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SAR Image Regularization

with Fast Approximate Discrete Minimization
Loı̈c Denis, Florence Tupin, Jérôme Darbon and Marc Sigelle

Abstract

Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle

noise. The presence of this noise makes the automatic interpretation of images a challenging task and

noise reduction is often a prerequisite for successful use of classical image processing algorithms.

Numerous approaches have been proposed to filter speckle noise. Markov Random Field (MRF)

modelization provides a convenient way to express both data fidelity constraints and desirable properties

of the filtered image. In this context, total variation minimization has been extensively used to constrain

the oscillations in the regularized image while preserving its edges.

Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization

problem involving non-convex log-likelihood terms. Such a minimization can be performed efficiently by

computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although

theoretically possible, is not achievable on large images required by remote sensing applications. The

computational burden of the state-of-the-art algorithm for approximate minimization (namely the α-

expansion) is too heavy specially when considering joint regularization of several images.

We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut based

combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the

amplitude and interferometric phase in urban area SAR images.
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I. INTRODUCTION

There are nowadays many SAR satellite sensors (EnviSat, Radarsat, ALOS ...) providing a huge

amount of SAR images. The popularity of such sensors is linked to their all-weather and all-time

capabilities, combined with their polarimetric and interferometric potential. The interferometric data,

which are phase difference images, give either elevation or movement information. The launch of new

sensors with improved resolution in 2007 (TerraSAR-X [47] and CosmoSkyMed [39]) opens new fields

of applications. Particularly, the computation of Digital Elevation Models (DEM) becomes feasible with

metric interferometric images, specially when tandem configurations will be available. These new data

will contribute to urban monitoring which is an important issue for governmental agencies (risk analysis,

disaster management, environmental protection, urban development planning, . . . ). In this paper we

are interested in filtering of SAR images for the the purpose of building delineation to perform 3D

reconstruction.

However, SAR images are difficult to interpret not only with automatic image processing tools but also

by human interpreters. This is mainly due to two specificities of the SAR system: first, SAR is coherent

imagery and therefore subject to the speckle phenomenon; secondly, due to the microwave propagation,

images are distance sampled leading to strong geometrical distortions.

Speckle is due to the interferences of waves reflected by many elementary reflectors inside a resolution

cell. Although speckle has been extensively studied and is well modeled in some particular cases [23],

[28], [30], speckle reduction remains one of the major issue in SAR image processing. Many filters have

been proposed in the last twenty years and they can be classified in two categories: filters without explicit

scene modeling based on Minimum Mean Square Error, and those with the explicit assumption of a scene

distribution based on Maximum A Posteriori (MAP) or Maximum Likelihood criterion.

The first family contains the famous Lee [35], Kuan [34], and Frost [19] filters. More recent papers

work in the wavelet domain [1]. In the second family, different scene distributions have lead to different

filtering: Gaussian [33], Gamma [40], Fisher [42]. More elaborated models assuming that the scene is

a Gaussian Markov random field [53] or establishing the probability density functions of the wavelet

coefficients to do MAP filtering [18] have been developed.

Independently of the chosen filtering formula, parameter estimation is a crucial point. Indeed, the

number of samples should be as big as possible, whereas the local stationarity should be verified inside

the processing window. To solve this dilemma, many approaches have been proposed: gradient detection

inside the analysis window [36], growing window strategy [43], [52], [54], feature (line, point, edge)
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detection [40]. Two excellent reviews with comparisons and improvements of many SAR filters can be

found in [38] and [51].

One of the main interest of the Markovian framework is its ability to take into account both local

non stationarity, specially the presence of edges, and a data acquisition model. Generally the filtering

corresponding to computing the MAP estimator which consists of the minimization of an energy that

combines two type of information: a data driven term and a regularization term [22]. The first one is

given by the physical mechanisms of radar processing. The second one reflects our knowledge about the

reality of the imaged scene (also called “prior” term in the following). In the case of urban areas, many

sharp discontinuities exist either in the amplitude image or in the interferometric one. Many models/priors

have been investigated to cope with image discontinuities. There is a family of explicit edge processes

[11], [22] and a family of well chosen functions which naturally preserve discontinuities [6], [21]. More

recently, since the seminal work of [48], a great interest has been given to the minimization of Total

Variation (TV) [12], [15], [41], [44], [45] due to its edge preserving behavior while still leading to

a convex optimization problem. Various multiplicative noise models using Total Variation have been

proposed [2], [17], [49]

Actually, the choice of the regularization function is closely linked to the optimization problem.

