on the fusion of optical and SAR features, is presented. In [48],
authors propose to detect new buildings for vector database
updating, by performing building identification through the
accumulation of evidences issued from both optical and SAR
data (optical shadows, optical lines and right angles for building
edges, vegetation index, SAR lines, etc.). In [36] and [49], the
developed approach focuses on the step of height estimation
according to a “hypothesis generation–rendering–matching”
procedure, while the parameters defining the rectangular build-
ing footprints are issued from a geographic information sys-
tem database [36] or from a manual extraction on the optical
image [49].

In such a frame, new approaches have to be developed to
solve the problem of matching and registration between optical
and SAR homologous features. These approaches have to be
adapted to the kind of features characterizing this spatial HR
[50], [51].

Recently, authors have been interested in the problem of
building change detection in this optical–SAR data fusion
framework [48], [49], [52].

In this paper, we propose a new complete semi-automatic
processing chain, providing a simple 3-D reconstruction of
buildings in urban or semi-urban scenes from HR optical and
SAR imagery. The process takes only as input one HR optical
image and one HR SAR image of the same area, with a digital
terrain model (DTM) on this area. The following constraints
have to be satisfied: 1) The chain has to be able to work in
operational conditions, which implies the capacity to deal with
large areas (in a relatively short time) and with limited interven-
tion of an operator (semi-automatic process); 2) the different
steps composing the chain have to provide the planimetric and
altimetric information, required for a simple and relevant 3-D

reconstruction of buildings; and 3) confidence about the quality
of the resulting building reconstruction has to be proposed.

The proposed chain can be decomposed into three main
steps:

1) the detection of potential buildings and the extraction of
building boundaries from the monoscopic optical image;

2) the projection and the registration of potential building
footprints from optical data into SAR data;

3) the height estimation of potential buildings and the vali-
dation of building presence from the SAR image.

In the first time, we show that some planimetric informa-
tion about potential footprint location and dimensions can be
provided from the optical data, by performing a process based
on geometric, radiometric, and morphological considerations.
In the second time, we demonstrate that the introduction of
the SAR data allows one to get an altimetric information, by
combining a statistical criterion and a radiometric criterion.

The whole sequence of proceedings is applied to a couple of
Quickbird and TerraSAR-X images on an urban area (Marseille,
France), and the different intermediate results are illustrated and
analyzed on two scenes of interest throughout this paper.

This paper is structured as follows: In Section II, the com-
plete process flow is presented, and the different steps compos-
ing the chain are briefly exposed. In Sections III, IV, and V,
the three main steps of processing are consecutively developed.
In Section VI, a discussion about the operational aspects of
the chain (parameter setting and computing time) is proposed.
In Section VII, conclusions about the proposed approach are
drawn, and some perspectives are envisaged.

II. PRESENTATION OF THE PROCESSING CHAIN

A. Description of the Complete Process Flow

The proposed sequence of methods aims to explore the com-
plementarities provided by optical and SAR data. The following
two strategic choices are made.

1) First, given the complexity characterizing SAR urban
scenes at a metric resolution, it is difficult to detect
building presence directly from the single SAR image.
We propose thus to extract information about potential
building location from the optical image.

2) Second, the lateral viewing of SAR sensors implies ge-
ometric deformations (like layover and shadow) that can
be used to retrieve 3-D information. We propose thus to
estimate the building height from the SAR image.

The complete chart flow of the process is shown in Fig. 1.
Each of the main steps composing the chain is described in
detail in a dedicated section of this paper. In Section III, the
step of building boundary extraction from the optical image
is presented; its output is a map giving the footprint boundary
location of potential buildings in the optical image referential.
In Section IV, the step of footprint projection and registration
from the optical image into the SAR one is presented; its
output is a map relative to the footprint boundary location of
potential optical buildings, projected and registered in the SAR
image referential. In Section V, the step of height retrieval
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Fig. 1. Chart flow of the complete chain.

and building validation is presented; its output is a map giving
the retrieved heights for validated buildings in the SAR image
referential.

The set of provided maps is finally used to realize the 3-D
reconstruction of buildings in the scene.

B. Hypothesis of Work

We assume that our 3-D building model is a simple par-
allelepiped (vertical frontages and horizontal flat roof), de-
scribed by two kinds of parameters: its planimetric rectangular
boundary, defined by five parameters (the width, the length, the
orientation, and the position of the rectangle center in abscissa
and in ordinate), and its height.

We also assume that our optical image has been acquired
with a look angle not too far from the nadir. This makes the step
of building detection easier, as we do not have to face the
difficulty due to frontages. In consequence, the location of the
building footprints and the location of the extracted building
roof boundaries are the same in the optical image referential.

C. Description of the Data Set

A data set consisting of a Quickbird image (panchromatic
mode; resolution of 0.68 m; quasi-nadir look angle) and a
TerraSAR-X image (high spotlight mode, resolution of 1.1 m
in ground range and 1.1 m in azimuth, incidence of about 32◦)
on the same area in Marseille (France) is available.

We propose to illustrate the different results, obtained at each
step of the chain, on two scenes selected for their variety.

Figs. 2 and 3 show the two scenes of interest studied through-
out this paper. The first scene, located in a semi-urban area, is
composed of rectangular industrial buildings, comparable with
low sheds and relatively far from each other. The second scene,
located in an urban area, is composed of rectangular residential
buildings, relatively high and very close to each other.

