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Abstract 

 

Statistical segmentation techniques based on hidden Markov field (HMF) modelling have 

retained considerable interest in the past years. They take the contextual information into 

account, in a particularly elegant and rigorous way. Although these models have been 

thoroughly tested, they can fail in some cases such as the non stationary one. In this paper we 

propose to consider the recently developed triplet Markov field (TMF), which models non 

stationary images, and to use the Fisher distribution, which is adapted to a wide range of 

surfaces, for modelling the SAR image noise. Examples illustrate the difference between the 

approach we propose and classical ones. Different experiments indicate that the new model 

and its associated unsupervised algorithm perform better than classical ones.  

 

Index terms Hidden Markov fields, triplet Markov fields, non stationary modelling, Fisher 

distribution, Mellin Transform, iterative conditional estimation, maximum posterior mode, 

unsupervised segmentation, texture classification, synthetic aperture radar (SAR) images. 

 

 

 

I. INTRODUCTION 

 

There are nowadays many SAR satellite sensors (such as TerraSAR-X, RADARSAT-2, 

CosmoSkyMed) regularly acquiring radar data. Although such sensors are very popular due to 

their all-weather and all-time capabilities, SAR data remain difficult to interpret due to 

speckle phenomenon (coherent imagery) and geometrical distortions (Goodman, 1976). For 

many applications, segmentation or classification is a preliminary step to further processing, 

such as  scene interpretation (Fjortoft et al. 2003, Pellizzeri et al. 2003, Marques et al. 2012) 

or interferometric 3D reconstruction (Tison et al. 2007).   
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In this paper, we present a new  unsupervised classification method dedicated to SAR 

images, especially to the case of high resolution images and urban areas. This application is of 

major interest with the increasing improvement of sensor resolutions and the environmental 

applications linked to cities development and urban survey. The proposed approach, which is 

compared to classical classification Markovian methods (Delignon et al. 1997, Fjortoft et al., 

2003), is based on two recent models.  

First, the triplet Markov fields (TMF), which generalize the classical hidden Markov 

fields (HMFs) (Geman and Geman 1984; Guyon, 1995; Marroquin et al., 1987; Pérez, 1998; 

Winkler 2003; Won and Gray, 2004) are used (Benboudjema and Pieczynski, 2005; 

Benboudjema and Pieczynski, 2007). One of the main interests of this triplet model is that it is 

able to take into account different local interactions in the image. In the classical Markov field 

context, the prior distribution of the Hidden Field is defined by some functions specified on 

cliques; a field will be considered stationary when these functions do not depend on the 

position of the cliques in the image. Roughly speaking, in the stationary images the visual 

aspect of the spatial organization of different labels is almost independent of pixel position. 

The triplet model introduces a third field, controlling the local interaction in the image and 

thus allowing a kind of non-stationarity for the model. 

The second innovation is linked to the data distributions (likelihood term). In (Nicolas, 

2006), a new model for SAR images has been proposed. It is based on log-statistics and 

Mellin transform, and suggests the use of Fisher distributions to model high resolution SAR 

images. The interest of this distribution compared to classical SAR distributions such as 

Gamma (Lopes et al. 1990), K (Nezry et al. 1996, Oliver, 1984) Weibull (Kuruoglu and 

Zerubia, 2004) or Pearson system (Delignon et al., 1997) is its capability of modelling a wide 

range of surfaces (natural surfaces such as vegetation but also man-made structures, 

frequently observed in urban areas) (Gao 2010). Another choice could have been the 

Generalized Gamma distribution (Voisin et al. 2012, Marques et al. 2012) which is rather 

close to Fisher. Compared to the work presented in (Tison et al. 2007), here a fully 

unsupervised framework is developed and instead of HMF, TMF are investigated.  