Indeed, one of the main limitation to Markov Random Fields (MRF) in image processing was the

optimization step. Although simulated annealing [22] has excellent theoretical performances, in practice,

the computational burden might be very heavy. Deterministic approaches such as Iterated Conditional

Modes [4] often converges toward a local minimum which can be far away from the exact solution.

Thanks to graph-cut methods, i.e., computation of a s-t minimum cut or by duality a maximum flow in

a graph, exact discrete optimization schemes have been developed in some specific cases.

Such a combinatorial method has first been proposed in [46] for minimizing binary a class of energies.

Then, Greig et al. [24] have used this approach to the study the behavior of the Ising model for binary

image restoration. More recently, it has been shown in [32] that this approach works for any binary field

whose prior is composed of pair-wise or triple-wise binary submodular functions. The case of non-binary

fields has been addressed by few works. In [8] an excellent approximation result is presented where the

prior corresponds to a semi-metric. Ishikawa has proposed a framework for exact optimization of convex

regularization functions in the gray-level case [27]. With a different graph but the same size as the one

of Ishikawa, exact optimization schemes for convex or levelable priors are also defined in [16]. In [14],

it is shown that the approach of [8] converges toward a global minimizer for a subclass of non convex

energies.
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For convex energies, iterative approaches that allow to build much smaller graph are proposed in [5],

[13], [31]. The particular case of the total variation minimization has been addressed in [10], [16].

Note that all of the above approaches are due to the efficient maximum flow/s-t minimum cut algorithm

described in [7].

The contributions of the paper are the following: First, we propose a new fast algorithm for SAR scene

reflectivity restoration and also for the joint regularization of amplitude and interferometric phase images.

We have chosen to consider TV prior which is well adapted for urban areas. As will be seen in the next

part, the data driven term is not convex. In this case, either [16] or [27] could provide exact optimization

algorithms but at the price of a huge memory space due to the graph size. The α-expansion algorithm

of [8] could also provide an approximate solution, but with a quite heavy computational burden. A new

algorithm is presented providing a fast and approximate solution and able to deal with joint regularization

of amplitude and phase image. The graph is of similar size to the one used to perform α-expansions, but

based on a different principle. Empirical studies have shown that the minimum is very close to the global

minimum computed by [16] with a great improvement of the needed memory space and of computation

time.

The remainder of the article is organized as follows. In section II, the MRF model is presented, and

particularly the data driven term in the case of SAR and InSAR images is detailed. Section III is dedicated

to the presentation of our optimization algorithm after recalling other graph-cut based methods. In section

IV, a performance comparison of several algorithms is presented for simulated images. Section V presents

the application of our method to real SAR images and its interest for 3D reconstruction in urban areas.

Section VI concludes about the proposed method.

II. MRF MODEL

A. MRF framework

It is assumed that an image u is defined on a finite discrete lattice S and takes values in a discrete

integer set L = {0, . . . , L}. We denote by us the value of the image u at the site s ∈ S. We note by

s ∼ t the neighboring relationship between sites s and t, by (s, t) the related clique of order two and by

Ns the local neighborhood of site s.

Given an observed image u, a Bayesian analysis using the MAP criterion consists of finding a restored

image û that maximizes

p(û|u) ∝ p(u|û)p(û)
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It can be shown that under the assumption of Markovianity of û and with some independence assumption

on u conditionally to û (P (u|û) = ΠsP (us|ûs)), the MAP problem is an energy minimization problem:

û(MAP ) = arg min
û

E(û|u) ,

with

E(û|u) =
∑

s

U(us|ûs) + β
∑
(s,t)

ψ(ûs, ût) ,

U(us|ûs) = − log p(us|ûs) and ψ a function modeling the prior chosen for the solution.