III. BUILDING FOOTPRINT EXTRACTION

FROM MONOSCOPIC OPTICAL IMAGE

For the building boundary extraction on the optical image, a
two-phase process, providing first a global coarse map and then
a refined boundary map, is exposed.

A. Phase 1: Generation of Individual Windows of Interest

In the first phase, a region-based approach is proposed in
order to detect individual rectangular areas, likely to be individ-
ual buildings, allowing to coarsely generate rectangular boxes
called windows of interest.

During this phase, a morphological tool, the differential
morphological profile (DMP), is used. The concept of DMP,
introduced in [53], has already been used for some applications
such as classification [5], [6] and change detection [54] in
urban areas. The DMP gives information about the size and
the contrast of an object. It is built by using opening and
closing operators by reconstruction, as these operators permit to
preserve structure shapes in the DMP. A multi-scale approach
with different structuring elements is adopted to explore a large
range of potential object sizes. When a structuring element
reaches the characteristic size of an object in the DMP, all
its belonging pixels receive the same gray level value (the
one from the brighter or darker surrounding region), which
induces a peak in the DMP, corresponding to the local contrast.
Openings and closings affect, respectively, the structures that
are brighter or darker than their surrounding. Objects are thus
progressively removed at different levels of the DMP, and
a stack of simplified images at different scales is created.
In this paper, we take advantage of the properties of image
simplification and shape preservation to introduce a geometric
criterion based on a prior rectangular building shape. Indeed,
as each building appears on the optical image as a rectangular
footprint area usually including details (corresponding to super-
structures like chimneys or parapets), there is a characteristic
level in the DMP, for which all these detail subareas are re-
moved. At this specific level, the building is reduced to a simple
rectangular homogeneous area, which can be submitted to a
geometrical test.

The proposed method can be decomposed as follows.

1) Preprocessing: First, the shadows, which are clearly vis-
ible on the optical data, are extracted by thresholding on
the gray levels. Second, the DMP of the image is built and
provides a stack of images. Third, the extracted shadow
areas are “masked” on the DMP, which means that all
pixels included in these shadow areas are replaced by
zero values in the different images of the stack, in order
to make the building identification easier.
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Fig. 2. Scenes of interest on the optical image (Quickbird sensor; DigitalGlobe; mode: panchromatic; resolution: 0.68 m; area: Marseille, France). (a) Scene 1.
(b) Scene 2.

Fig. 3. Scenes of interest on the SAR image (TerraSAR-X sensor; Infoterra; mode: high spotlight; resolution: 1.1 m; area: Marseille, France). (a) Scene 1.
(b) Scene 2.

2) Hierarchical analysis: A test area is defined as a radio-
metrically homogeneous area, composed of a set of pixels
connected with each other and with exactly the same gray
level value (connected component).

The following processing is iteratively applied on the
different images in the stack, from the ones corresponding
to the larger structuring element to the ones correspond-
ing to the smaller one. For each test area present in the
considered image and corresponding to a non-zero gray
level local value, a rectangular-oriented bounding box
is built using axis of inertia of the area. An overlap-
ping coefficient, characterizing the geometrical adequa-
tion between a rectangle of reference and the test area,
is computed. This coefficient is defined as the percent of
common surface between both surfaces. If it is higher
than a threshold, the generated rectangular box is val-
idated as a potential window of interest and the corre-
sponding test area is “masked” for the next iterations,
which means that all its pixels are put to zero in the
images present in the inferior levels of the DMP. This
prevents us from testing the different detail subareas
inside the building. As a consequence, for the same real
footprint, only one window of interest can be generated.

3) Post-processing: A thresholding on the minimal surface
size of the validated windows is realized to delete too
small windows.

The obtained coarse map, delineating rectangular windows
of interest, is used as input for the next phase.

The different parameters used in this phase of potential
window detection are the following:

1) the threshold Tshadows that can be locally learnt on
shadow areas for a given optical sensor and for given
conditions of luminance;

2) the parameters used for DMP construction: the number
NDMP of images in the stack and the minimal and max-
imal sizes (ǫmin, ǫmax) of the structuring element; they
depend on the adopted compromise between simplifica-
tion level in the DMP and computing time;

3) the threshold Toverlapping on the minimal overlapping
coefficient that is set to 0.75 by the operator;

4) the minimal surface Smin, length Lmin, and width Wmin

used in post-processing and deduced at a given resolution
from the kind of building size we are looking for.

B. Phase 2: Extraction of Refined Potential Building Footprints

Given that the previous windows of interest have been gen-
erated from axis of inertia of rectangular areas, the geometric
parameters defining these windows are not always accurate
enough. A second phase is thus needed for the refinement of
footprint location.

In this phase, a complementary contour-based approach is
adopted to ensure a fine superposition between building bound-
aries and radiometric discontinuities.

We are here locally working around each rectangular window
of interest. We try to refine the orientation, dimension, and
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position of the rectangular footprint, initialized by the window
outline.

First, for each window, a bounding box is defined, and a local
Hough accumulator is computed from the thresholded image
of Sobel gradient. The principal direction of the building is
obtained by selecting in the accumulator the couple (ρ, θ) that
induces the larger accumulation value (where ρ and θ corre-
spond, respectively, to the distance coordinate and to the angle
coordinate in a polar image referential). The initial rectangleR0

is then rotated in order to have its main orientation fits with the
found direction.