This paper is based on previous works on triplet model (Benboudjema and Pieczynski 

2005) and statistical modelling of radar distributions (Tison et al. 2004). It is an extension of 

the work published in (Benboudjema et al. 2007) and focuses on two aspects of the proposed 

approach: a better justification of the interest of the Fisher distribution and the triplet model 

for SAR urban areas; a more detailed description of the algorithm with practical information 

for implementation.  
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This paper is organized as follows. In Section II we present the triplet Markov field 

(TMF) model. Section III is devoted to Fisher distribution and second kind statistics. In 

Section IV we briefly recall the parameter estimation procedure and give the full scheme of 

this approach with practical information for implementation. Examples of segmentation are 

provided in Section V. A comparison study shows the improvements brought by the original 

aspects (TMF and Fisher) of our approach. Finally, conclusion and perspectives are reported 

in Section VI.  

II. TRIPLET MARKOV FIELD  

 

Let S  be the set of pixels, SssXX ∈= )(  and 
SssYY ∈= )(  two random fields defined on S . 

Each sX  takes its values in a finite set of classes { }Kωω ,...,1=Ω , whereas each sY  takes its 

values in the set of positive real numbers +R . X  is the hidden “label” field, while Y  is the 

observed field. In the context of this paper, realizations of Y  are the SAR amplitudes. Thus 

the problem is to estimate the hidden realization of Y  from the observed realization of X . 

Besides these two processes defined in a classical Markov field (HMF), and in order to model 

some kind of “non stationary” Markov field, we have introduced a third process SssUU ∈= )( , 

which represents the field of  “stationarities”. Each sU  takes its values in a finite set 

{ }
M

λλ ...,,
1

=Λ  which is the set of the possible kinds of local interactions. For each iλ  value, 

a set of parameters modeling the local interactions is associated (see an example below). 

These values will be denoted by “stationarities” in the following meaning that they govern the 

local interactions. 

 We then assume that the couple ( )UX ,  is Markovian. The problem remains the same 

as in a classical case i.e. estimate the unobservable realizations xX =  from the observed one 

yY = . Let us put { }ba,=Λ  -in our experiments we limit ourselves to two “stationarities” but 

an extension to more than two stationarities does not raise any problem- and let us consider 

that the couple ),( UX  is a Markov field, then the distribution ( )uxp ,  is written: 

( )[ ]uxWuxP ,exp),( −= γ       (2.1) 

 

With ( )
( )

),,,(,
,

tsts

Cts

c uuxxWuxW ∑
∈

= if we consider a Markov random field with order 2 

interaction, cW denoting the potential of the clique (here, a pair of neighboring pixels). In this 
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paper, we will consider the following model with horizontal Hc and vertical Vc clique 

potentials: 

( ) ( )( ) ( ) ( )( ) ( )( )
tstsbHtsaHtsHtstscH xxbuuauuxxuuxxW ,1,,*,,*,21,,, 221 δδαδαδα −+−−=

                                                                                                                                                               (2.2) 

( ) ( )( ) ( ) ( )( ) ( )( )tstsbVtsaVtsVtstscV xxbuuauuxxuuxxW ,1,,*,,*,21,,, 221 δδαδαδα −+−−=  

With ( ) 1, =ts xxδ  for ts xx = , and 0 otherwise, ( ) 1,,* =cbaδ  for cba == , and 

( ) 0,,* =cbaδ  otherwise. Hc  is the set of couples of pixels which are horizontally neighbours 

and 
VC  is the set of couples of pixels vertically neighbours. If we consider a clique of two 

pixels, the model will lead to different potentials, depending on the values of sx and tx  (the 

labels of the pixels), but also depending on their related “stationarities” su and tu . It thus 

introduces another control on the clique potentials thanks to the U values. This model can be 

seen as a generalized Potts model. If we take a simple example where ts xx ≠ , we still have 

three possible potentials depending if auu ts == , or buu ts == , or ts uu ≠  ; the associated 

potentials are respectively 21

HaH αα − , 21

HbH αα − or .1Hα  It implies a larger variety of 

configurations introduced by the “stationarity” values. For the sake of simplicity, the models 

used in the following are only defined for two “stationarity” values and with parameters for 

horizontal and vertical cliques (we will see later how they are estimated).  