B. SAR and InSAR image formation

1) Distribution of the amplitude: The synthesized radar image z is complex-valued. Its amplitude |z|

is very noisy due the interferences that occur inside a resolution cell. A classical model for speckle was

developed by Goodman [23] and is valid for “rough” surfaces (the roughness being considered according

to the wavelength of the sensor). Under this model, the amplitude as of a pixel s follows a Nakagami

distribution depending on the square root of the reflectivity âs [23]:

p(as|âs) =
2MM

Γ(M)â2M
s

a(2M−1)
s exp

(
−Ma2

s

â2
s

)
(1)

with M the number of looks of the image (i.e. number of independent values averaged). For single-look

images (M = 1), the density function simplifies to Rayleigh law.

This likelihood leads to the following energetic term:

U(as|âs) = M ·
[
a2

s

â2
s

+ 2 log âs

]
,

represented in figure 1 (continuous line).

This energy is not convex with respect to âs (as is the fixed observed amplitude value), contrary to the

quadratic energy that arises from a Gaussian likelihood assumption. A convex approximation is displayed

with a dashed line in figure 1. For display purposes, the corresponding probability density function (pdf)

has not been normalized so that it superimposes to the true pdf. It is clear from the figure that such an

approximation fails to model the heavy tail (i.e. slowly decreasing pdf) which is typical of speckle noise.

2) Distribution of the interferometric phase: In the case of SAR interferometric data, the interfero-

metric product is obtained by complex averaging of the hermitian product of the two SAR images z1

and z2 accurately registered:

γ =
∑N

i=1 z1i
z∗2i√∑N

i=1 |z1i
|2
∑N

i=1 |z2i
|2
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Fig. 1. Likelihood model for SAR amplitude. Continuous line: probability distribution function (a) and corresponding energy

(b) followed by a single-look amplitude image (as = 10). Dashed-line: convex approximation. The convex approximation can

not model the “heavy tail” that characterizes speckle noise.

with N the number of pixels of the averaging window. The interferometric phase is given by the argument

of γ. The coherence is given by ρs = |γ| and measures the correlation between the two SAR images. It

is an indicator of the interferometric phase reliability.

The pdf of the phase can be written as an expression implying hypergeometric functions [37]. A good

approximation is given by a Gaussian model:

p(φs|φ̂s) =
1√

2πσ̂φs

exp

(
−(φs − φ̂s)2

σ̂2
φs

)
. (2)

The standard deviation σ̂2
φs

at site s is approximated by the Cramer-Rao bound:

σ̂2
φs

=
1− ρ2

s

2Lρ2
s

. (3)

For low coherence areas (shadows or smooth surfaces, denoted Shadows in the following), this Gaussian

approximation is less relevant and a uniform distribution model is better:

p(φs|φ̂s) =
1
2π
. (4)

This leads to the following energy: U(φs|φ̂s) = 0 if s ∈ Shadows,

U(φs|φ̂s) = (φs−φ̂s)2

σ̂2
φs

otherwise.
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The energy U(φ|φ̂) is convex. The standard deviation dividing the quadratic term is a function of the

coherence of the pixel. Although this coherence could also be considered as a random field to regularize,

it will be considered as a fixed field in the following.

C. Prior model

As said in the introduction, the TV regularization prior is well adapted when dealing with strong

discontinuities. Besides this prior has good properties for minimization since it is a convex function. The

energetic term corresponding to the discretization of TV can be written [15] as follows:

E(û) = β
∑
(s,t)

wst|ûs − ût| ,

with wst = 1 for the 4-nearest neighbors and wst = 1/
√

2 for the 4 diagonal ones. We will not explicitly

write the weights wst in the following equations.