Second, small variations in dimensions and position are
envisaged on this new rectangle R1. A double loop, testing
simultaneously a set of possible edge elongations and center
translations, is performed on the rectangle R1. It permits to
generate an exhaustive set of test rectangles Rk, defined by

Rk =
(

T(a,b) ◦ E
length
c ◦ Ewidth

d

)

(R1) (1)

where T(a,b) corresponds to the translation operator according
to the vector (a, b), Elength

c corresponds to the elongation
operator of ratio c applied to both largest edges, and Ewidth

d

corresponds to the elongation operator of ratio d applied to both
shortest edges.

A stage of score maximization allows to find the optimal
rectangle R∗

R∗ = argmax
Rk





∑

(i,j)∈C
Rk

δ(i,j)

PRk



 (2)

where δ(i,j) corresponds to the radiometry (0 or 1) of the
pixel (i, j) on the thresholded image of Sobel gradient, CRk

designates the contour of Rk, and PRk corresponds to the
perimeter of Rk.

The induced rectangular footprint is finally conserved if the
associated maximal score is higher than a threshold Tscore,
assuring a certain level of reliability.

The different parameters used in this phase of footprint
refinement are the following:

1) the threshold TSobel that can be locally learnt on typical
building discontinuity areas for a given optical sensor;

2) the maximal norms amax, bmax, cmax, and dmax of the
vectors of translations and elongations that are empiri-
cally fixed to a few pixels;

3) the threshold Tscore set to 0.5 by the operator.

C. Results on the Studied Scenes

The step of building footprint extraction is applied on real
data for both studied scenes.

Table I indicates the parameter values used during this step.
Fig. 4 presents the two boundary maps indicating the pre-

cise location of the potential footprints in the optical image
referential.

After the complete step, nine potential footprints are pro-
posed on scene 1 and eight on scene 2. Among these ones, seven
are good detections and two are false alarms on scene 1, and
seven are good detections and one is false alarm on scene 2.

TABLE I
PARAMETERS USED FOR BUILDING FOOTPRINT EXTRACTION

Concerning good detections, accurate results of location are
provided: the boundary parameters, obtained for each building,
seem quite satisfying; the deduced coordinates of building
corners will be used as a good starting point for the fusion with
SAR data.

Concerning false detections, a false alarm rate of 18% is
globally obtained on both scenes. These false alarms are mostly
due to homogeneous rectangular parcels present on the ground.

By comparison with ground-truth photographs, we can enu-
merate three non-detected footprints on scene 1 and two on
scene 2. They are due to the presence of non-rectangular
buildings and to the presence of buildings with weak contrast or
imperfect boundaries. If we take into account the only buildings
with rectangular footprint, a good mean detection rate of 88%
is obtained.

IV. PROJECTION AND REGISTRATION OF THE OPTICAL

POTENTIAL FOOTPRINTS INTO SAR DATA

To combine information issued from optical and SAR im-
ages, we have to project and register homologous building
primitives in a common referential.

We assign here as primitive any feature or object that charac-
terizes the building presence in the data. In our case, during the
registration process, optical primitives are the optical building
edges delineating the extracted rectangular footprints and fac-
ing the SAR sensor. Their corresponding SAR primitives will
be defined in Section IV-B according to the building orientation.

A two-phase process is proposed to achieve a fine registration
at the metric scale.
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Fig. 4. Results of the building footprint extraction, superimposed to the optical image (DigitalGlobe). The extracted boundaries are represented in red. (a) Result
on scene 1. (b) Result on scene 2.

A. Phase 1: Projection of the Optical Footprints Using the

Optical–SAR Physical Joint Model

As described in [44], [47], and [55], the projection of points
from an optical image into a SAR image needs the use of direct
and inverse localization functions. These transformations are
founded on the fundamental optical and SAR equations relative
to the imaging systems. They permit to put in relation the 2-D
pixel coordinates of a point in an image referential with its
3-D cartographic coordinates in an Earth referential (and vice
versa). These functions require the knowledge of some acqui-
sition system parameters and a height information. In our case,
this height information does not need to be very accurate. It
corresponds only to an approximate value that will be used to
easily bound a height search interval.

In this paper, the two following models are available.

1) For the TerraSAR-X data, all the parameters of the real
physical sensor model are directly known.

2) For the Quickbird data, a typical Quickbird rational poly-
nomial coefficient (RPC) model is available; it gives a
mathematical mapping between point coordinates in an
Earth referential and in the optical image referential.

The height information is given by a DTM, available on the
studied area and produced by the SPOT Image company.

The projection phase is realized by using an optical–SAR
joint model. It allows to project the corner points at both ends of
each potential footprint edge: in the first time, from the optical
image into a WGS-84 Earth referential and, in the second time,
from this WGS-84 Earth referential into the SAR image.

As we are dealing with satellite systems, the use of a few
ground control points may be useful to improve the joint model
of projection.

B. Phase 2: Fine Registration of the Optical Footprints

in the SAR Image

After the phase of projection, small errors of registration are
still present. They are mainly due to two reasons: First, the
knowledge of the DTM heights is not accurate enough (the
DTM altimetric precision is between 10 and 20 m). Second,
the RPC model can induce small errors of localization in the
cartographic referential. Altimetric and planimetric errors of
localization in this referential cause then errors along the range
and azimuth SAR axis, after the projection of corner points into
SAR data.

In order to obtain a fine ground registration, a very precise
ground height has to be locally estimated for the corner points.
Consequently, as presented in [42], we propose to perform a
phase of refinement to jointly get an accurate DTM and a good
point matching.

The process uses the correspondence between the projected
optical building ridges facing the sensor and their homologous
SAR features.