Therefore, this additional process U  allows the detection of different “stationarities” 

in the image. To be able to handle the posterior field, we need some assumptions. First, the 

random variables sY  are assumed to be independent conditionally on X and U , and that the 

distribution of each sY  conditionally on ( )uUxX == ,  is equal to its distribution 

conditionally on ss xX = (this is justified for uncorrelated SAR data). Let us note that a more 

complicated model could be used to introduce a dependency on both 
sx  and su . We have 

with these assumptions: 

∏
∈

=
Ss

ss xyPuxyP )(),(      (2.3) 

The distribution ( )yuxp ,,  is then given by: 

( ) ( )

( ) ( )( )







+−=

=

∑
∈Ss

ss xypLoguxW

uxyPuxPyuxP

,exp

,,),,(

γ
  (2.4) 
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which is still Markovian. Denoting by sV the neighborhood of pixel s, it is thus possible to 

compute the local conditional probabilities ( ) ( )( )
sttjiss VtuxyuxP ∈= ,,,,, λω  by computing 

the local energy ( ) ∑
∈

+−
csts

tstscss uuxxWxyp
),(

),,,()log(  for a given configuration of the 

neighboring pixels, and a known value of the observation sy  (as for usual Markov random 

field, except that the number of conditional probabilities increases due to the possibilities for 

the su  values). Since it is possible to compute the local conditional probabilities, a Gibbs 

Sampler can be used to draw ( )ss ux ,  samples and estimate the probabilities 

( ) ( )( )yuxP jiss λω ,, = .  

For a classification problem, different solutions for X  and U can be searched for: 

Maximum A Posteriori Solution (called MAP, with an optimization done by Simulated 

Annealing) or Maximum Posterior Mode (MPM, relying on the sampling of data following 

the posteriori distribution) which takes the most frequent values for the label field and the 

“stationarity” field in each pixel.  

One can calculate ( )yxP is ω= , as well as ( )yuP js λ= , by: 

( ) ( )∑
Λ∈

====
u

jsisis yuxPyxP λωω ,     (2.5) 

( ) ( )∑
Ω∈

====
x

jsisjs yuxPyuP λωλ ,     (2.6) 

And select the most probable values for each pixel. This estimator (MPM) is used due the 

parameter estimation method that we will describe in section IV (instead of the MAP 

estimator).  

In conclusion, this model allows us to extract both fields, namely the hidden field X  

and the field U  which models different stationarities of X . Indeed, when we are interested in 

the different “stationarities” of the image without taking care of classes, we will focus on the 

U  field, and when we look for labels we will focus on the X  field. 

The problem of the definition of the data attachment term is addressed in the next session for 

SAR images, and the method for the clique potential estimation is described in section IV, as 

well as the details of implementation of the proposed method.  

 

III. SECOND KIND STATISTICS AND FISHER DISTRIBUTION  
 

3.1 Mellin transformation and Fisher distribution  

The Fisher distribution is quite well suited for SAR images processing since it is a 

good model for many kinds of surfaces: urban objects, vegetation, textured areas, etc. Instead 
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of using many different distributions as in (Delignon et al., 1997) a single one (Fisher) is 

introduced. Indeed, recent studies (Tison et al. 2004; Tison et al., 2007, Gao 2010) have 

shown that Fisher distributions are well adapted for SAR images in urban areas (instead of 

Gamma pdf –exponential decay- having tail behavior at high gray level values). To provide 

good estimates of the parameters, one has to use second kind statistics defined by Mellin 

transform (MT ) (Nicolas, 2006). Let us recall what MT  is and how one can use it to estimate 

the parameters of Fisher distribution.  

Let us consider a function f  defined on +R , the MT  of f  noted as [ ]fMT  is written 

as : 

[ ]( ) ( )dvvfvsfMT
s∫

+∞
−=

0

1       (3.1) 

where s  is a complex number. As probability density functions (pdf) of amplitude images are 

defined over this interval, the use of MT  is possible. Let us notice that the latter has a 

relationship with the Fourier Transform (FT). Indeed, the characteristic function of the 

function f  is the Fourier Transform of its pdf, the thn  moment is the thn  derivate of the 

characteristic function and the cumulants are the thn  derivatives of the characteristic function 

logarithm, which allow the deduction of the second kind statistics (Gradshteyn and Rayzhik, 

2000). The latter are defined as follows: 

� Second-kind first characteristic function: 