For the separate regularization of amplitude or phase images we have the following energies to

minimize:

E(â|a) =
∑

s

M [
a2

s

â2
s

+ 2 log âs] + βa

∑
(s,t)

|âs − ât| (5)

E(φ̂|φ) =
∑

s

(φs − φ̂s)2

σ̂2
φ

+ βφ

∑
(s,t)

|φ̂s − φ̂t| (6)

We consider in this paper the case of aerial high resolution images of urban areas. The elevation range

is contained within a fringe so we do not have to handle the problem of phase unwrapping. Then, contrary

to other SAR configurations, we do not have to take the wrapping into account in the regularization term

which simplifies greatly the regularization problem. Joint phase regularization and unwrapping has been

recently studied in [5] using a graph-cut approach.

The phase and amplitude information are hopefully linked since they reflect the same scene. Amplitude

discontinuities are thus usually located at the same place as phase discontinuities and conversely. We

propose in this paper to perform the joint regularization of phase and amplitude. To combine the

discontinuities a disjunctive max operator is chosen.

Note that the MAP estimates are not modified if the energies of equations 5 and 6 are respectively

divided by non-null terms βa and βφ/γ. Since the total variation of the amplitude and the phase are of

the same order, this leads to a normalization of the likelihood energies. The joint prior model is defined

by:

E(â, φ̂) =
∑
(s,t)

max(|âs − ât|, γ|φ̂s − φ̂t|), (7)
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with γ a parameter that can be set to 1, and otherwise accounts for the relative importance given to the

discontinuities of the phase (γ > 1) or of the amplitude (γ < 1).

The global joint energy term is then:

E(â, φ̂|a, φ) =
1
βa

∑
s

M [
a2

s

â2
s

+ 2 log âs]

+
γ

βφ

∑
s

(φs − φ̂s)2

σ̂2
φ

+
∑
(s,t)

max(|âs − ât|, γ|φ̂s − φ̂t|). (8)

Shadow areas: The regularized fields â and φ̂ at sites s located inside the detected shadow areas

Shadows are governed by the regularisation term. With the prior term defined in equation 8, the phase

φ̂s for s ∈ Shadows that minimizes the energy corresponds to an interpolation of the phase value at the

surrounding sites. Shadow areas however are most of the time at ground level and not at an intermediate

height between the top of the structure that creates the shadow and the ground at the shadow end.

A modified regularization term that better describes this prior knowledge is therefore used for cliques

involving one or both site(s) inside the shadow regions:

E(â, φ̂) =
∑
(s,t)

E(â, φ̂)(s,t),

with E(â, φ̂)(s,t) defined as:

(i) if s /∈ Shadows and t /∈ Shadows,

E(â, φ̂)(s,t) = max(|âs − ât|, γ|φ̂s − φ̂t|),

(ii) if s ∈ Shadows and t /∈ Shadows and φ̂s ≤ φ̂t

E(â, φ̂)(s,t) = |âs − ât|+ γ|φ̂s − φ̂t|,

(iii) if s ∈ Shadows and t /∈ Shadows and φ̂s > φ̂t

E(â, φ̂)(s,t) = |âs − ât|+ 2γ|φ̂s − φ̂t|,

(iv) if s ∈ Shadows and t ∈ Shadows

E(â, φ̂)(s,t) = |âs − ât|+ γ
(
φ̂s − φ̂t

)2
.

The cases where s /∈ Shadows and t ∈ Shadows are treated in a symmetrical manner. Outside shadow

areas (case i), the regularization term is the same as previously. To limit the effect of a given shadow

area on the regularization of the amplitude, we independently regularize phase and amplitude in and

at the limit of the shadows (cases ii to iv). To force the regularized phase inside a shadow to follow

ground level, we penalize more heavily over-estimation (case iii) than under-estimation (case ii). Finally,
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a quadratic constraint (case iv) enforces a flat/smooth ground inside a shadow area. Note that in each

case (i to iv) the prior term E(â, φ̂)(s,t) is convex and so is the prior energy E(â, φ̂). The convexity of

the prior energy is essential to apply the minimization algorithm described in section III.