If the building is imaged with a strictly positive aspect angle
(common case), two walls (defined by two edges in the optical
image) are facing the SAR sensor. The SAR primitives corre-
sponding to these edges are thus the two bright linear SAR
echoes issued fromdouble reflections between ground andwalls.

If the building is oriented parallel to the azimuth direction
(particular case), only one wall is facing the SAR sensor. In this
case, it provides only one double bounce stripe in the SAR image.

We assume that the studied building walls are sufficiently
rough at the considered wavelength (diffuse reflection) to make
both double echoes (common case) clearly visible on the SAR
image, whatever the building orientation. We consider thus that
even if the building walls imaged with a relatively large aspect
angle tend to have a weak double stripe, the global backscatter-
ing of such building ground corners stays sufficiently important
to make the double echoes still observable. In practice, this is
verified on our data set. In particular, on scene 2, we can observe
that, for each tall building (whose aspect angle is between
25◦ and 65◦), both strong double bounce stripes appear.

The idea is to fit the coordinates of building corner points in
the intermediate Earth referential in such a way to ensure the
superposition between selected optical ridges and correspond-
ing SAR echoes after projection into SAR data.

The registration is run through a first stage of optimization
and a second stage of regularization.

1) Optimization: For each optical building footprint imaged
with a strictly positive aspect angle (common case), we proceed
as follows.

1) The two ridge segments (Sab, Sac)optical that can be
imaged as ground–wall SAR echoes are designated in the
optical image referential, given the SAR sensor position.

2) The ended points (Pa, Pb, Pc)optical of both segments
(Sab, Sac)optical are deduced.

3) The points (Pa, Pb, Pc)optical are projected into the
Earth referential giving the new points (Pa, Pb, Pc)0Earth

(Pa, Pb, Pc)0Earth = PO→E [(Pa, Pb, Pc)optical] (3)
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where PO→E is the projection operator from the optical
image referential (O) into the Earth referential (E) (ap-
plied for each point with the same average height value
zmean issued from the DTM).

4) The optimization scheme is performed through a greedy
algorithm, testing exhaustively a set of potential small
displacements (δx, δy, δz)

k in the Earth referential, as
described as follows:
a) definition of the test points (Pa, Pb, Pc)kEarth in the

Earth referential by

(Pa, Pb, Pc)kEarth = Tk

[

(Pa, Pb, Pc)0Earth

]

(4)

where Tk corresponds to the 3-D translation opera-
tor according to the displacement (δx, δy, δz)k in the
Earth referential;

b) obtention of their corresponding test points (Pa, Pb,

Pc)kSAR in the SAR image referential by

(Pa, Pb, Pc)kSAR = PE→S

[

(Pa, Pb, Pc)kEarth

]

(5)

where PE→S is the projection operator from the Earth
referential (E) to the SAR image referential (S)
(applied for each point with the same height value
(zmean + (δz)

k));
c) computation and storage of a registration score sk, rela-

tive to the associated couple of segments (Sab, Sac)kSAR

sk =
∑

(i,j)∈(Sab∪Sac)k
SAR

r(i,j)

L(Sab∪Sac)k
SAR

(6)

where r(i,j) corresponds to the radiometry of the
pixel (i, j) on the SAR image and L(Sab∪Sac)k

SAR

corresponds to the cumulated length of both segments
(Sab, Sac)kSAR;

d) estimation of the optimal set of displacements
(δx, δy, δz)

∗ (ensuring the best feature matching) by
score maximization

(δx, δy, δz)
∗ = argmax

(δx,δy,δz)k
(sk) (7)

e) deduction of the optimal localization of (Pa, Pb,

Pc)∗Earth in the Earth referential from (4) applied with
the vector (δx, δy, δz)∗;

f) deduction of the optimal localization of their projected
points (Pa, Pb, Pc)∗SAR in the SAR image referential
from (5) applied with the optimal height (zmean +
(δz)

∗).
5) The refined DTM is generated using the values (zmean +

(δz)
∗) locally obtained for the footprints.

6) The set of optimal displacements (δx, δy, δz)∗ in the Earth
referential is converted into a set of optimal translations
(trange, tazimuth)

∗ in the SAR image for the following
step.

In the case of a building oriented parallel to the azimuth
direction (particular case), the same process as before is applied
but considering only the ridge segment (Sab)optical (and its two
ended points (Pa, Pb)optical), induced by the single wall facing
the SAR sensor.

The different parameters used in this stage of optimization
are the following:

1) the maximal translations tmax
range and tmax

azimuth envisaged
in the SAR image referential that are fixed to a few pixels;

2) the strides srange and sazimuth, taken between each tested
translation, that depend on the adopted compromise be-
tween registration precision and computing time.

2) Regularization: In the previous refinement, we assume
that the presence of visible SAR double echoes is verified for
each building. In reality, this hypothesis is not always true (in
particular, in dense urban areas). We suggest thus to perform
a final phase of regularization: It consists of selecting, among
the optimal translations (trange, tazimuth)

∗ computed indepen-
dently for the different footprints, the ones that appear as the
most reliable and propagating them. To do this, we take into
account slow variations of the DTM and locally similar errors
of localization.

This stage can be summarized as follows.
In the first time, three constraints called Cvisibility,

Cradiometry, and Ctendency are introduced.

1) Cvisibility refers to the possibility, for a selected optical
ridge, to be imaged as a ground–wall echo on the SAR
data, given its spatial surrounding. This constraint is
verified when there is, around the considered footprint,
any other building close enough to hide its echo.