( ) ( )[ ] ( )dyxypyxypMTs
s

x ∫
+∞

−==
0

1φ      (3.2) 

� Second-kind second characteristic function:  

( ) ( )( )ss xx φψ log=        (3.3) 

� Second-kind thr  order characteristic moment (or log-moment): 

( )
1

~

=

=
s

r

x

r

r
ds

sd
m

φ
       (3.4) 

� Second-kind thr  order characteristic cumulant (or log-cumulant): 

( )
1

~

=

=
s

r

x

r

r
ds

sd
k

ψ
       (3.5) 

Although it is beyond the scope of this paper to detail the use of the Mellin transform for SAR 

data, these second-kind statistics provide useful tools to handle the distributions encounter 

with SAR images (Nicolas 2006). 
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Among the distribution that are useful to model the different areas that can be 

encountered in a SAR image, the Fisher distribution is quite popular due to its “genericity”, 

being able to model either homogeneous areas (such as ground) or heterogeneous ones (such 

as urban areas).  

The Fisher distribution for amplitude is given by (Nicolas 2006): 

( ) ( )
( ) ( )

LM

y

M

L

y

M

L

M

L

ML

ML
MLF

ML

L

A >

























+












ΓΓ
+Γ

=
+

−

,

1

2
,,

2

12

µ

µ

µ
µ   (3.6) 

where ( ).Γ  is the Gamma function, µ  is the mean and ML,  are form parameters. The second 

kind characteristic function is then written as: 

( )
( ) ( )

,
2

1

2

1

2

1

2

1

1

MM

s
M

LL

s
L

s
ss

s

F

Γ








 −
+Γ

Γ








 −
+Γ

=
−−

−µφ     (3.7) 

These parameters and specially ( )ML, characterize the head and tail of the Fisher distribution. 

3.2 Parameter estimation from complete data  

There are many methods for parameter estimation, as moment method, maximum 

likelihood method, and log-moment method. As far as log-moments are concerned, there are 

links between log-cumulants rk
~
 and Fisher’s parameters ( )ML,,µ . These links are given by 

(Tison et al. 2007): 

( ) ( ) ( ) ( ) ( )( )( )

( ) ( )( )

( ) ( )( )MLk

MLk

MMLLk

,2,2
8

1~

,1,1
4

1~

loglog
2

1
log

~

3

2

1

Ψ−Ψ=

Ψ+Ψ=

−Ψ−−Ψ+= µ

    (3.8) 

where Ψ  is a Polygamma function. Besides, the log-cumulants rk
~
 can be empirically 

estimated by (they are equal to the log-moments for r<3): 

( )( )[ ]yk log
~
1 Ε=         (3.9) 

( )( ) 



 −Ε=

r

r kyk 1

~
log

~
, 1>r        (3.10) 

Although this is not the subject of this paper, it can be shown that the log-moment method is 

more accurate, in terms of the variance of estimators, than the moment method (Nicolas, 
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2006). Besides, the maximum likelihood method is not always numerically tractable, whereas 

the log-moment is computationally efficient. For these reasons, we have used the log-

moments method to estimate Fisher’s parameters (Tison et al. 2004).   

We will see in the next section how the triplet random fields and Fisher distribution with 

parameter estimation by log-cumulant can be used to define an unsupervised segmentation 

algorithm for SAR images. 

 

IV. THE UNSUPERVISED SEGMENTATION ALGORITHM  
 

4.1 Parameter estimation with ICE 

As previously mentioned, our goal is to estimate the hidden field X  from the 

observed one yY = . In other words, having a noisy SAR image y , we try to recover the 

segmented image x̂  so that it will be as close as possible to the ground truth x . Obviously, 

this kind of processing can not be possible without knowledge of the model parameter.  

We need the estimation of two kind of parameters. First, we need the estimation the 

parameters of the data attachment term (or log-likelihood ( ))log( ss xyp− ) which is the link 

between the observed amplitude value in the SAR image sy and the label value sx that we 

affect to the pixel s. As described in the previous section, we propose to use a Fisher 

distribution for this term and we thus need to estimate the ( )ML,,µ  for each class we 

consider. In this paper, the number of classes will be manually fixed by the user. Second, we 

need the estimation of the clique potentials ),,,( tstsc uuxxW  which (in our model) depends on 

the 6 parameters )α,α,α,α,α,(α bVbHaVaHVH

222211=α  as defined in equation (2.2). 