D. Energy minimization problem

As said in the introduction, graph-cut based approaches are very efficient methods for MRF optimiza-

tion. Nevertheless, only certain class of energies can be exactly minimized. We briefly describe here the

algorithms which can be used to minimize energies of equations 5, 6, and 8.

1) Exact minimization: First, concerning amplitude data, two graph-cut based algorithms have been

proposed to minimize eq. 5.

The first one has been developed by Ishikawa [27]. It is able to handle any kind of data driven term

and convex regularization. The graph is constituted by N × L nodes (a node for each pixel and grey

level) plus two terminal nodes. In the case of TV regularization, there are 3N ×L pairs of directed edges

connecting nodes between successive levels for each pixel, and between neighboring pixels for a given

level. For remote sensing application, the graph size is prohibitive since the full graph must be stored in

memory.

The second method has been proposed in [16]. It is based on the notion of levelable energies, which

means that the energy can be written as a sum on the level sets of û. Since the convexity of the posterior

energy is not guaranteed in our model (due to the non-convex log-likelihood of the amplitude), a fast

algorithm based on a scaling search can not be applied [15]. In this case, a much wider graph linking

the different level sets must be built whose size is similar to the one of Ishikawa and still prohibitive for

remote sensing applications.

The problem is easier for phase images (equation 6) since the data driven term is convex. In this case,

a fast algorithm is proposed in [15]. It consists in solving a set of binary problems associated to the level

sets. A divide and conquer strategy permits to build a very fast algorithm.

Concerning the joint optimization of phase or amplitude, none of the previously mentioned algorithms

can be applied.

2) Approximate minimization: Since TV is a metric, α-expansion algorithm proposed in [8] can be

applied. Starting from a current solution, this algorithm proposes to each pixel either to keep its current

gray-level, or to take value α as new gray-level. The energy associated to this movement is minimized

using a graph-cut. The succession of α-expansions other all possible values in L until convergence leads

to a solution which is shown to be close to the global minimum. This approach has been shown in [14]
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to converge to a global minimizer when data fidelity is convex. If the set of all possible values can be

large in the case of single image regularization, its size becomes prohibitive when joint regularization is

considered. We suggest in the next section a faster algorithm which is more suitable when large images

or joint regularization are considered.

III. PROPOSED ALGORITHM

Minimizing a non-convex energy is a difficult task as the algorithm may fall in a local minimum.

Algorithms such as the Iterated Conditional Modes require a “good” initialization and then performs

local changes to reduce the energy. Graph-cut approach provides a way to explore a combinatorial set of

changes involving simultaneously all pixels. Following [8], we denote such changes large moves. Instead

of allowing a pixel to either keep its previous value or change it to a given one (α-expansion), we suggest

that a pixel could either remain unchanged or its value be increased (or decreased) by a fixed step. Such

an approach has first been described independently in [5], [13], [31] and applied recently with unitary

steps in [5]. We however use these large moves in a case of non-convex data term. The trial steps are

chosen to perform a scaling sampling of the set of possible pixel values. We express the algorithm in

the general case of joint regularization.

We describe in the following subsections the set of large moves considered, the associated graph

construction and give the average complexity of the resulting algorithm.

A. Local minimization

First, let us introduce the set of images that lie within a single move in our algorithm. For the sake

of generality, we denote by û the vectorial field arising by associating to each component one of the

images to jointly regularize. Then,

Sd(û(n)) = {û /∀s ∈ S,∃ks ∈ {0, 1}, ûs = û(n)
s + ksd}

is the set of images whose pixel value ûs is either unchanged or increased by step d. We define the

“best” move û(n) 7→ û(n+1) has the one that minimizes the restriction of the energy to the set Sd(û(n)):

û(n+1) = arg min
û(n+1)∈Sd(û(n))

E(û(n+1)|u).

The restriction of the energy to Sd(û(n)) corresponds to an energy involving only the binary variables

(ks)s∈S . According to [32], an energy of binary variables arising from a first-order Markov model can be
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minimized by computing a minimum cut on a related graph provided it satisfies the following submodular

property:

ψ(0, 1) + ψ(1, 0) ≥ ψ(0, 0) + ψ(1, 1).