2) Cradiometry refers to the optimal score of registration s∗.
This constraint is verified if s∗ is superior to a threshold
Tregistration.

3) Ctendency refers to the optimal translations (trange,
tazimuth)

∗ of the considered building. This constraint is
verified if the translation values (trange, tazimuth)

∗ are
close enough to a mean tendency (trange, tazimuth)

∗

mean,
provided by a local average.

In the second time, the decision about reliability is taken:
When at least one constraint is not verified, the associated op-
timal translations are considered as not reliable. They are thus
replaced by the nearest translations obtained in a neighborhood
that satisfy all the constraints.

The previous refined DTM can be also corrected: Among
the optimal individual heights (zmean + (δz)

∗), only those that
induce reliable translations are kept. The others are replaced by
using a similar strategy of propagation.

The different parameters used in this stage of regularization
are the following:

1) a diameter dneighborhood used to define a neighborhood
around each building and fixed to a few pixels;

2) the threshold Tregistration that can be learned on double
echo areas on calibrated SAR data;

3) two thresholds T tolerance
range and T tolerance

azimuth used to specify
the allowed gap between the values (trange, tazimuth)

∗ and
(trange, tazimuth)

∗

mean.

C. Results on the Studied Scenes

The step of footprint projection and registration is applied on
real data for both studied scenes.
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TABLE II
PARAMETERS USED FOR BUILDING FOOTPRINT

PROJECTION AND REGISTRATION

Table II indicates the parameter values used during this step.
All values are identical for both scenes, except tmax

range and
tmax
azimuth. Larger maximal translations have been allowed for the
second scene: Indeed, as the hypothesis of locally flat ground
is not verified everywhere on this scene, stronger registration
errors are likely to be present after projection.

Fig. 5 presents the two maps indicating the location of the
registered potential buildings in the SAR image referential.

During the registration, only translations relative to four
buildings in scene 1 and to six buildings in scene 2 have
been considered as reliable values. A visual analysis shows
that this step has allowed a robust, fine, and global registra-
tion: After their repositioning, the optical ground segments
are precisely located in the middle of the SAR double echoes
(the observed registration errors are inferior to three pixels in
the mean).

V. BUILDING HEIGHT ESTIMATION AND VALIDATION

This step allows to benefit from the data fusion framework.
We jointly aim to confirm or not the presence of the potential
buildings (phase of validation) and to estimate their elevation
(phase of height retrieval).

A semi-automatic approach, using the combination of two
SAR criteria, depending on the building height, is proposed.

A three-phase process is presented. In the first time, a statis-
tical global criterion is optimized to provide a set of candidate
building heights. In the second time, the introduction of a
radiometric local criterion permits to select the appropriate
building height and to validate or not the building presence. In
the last time, a score of confidence is evaluated on the SAR
image for each reconstructed building.

A. Presentation of Geometric Configurations for the

Studied Buildings

The proposed methodology is based on the presence of
characteristic building areas on the SAR image. We have thus
to define the location and extent of these areas, given the 3-D
building dimensions.

In Fig. 6, two kinds of simple geometric configurations are
proposed. The first one [Fig. 6(a)] deals with the case where the
building height hbuilding is lower than a certain height hlimite,
depending on some parameters (building dimensions and sensor
incidence angle [23], [36]). It is adapted for modeling low
industrial buildings. The second one [Fig. 6(b)] deals with the
case where the building height hbuilding is larger than hlimite.
It is adapted for modeling high residential buildings. At the
moment, only flat roofs are taken into account.

The different areas composing the building signature can be
listed as follows:

1) for configuration 1: the “background area”; the “layover
area” corresponding to the simultaneous backscattering
from building roof, frontages, and background; the bright
“double echo area”; the “single roof area” where only
the roof is responding; and the “shadow area” where no
object is responding;

2) for configuration 2: the “background area”; the “layover
area”; the bright “double echo area”; the “frontage area”
where only frontages and background are responding; and
the “shadow area.”

The location and the extent of each area can be calculated
for a supposed building height h, from the knowledge of the
building footprint location in the SAR image and for some
given SAR acquisition system parameters (incidence angle and
range spacing [23], [36]).

These characteristic building areas will be denoted by
CBA(h) in the following.

B. Phase 1: Statistical Criterion for Candidate Building

Height Generation

1) Principle: The idea is to exploit the geometric extents
of CBA(h) to estimate the building elevation. To do so, we
propose to use as statistical criterion the log-likelihood of
the intensities in the SAR image for the regions defined by
CBA(h). For a given building and a given height h, this
global log-likelihood is defined as the sum of all the log-
likelihoods on the different parts in CBA(h) (“background
area,” “layover area,” etc.). For each area i in CBA(h), the
intensity distribution is classically modeled by a gamma density
function defined by two parameters (µi, Li).

The analytical expression of the log-likelihood LLarea(i) in
this area i is thus given by

LLarea(i) = Ni (Lilog(Li)− logG(Li))−
Li

µi

∑

j∈i

xj

−Ni log(µi) + (Li − 1)





∑

j∈i

log(xj)−Ni log(µi)



 (8)
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Fig. 5. Results of the building footprint projection and registration, superimposed to the SAR image (Infoterra). The extracted boundaries are represented in red.
(a) Result on scene 1. (b) Result on scene 2.

Fig. 6. Representations of the two studied configurations. The different characteristic areas composing the building signature are defined in slant range geometry
on the SAR image. (a) Configuration 1: hbuilding < hlimite. (b) Configuration 2: hbuilding > hlimite.

whereNi is the number of pixels in the area i, xj is the intensity
of pixel j, and logG is the log-gamma function.