Let us denote by θ  the vector of parameters (in our case, the size of this vector is 

3K+6, if K is number of classes). Different general parameter estimation methods can be used 

(McLachlan and Krishnan, 1997; Pérez, 1998) for this purpose. In our work we have used the 

iterative conditional estimation (ICE) method (Pieczynski 1992). This one seems to be well 

adapted to Markov fields context, providing good results in different situations (Delignon et 

al. 1997, Mignotte et al. 2000; Reed et al. 2003, Fjortoft et al. 2003).  

The principle of ICE is as follows for two fields X and Y (the extension to the triplet 

is straightforward, X being replaced by ),( UX ): we consider ),(ˆˆ YXθθ =  an estimation of θ  

from the complete data ),( YX  (we will precise in the following this estimation step in our 

application). X  being unknown, we have to approximate ),(ˆˆ YXθθ =  by a function of Y . 
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The best approximation, as far as the mean squares error is concerned, is the conditional 

expectation. By denoting 
nθΕ  the conditional expectation based on the current parameter nθ , 

ICE is written as: 

i. Initialize 0θθ = ; 

ii. ]),(ˆ[1 yYYX
nn =Ε=+ θθ θ  

 

When the conditional expectation cannot be computed in a closed form, we simulate (e.g. by a 

Gibbs sampler) m  realizations mxx ...,,1  of X  according to its distribution conditionally on 

yY =  (called the posterior distribution) based on nθ , and estimate the updated parameter 

with 
m

yxyx m

n

),(ˆ...),(ˆ 1

1

θθ
θ

++
=+ .  

To apply the ICE method, a definition of an estimator from complete data ),(ˆ YXθ  to 

is necessary –condition (ii)-.  

First, we have to compute the parameters of the data attachment term, the ( )ML,,µ  

defining the Fisher distribution of a class. As mentioned in the previous section, the log-

cumulant approach can be applied. So knowing a current classification kx , and the 

y observed SAR image, for each label value Ω∈iω we can select the pixels in y  for which 

i

k

sx ω= and: 

• Estimate the three first log-cumulants using (3.9)-(3.10); 

• Compute iL , iM  and iµ  using (3.8). 

Secondly, for the regularization parameters defining the clique potentials, we propose 

to use the following method which is a least square estimation to estimate the α  parameters 

)α,α,α,α,α,(α bVbHaVaHVH

222211
 defining the Markov distribution of ),( UX  (Benboudjema and 

Pieczynski, 2005) and which can be summarized in the four following steps: 

• Find the relationship between the joint probabilities ( )
ss VVss uxuxp ,,,  and the 

)α,α,α,α,α,(α bVbHaVaHVH

222211=α  parameter (
ss VV ux , represent the configuration 

of X  and U in the neighborhood of s; 

• Estimate all such probabilities using histogram technique; 

• Construct the over-determined system of equations; 

• Solve it using the least squares method.  

This procedure is fully described in (Benboudjema and Pieczynski, 2005).  
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4.1 Practical implementation of the algorithm 

This section gives practical information for the application of the proposed 

classification method.  

Initialization: This method is unsupervised in the sense that it does not require a supervised 

learning of the parameters (nor for the data attachment term, neither for the regularization 

one). Nevertheless, the number of desired classes has to be given as well as some initial 

values of the parameters to start their estimation.  

Concerning the data attachment term, it has been initialized with a k-means algorithm 

(MacQueen 1967). It is a two steps procedure that iteratively alternates classification and 

updating of classes. First, some class centers are chosen among the amplitude values. The 

choice is done by uniform sampling in the interval defined by the minimum value of the radar 

image and the mean plus three times the standard deviation. Both mean and standard 

deviation are computed on the whole image. This interval is used instead of the minim – 

maximum interval to avoid the influence of the bright scatterers in the SAR image. Then a 

classification step of the amplitude to the closest center is applied. The centers are eventually 

adjusted by an empirical mean and the process is iterated. These steps (classification and 

center updating) could be improved for SAR data but it is used only as an initialization 

algorithm. Based on the final associated classification, the log-cumulant method is used to 

initialize of the parameters of the Fisher distribution of each class.  