Both (µi, Li) parameters are locally estimated by the maxi-
mum likelihood method.

Our final statistical criterion LL(h) is defined as the opposite
of the global log-likelihood

LL(h) = −

∑

i∈CBA(h)

LLarea(i). (9)

It will correspond to an energy to minimize with h.
2) Optimization: A global strategy of “Height

Hypothesis–Partitioning Generation–Criterion Optimization”
is employed. For each potential optical footprint, projected
and registered into SAR data, the following steps are
applied.

1) First, the position of the four building corners is deduced
from the rectangular footprint. The building subscene,
required to compute the global criterion, is defined by
extending the footprint bounding box.

2) Then, the following scheme is performed:
a) selection of a height test value htest in the interval∆h

of potential building heights;

b) computation of the subscene partitioning into the
characteristic areas CBA(htest) by using a geometric
SAR model of building projection;

c) evaluation of the statistical criterion LL(htest) on the
test partitioning.

3) Finally, the curve representing LL(htest) for all possible
htest values is generated. When a representative local
optimum clearly appears, a strong geometric adequation
exists between the predicted signature and the real one.
This optimum can be local or global depending on the
scene complexity.

Local optima are thus selected, giving, for the second
phase, candidate building heights defined by

hcandidate = argmin−local
htest

(LL(htest)) . (10)

To improve the selection of hcandidate, two shape con-
straints called Cwidth and Cheight are added on the curve.
We define by Wpeak(hcandidate) and Hpeak(hcandidate)
the width and the relative height of the optimal peak ob-
tained for hcandidate. The constraints Cwidth and Cheight

are, respectively, satisfied if Wpeak(hcandidate) is higher
than a threshold Tmin

width and ifHpeak(hcandidate) is higher
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than a threshold Tmin
height. This permits to delete several

non-representative optima.

Lets us remark that this approach is similar to the one
proposed by Brunner et al. [36], based on a scheme called “hy-

pothesis generation–rendering–matching” for building height
retrieval from SAR images. Nevertheless, some main differ-
ences can be underlined: In the approach of Brunner et al. [36],
a matching criterion is computed to test the similarity between
a simulated SAR image and the real SAR one. In our approach,
no SAR data are simulated. Instead, a statistical criterion is
computed directly from the pixel intensities on the real SAR
image to test the adequation between a partitioning and the real
building signature.

The different parameters used in this phase of candidate
height generation are the following:

1) the size ǫecho used to define the bandwidth of the “double
echo area” and fixed to two or three pixels;

2) the size ǫbox used to extend the footprint bounding box
around each building;

3) the heights hmin and hmax used to bound the interval ∆h

and set according to the geometric configuration;
4) a quantification step hstep to cover the interval ∆h;
5) the thresholds Tmin

width and Tmin
height used to define the

representativity of optimal peaks in the curve LL(htest)
and, respectively, fixed to a few meters and a few percent.

C. Phase 2: Radiometric Criterion for Final Building Height

Estimation and Building Validation

1) Principle: To choose the most appropriate height among
the candidate ones, we propose to combine the statistical crite-
rion with a radiometric criterion.

The radiometric criterion tests the presence of a discontinuity
between the “background area” and the “layover area.” The
location of this discontinuity is predicted for a given htest and
can be tested by computing the local contrast between both
areas. This contrast is defined as the mean amplitude ratio R

of pixels belonging to narrow bands on both sides of the edge.
Given the a priori knowledge that the “background area” is
darker than the “layover area,” R has to be smaller than one,
and, when the partitioning of the subscene matches perfectly
well with the SAR image, R is minimal.

2) Combination of Both Criteria: The following scheme is
performed:

1) for each hcandidate, computation and storage of the min-
imal ratio R(h) obtained for a height h in the interval
[hcandidate − δh, hcandidate + δh], where δh is defined as
a close neighborhood around hcandidate; this local mini-
mum ratio, denoted byR(hratio

candidate), can be obtained for
a height hratio

candidate slightly different than hcandidate;
2) selection of hcandidate running to the best minimal con-

trast R(hratio
candidate);

3) estimation of the final height hestimated, defined as the
mean between the selected hcandidate and the associated
hratio
candidate;

4) thresholding on R(hratio
candidate) to validate or not the

building.

The different parameters used in this phase of height retrieval
and validation are the following:

1) a size ǫdiscontinuity used to define the bandwidth on both
sides of the discontinuity and empirically fixed to three
pixels;

2) a width δh used to define a close neighborhood around
hcandidate and fixed to 2 m;

3) the threshold Tratio applied on R(hratio
candidate) for valida-

tion and fixed to 0.8 by the operator to avoid too strict
thresholding.

D. Phase 3: Qualification by Scores of Confidence

To provide quality measures, we propose to compute, for
each reconstructed building, a score of confidence.

We define a global score of confidence Sglobal, between zero
(weak confidence) and one (strong confidence), by merging in-
dividual selected scores of confidence. These individual scores,
denoted by Si (where i = 1, . . . , 6), refer to the reliability en-
sured by the optimal peaks in the curvesLL(htest) andR(htest).

The individual scores S1, S2, and S3 take into account some
aspects relative to the statistical criterion LL(htest) as follows.

1) S1 refers to the optimal value of the statistical criterion
LL(hcandidate).