Concerning the regularization term, the vector )α,α,α,α,α,(α bVbHaVaHVH

222211=α  has 

been initialized with a constant vector ),,,,,( 111111=α .  

Global algorithm: The figure Fig.1 summarizes the different steps of the algorithm. 

Concerning ICE parameter  estimation, only one realisation of X  and U  according to their 

distribution conditionally on yY =  and based on nθ  is sampled (meaning that 1=m ), and 20 

ICE iterations are used to obtain the final parameter estimation. Each Gibbs sampler uses 20 

updates of the image. For the final classification using the MPM estimator, 100 samples (i.e 

images of x and u) are drawn to compute the most frequent value in each pixel. 

 

 

V. EXPERIMENTS AND DISCUSSION 

 

In this section we present two sets of experiments to illustrate the interest of the proposed 

approach: first using simulated images, and second with real high resolution SAR data. 
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5.1 Simulated images 

This first series of experiments concerns simulated TMF and can be seen as a validation 

of the proposed approach in an “ideal case”. For that, we use the Gibbs sampler algorithm 

with the energy given by (2.2). Each 
sX  takes its values in the set of two classes 

{ }21,ωω=Ω , and each sU  takes its values in the set of two stationarities { }ba,=Λ  , i.e. there 

are two different homogeneities in the class image xX = . The observation image is then 

sampled using the Fisher distribution whose parameters are presented in Table 1 for the two 

classes. Then, we use the proposed algorithm to classify the image as described in Section IV. 

We compare the results with the same algorithm but supposing Gaussian or Gamma 

distribution. 

Figure (2a) represents a simulated image using the TMF model. Figure (2b) is the 

associated observed image with Fisher’s distribution whose values are given in Table 1. The 

unsupervised MPM result based on Fisher distribution is shown in Figure (2d). This one has 

been compared with those obtained supposing that the margins of the classes are Gamma and 

Gaussian represented in Figures (2e) and (2f), respectively. It can be deduced from this 

experiment and comparisons that it is important to take into account the true distribution of 

the SAR data, and that the results are strongly improved by the Fisher distribution. These 

experiments also illustrate that the regularization parameters are better evaluated with a good 

data attachment term.  

 

5.1 Real SAR images 

This subsection is devoted to tests on a real SAR image. A large dataset of images 

according to its types (high or medium resolution) has been used but only one example is 

given. The image (2048x2048) used here represents the Bayard district near Dunkerque, 

France and has been acquired by an aerial sensor of ONERA with a resolution under one 

meter. We have considered six classes and two values for the U field. Note that this number 

has been set arbitrarily for the sake of simplicity, but one could use more sophisticated 

approaches to estimate this number in an automatic way. Results of unsupervised 

segmentation are shown in Figure 3. 

Comparison of TMF and HMF 

The results are shown in Figure 3 and Figure 5. In all cases, the results are improved by the 

TMF compared to the HMF model. The different classes are more regularized and less 
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confusion between the different classes can be observed. The shapes of the different estimated 

distributions are represented in Figure 6. They represent the mixture of the distributions 

(Fisher, Gamma and Gaussian) that have been found for the different classes and should 

approximate the image histogram.  

Comparison of Fisher and Gamma distributions 

For information we also gave the result with Gaussian distributions but this model is clearly 

not adapted for SAR images. In fact, the classification obtained using the classical HMF 

model provided weak results since some regions are fused and others are mixed (see zoom in 

figure 5). The comparison between Gamma and Fisher distributions leads to the three 

following remarks: 
 

- results are more regularized with Fisher distributions (see Figure 4) 

- Fisher classes are more adapted to urban elements; indeed, the buildings are better 

segmented with Fisher than with Gamma distribution (predominantly white class, 

instead of mixing of red and white); besides the classes of the third field U  (see 

Figure 4) have a good coherency corresponding to homogeneous areas (in black) and 

textured ones (white) in the case of Fisher distribution. 

- Gamma and Fisher distributions automatically found by the algorithms do not 

coincide; we can see that the L  parameters found with Fisher distributions are closer 

to reality (the theoretical value should be 1); besides, as expected, the heavy tailed 

Fisher distributions have a lower µ  parameter than the Gamma distributions (see 

Table 2).  

Interest of the proposed segmentation method for urban areas 

In this section, we will consider only the TMF + Fisher method. The following remarks can 

be made on the results. First, the global results are good; and thus the algorithm proposed 

could be useful for further applications (registering, 3D reconstruction). The proposed 

approach has automatically found the salient features of urban landscapes: roads, shadows, 

buildings, ground and vegetation.  Among the limits of the proposed approach, we can see 

that road and shadows have not been clearly distinguished and that there is a class mixing 

buildings and vegetation (red class). The point is that these features have very close 

radiometry. Higher level processing should be introduced to deal with this problem (for 

instance knowledge on building shapes).  
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VI. CONCLUSION 
 

In this paper we have presented an original method for unsupervised image 

segmentation, which is based on the triplet Markov field (TMF) model recently introduced 

and the Fisher distribution. These models are used in an unsupervised classification algorithm 

using a parameter estimation method based on Iterative Conditional Estimation (ICE). 

Experiments indicate that the proposed approach improves the unsupervised image 

segmentation quality. Indeed, the use of second kind statistics is well adapted to SAR images 

because they are less sensitive to high values and the use of the TMF model allows the 

extraction of additional information in the image, namely the field of different local 

interactions U . 

 As far as perspectives are concerned, let us notice that different recent hidden 

Markov field based methods, such as (Picco and Palacio, 2011; Salah et al., 2011), could 

probably be extended to the more general triplet Markov field based methods. Let us also 

mention that Markov trees can be used instead of Markov fields to model and process non-

stationary images (Liu et al., 2011). Finally, we could possibly extend this study to the triplet 

Markov chains (Pieczynski, 2010). Investigation of more than 2 “stationarities” to process 

more extended areas could also be the subject of further work. 
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Figure 1. Overview of the unsupervised segmentation algorithm and its different steps. 
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Figure 2. Simulated image using TMF model and MPM segmentation results based on 

(d) Fisher distribution, (e) Gamma distribution and (f) Gaussian distribution. The indicated 

percentage 
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Figure 3. Unsupervised HMF and TMF segmentations of Bayard image. 

Figure 4. Estimated U corresponding to figure 3 using TMF model. 

Figure 5. Zoom of the same region corresponding to figure 3. 
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Parameters Real values Fisher Gamma Gaussian 
11 , VH αα  1., 1. 1.06, 0.99 0.89, 0.89 0.83, 0.94 

22 , aVaH αα  1., -0.3  0.79, -0.2 0.75, -0.11 0.35, -0.12 

22 , bVbH αα   0.3, 1. 0.3, 0.72 0.32, 0.44 0.19, 0.24 

21,µµ  5., 10. 5.68, 9.31 6.20, 11.1 4.60, 10.77 

21,MM  3., 10. 2.33, 5.75 - - 

21,LL  1., 1. 1.02, 1.01 0.93, 0.94 - 

21,σσ  - - - 2.23, 5.07 

Error ratio  20.33% 24.52% 30.52% 

Table 1. Estimated parameters and unsupervised segmentation results using different 

distributions. 

 

 

Parameters Gamma Fisher 

L  0.97, 1.79, 1.79, 1.13, 1.49, 0.84 0.98, 1.26, 1.03, 1.12, 1.21, 1.06 

M  - 6.7, 26.65, 31.65, 39.37, 28.47, 5.72 
µ  0.06, 0.09, 0.11, 0.13, 0.22, 0.65 0.05, 0.07, 0.08, 0.09, 0.17, 0.25 

Figure 6. Mixture of the estimated Fisher, Gamma and Gaussian pdfs in the (left) HMF model, (right) 

TMF model and (top) Image histogram. The amplitude axis has been re-sampled between 0 and 1, 1 

being the mean plus three times the standard deviation of the image. 
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Table 2. Estimated parameters corresponding to Gamma and Fisher distributions. 
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