2) S2 refers to the optimal value of Wpeak(hcandidate).
3) S3 refers to the optimal value of Hpeak(hcandidate).
The individual scores S4, S5, and S6 take into account some

aspects relative to the radiometric criterionR(htest) as follows.
1) S4 refers to the optimal value of the radiometric criterion

R(hratio
candidate).

2) S5 refers to the smallest size of δh leading to a contrast
smaller than Tratio.

3) S6 refers to the location gap between the selected
hratio
candidate and the height htest leading to the nearest local

minimum of the radiometric criterion.
Sglobal is simply defined as the mean of the scores

Sglobal =
1

6

6
∑

i=1

Si. (11)

Thresholding on Sglobal could help to detect the remaining
false alarms. A manual inspection by an operator could be
envisaged for buildings that have not passed the test.

E. Validation of the Methodology on Simulated Data

To validate the methodology, the approach has been first
tested on two simulated SAR images of buildings.

Figs. 7(a) and (b) shows the result of building simulation
according to both geometric configurations (case of a build-
ing A with a height hbuilding smaller than hlimite and case
of a building B with a height hbuilding larger than hlimite).
A different gamma density function has been used for each
characteristic building area.

Table III presents the values of the parameters used to gener-
ate the simulated data. Buildings A and B have been simulated
under a respective height hypothesis of 10 m [Fig. 7(a)] and
27 m [Fig. 7(b)].
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Fig. 7. Results obtained on the simulated data. (a) Building A: simulation.
(b) Building B: simulation. (c) Building A: LL(htest). (d) Building B:
LL(htest). (e) Building A: R(htest). (f) Building B: R(htest).

TABLE III
PARAMETERS USED FOR BUILDING SAR SIMULATION

The evolution curves of the energy LL(htest) and of the
contrast R(htest) are shown in Figs. 7(c)–(f).

The proposed criteria seem quite efficient: Indeed, in both
cases, a minimal value of LL and R clearly appears for a
common building height and permits to retrieve the true height.
Best minimal contrasts of 0.48 [Fig. 7(e)] and 0.51 [Fig. 7(f)]
are obtained and allow to validate the buildings.

F. Results on the Studied Scenes

The step of building height estimation and validation is
applied on real data for both studied scenes.

TABLE IV
PARAMETERS USED FOR BUILDING HEIGHT

ESTIMATION AND VALIDATION

Table IV indicates the parameter values used during this step.
Table V details, for the different buildings in both scenes, the

heights obtained at the different phases (hcandidate, hratio
candidate,

and hestimated). The first column refers to the building indexB.
The fourth column refers to the building status Status (validated
or rejected).

The final results, presented in Fig. 8, provide, for each
studied scene, the gray level map of the estimated building
heights for the validated buildings. In Fig. 9, 3-D textured views
of the buildings composing the scenes are proposed.

Among the 17 potential footprints on both scenes, 14 correct
decisions have been taken after validation: 13 existing buildings
have been correctly validated, and one non-existing building
has been correctly rejected. The three wrong decisions corre-
spond to two false alarms and one non-detection.

We can globally say that, as long as the scatter interferences
between close buildings stay relatively weak, the process is
able to deal with small and local intensity perturbations and
succeeds in producing correct height extraction and validation
results. However, when these perturbations become too impor-
tant (which happens when buildings are tall and close), the
process fails. For instance, this is the case of building 3 on scene
2 that has been wrongly rejected. This is due to two combined
phenomena: First, the complete lack of “shadow area” (due to
the superposition between the “shadow area” of the considered
building and the “layover area” of the building behind) has
prevented the statistical criterion from delivering accurate can-
didate building heights. Second, the presence of perturbations
in the narrow band, used on the background side of the tested
background–layover discontinuity (due to punctual bright tar-
gets and to the partial superposition between the “background
area” of the considered building and the “double echo area”
of another one), has prevented the radiometric criterion from
estimating a correct refined height. This has led to building re-
jection, since the radiometric contrast is not well verified (a best
minimal ratio of 0.87, higher than Tratio, has been obtained).

Table VI provides, for both scenes, the differences of heights
between the ground-truth building heights and the final esti-
mated building heights, for the validated buildings. The re-
trieved building heights appear quite relevant and precise. No
general trend of over- or under-estimation is observed for the
height estimation results. Root mean square errors of 1.34 and
0.85 m are obtained, respectively, on scenes 1 and 2.

The proposed 3-D reconstructed scenes are thus globally
satisfying.
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TABLE V
TABLES OF ESTIMATED BUILDING HEIGHTS ON SCENES 1 AND 2

Fig. 8. Results of height estimation and building validation, represented as gray level maps. A gray level scale is used to indicate the relative building heights
that have been retrieved for the validated buildings. The rejected building footprints are designed by a cross. (a) Result on scene 1. (b) Result on scene 2.

Fig. 9. Results of 3-D building reconstruction (Infoterra). The 3-D textured views are represented in the SAR image referential. The reconstruction has been
done by combining planimetric information from the map of footprint location and altimetric information from the map of estimated heights. (a) Result on scene 1.
(b) Result on scene 2.

TABLE VI
TABLES OF DIFFERENCES BETWEEN GROUND-TRUTH HEIGHTS AND ESTIMATED HEIGHTS FOR VALIDATED BUILDINGS ON SCENES 1 AND 2

A potential improvement concerning the investigation of the
radiometric criterion could be done. This criterion could be
extended to other discontinuities in order to consolidate the

selection of hcandidate. In particular, we could focus on the edge
between the “shadow area” (darker) and the “background area”
(brighter).
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TABLE VII
TABLE OF SCORES OF CONFIDENCE ON SCENES 1 AND 2

Finally, the associated scores of confidence Sglobal are indi-
cated in Table VII. A short analysis can be drawn: All buildings
present a score Sglobal strictly higher than 0.5 except the only
two buildings (building 3 on scene 1 and building 7 on scene 2).
In consequence, if a manual verification was done for all build-
ings presenting a score smaller than 0.5, the operator would
only have to inspect these two buildings. The second one would
be designated as false alarm, and the rate of correct decisions
could be increased (15 correct decisions among 17).

VI. DISCUSSION ABOUT THE OPERATIONALITY

OF THE COMPLETE CHAIN

A. Parameter Setting

An analysis about the stability and the sensitivity of the pa-
rameters used throughout the chain is proposed in this section.

Each of these parameters can be classified into one of the
three following categories:

1) The fixed parameters: These ones are empirically set as
they are very stable with different input data (whatever
the sensor, the kind of studied scene, or the building con-
figuration). This is the case particularly of the parameters
used in the optimization stages (examples: amax, bmax,
cmax, and dmax in step 1; srange and sazimuth in step 2;
and hstep in step 3) or for the definition of some particular
zones of interest (example: ǫdiscontinuity).

2) The a priori known parameters: These ones are easy to
set by the operator according to the maximal dimensions
and the supposed configuration of the building of interest
(examples: ǫmin, ǫmax, Smin, Lmin, and Wmin in step 1
and hmin and hmax in step 3), or according to the studied
scene properties such as the building density or the flat
ground validity (examples: tmax

range, t
max
azimuth, dneighborhood,

T tolerance
range , and T tolerance

azimuth in step 2).
3) The non a priori known parameters: These ones are set by

the operator and correspond to the most critical parame-
ters. They are often very sensitive, and their setting has
an important influence on the quality of the results. They
correspond mostly to the different thresholds (exam-
ples: Tshadows, Toverlapping, TSobel, and Tscore in step 1;
Tregistration in step 2; and Tratio in step 3).

The two last categories require the intervention of an opera-
tor, which justifies the “semi-automatic” adjective, attributed to
the processing chain.

In the last category, two kinds of threshold values can be
distinguished: first, the radiometric ones that can be locally
learned for given conditions (Tshadows, TSobel) or that can be
used for input data from different sensors, if they have been
computed on calibrated data (Tregistration) and, second, the
ones for which the setting by the operator is absolutely required
(Toverlapping, Tscore, and Tratio).

We have indeed realized some experiments showing that, for
Quickbird data, as well as for Worldview data, the values to
use for Tshadows and TSobel are relatively constant for different
scenes inside the same image (as long as we consider the same
conditions of luminance).

On the contrary, concerning the second kind of critical pa-
rameters, their sensitivity can be illustrated through the follow-
ing remarks. In our studied scenes, by setting the value of Tratio

to 0.9 (instead of 0.8) in step 3, the wrongly rejected building
on scene 2 would be validated and reconstructed, but some new
false alarms could appear. In the same way, setting the values of
Tscore and Toverlapping in step 1 would have also a direct impact
on the detection rate and on the false alarm rate. This shows
well how important is the manual setting of such threshold
values.

B. Computing Time

We propose here an evaluation of the computing time, re-
quired to perform the steps of footprint extraction, projection
and registration, and height estimation and validation.

The following time values are given for a typical optical
subset (256 by 256 pixels), containing a single building and
issued from a manual selection.

To perform the complete processing chain of 3-D reconstruc-
tion on this subset, about 5 min is required (5 min and 13 s in
CPU user time, with an AMD Opteron Processor 248, working
at a frequency of 2.2 GHz).

This computing time can be decomposed as follows:

Step 1) window generation and refined footprint extraction
on the optical image: about 4 min and 16 s;

Step 2) projection and registration into SAR data: about 5 s;
Step 3) height estimation and validation in the SAR image:

about 52 s.

The proposed algorithms could thus be implemented to work
in operational conditions.

Let us notice that the main limiting phase is the first phase
of the first step (corresponding to the generation of windows of
interest): Indeed, the morphological operations by reconstruc-
tion, performed with different structuring element sizes to build
the DMP, require a few minutes.

VII. CONCLUSION AND FUTURE WORK

An operational processing chain, producing relevant 3-D
reconstruction of buildings from HR optical and SAR imagery,
has been described and illustrated on real data. It has been
shown that the process of optical footprint extraction could pro-
vide precise results. The step of building validation and height
retrieval, using the combination of two SAR criteria, has proved
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to give reliable information. Satisfying 3-D reconstruction of
buildings has been finally proposed.

The main limitation of the chain relies on the simple 3-D
model adopted for building that could be complexified (in-
troduction of more sophisticated footprint shapes such as
“T-shape” or “L-shape” footprints and introduction of roofs
with slopes).

Several potential applications in urban environment monitor-
ing (such as mapping of seismic vulnerability of buildings or
damage assessment after natural disaster) could benefit from
the proposed method.

In futher works, a symmetrization of the complete chain
could be proposed by giving an equivalent weight to the optical
component and to the SAR component. This would permit to
fully explore the optical–SAR complementarities. For instance,
during the step of footprint extraction, we could envisage to
detect windows of interest also from the SAR image. In the
same way, during the step of building validation and qualifica-
tion, some criteria issued from the optical image could be also
considered.

Moreover, an extension of this paper could be done to deal
with the case where one optical image and a couple of InSAR
data are available as inputs.
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