To compute the “best” move using a s-t minimum-cut algorithm, the following must therefore hold:

ψ(ûs, ût + d) + ψ(ûs + d, ût) ≥ ψ(ûs, ût) + ψ(ûs + d, ût + d). (9)

Note that in most cases, the prior model ψ depends only on the difference ûs − ût. This is the case

in the model described in section II-C. For such prior models, condition 9 becomes:

ψ(ûs − ût − d) + ψ(ûs − ût + d) ≥ 2ψ(ûs − ût)

which is the definition of the convexity of ψ.

In conclusion, the local problem of finding the vectorial field û(n+1) located within a single move

(i.e. û(n+1) ∈ Sd(û(n))) that minimizes the posterior energy E(û(n+1)|u) can be exactly solved by

computing a minimum cut on a graph (described in next paragraph) provided that the regularization

potential is convex and depends only on the difference ûs − ût.

The model we described in section II consists of the sum of a non-convex likelihood term and a

convex prior term. The above property therefore holds for this model and we give in the next paragraphs

an algorithm for approximate global minimization based on exact local minimizations performed using

graph-cuts.

B. Graph construction

We build a graph G(V, E), following the method of [32], to minimize the restriction of the energy to

allowed moves of step d:

arg min
(ks)s∈S

∑
s

U(us|û(n)
s + ksd) + β

∑
(s,t)

ψ(û(n)
s + ksd, û

(n)
t + ktd) (10)

The graph G(V, E) is directed, with nonnegative edge weights and two terminal vertices: the source

S and the sink P . The graph structure and the edge weights are chosen such that any cut1 has a cost

(i.e. sum of the cut edges capacities) corresponding to the energy to minimize. We create a vertice for

each site s, all connected respectively to the source and the sink through two edges with capacity cs,1

(resp. cs,0). Finally, each clique (s, t) gives rise to an edge with capacity cs,t (fig. 2).

1a cut is a partition of the vertices into two disjoint sets S and P such that S ∈ S and P ∈ P
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Fig. 2. Graph construction for local minimization.

The capacities are set according to the additive method described in [32]. The first term in equation (10)

is represented by the weights: cs,1 = max(0, U(us|û(n)
s + d))− U(us|û(n)

s ))

cs,0 = max(0, U(us|û(n)
s )− U(us|û(n)

s + d))).

To this weights are added the weights representing each clique (second term of equation 10):

c′s,1 = β ·max
(
0, ψ(û(n)

s + d, û(n)
t )− ψ(û(n)

s , û(n)
t )
)

c′s,0 = β ·max
(
0, ψ(û(n)

s , û(n)
t )− ψ(û(n)

s + d, û(n)
t )
)

c′t,1 = β ·max(0, ψ(û(n)
s + d, û(n)

t + d)

−ψ(û(n)
s + d, û(n)

t ))

c′t,0 = β ·max(0, ψ(û(n)
s + d, û(n)

t )

−ψ(û(n)
s + d, û(n)

t + d))

cs,t = β · (ψ(û(n)
s , û(n)

t + d) + ψ(û(n)
s + d, û(n)

t )

−ψ(û(n)
s , û(n)

t )− ψ(û(n)
s + d, û(n)

t + d))

C. Approximate global minimization

When non-convex data terms such as Nakagami law described in section II-B.1 are considered, the

global minimization problem can not be exactly solved without considering each possible configuration

(i.e. building a huge graph). On the other hand, when all terms are convex, it has been proven in [13]

that a succession of local minimizations leads to the global minimum. An exploration based on different

scalings of the step is then suggested to speed up convergence.

We follow here an heuristic method that combines the exact determination of the best moves, with no

guarantee on how close to the global minimum we get. Section IV will illustrate on some simulated and

real data that the obtained results are satisfying in practice with a speed adequate for application use.
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In one dimension, a scaling search is performed by looking for the best move with steps d+
i = L/2i

and d−i = L/2i for i from 1 to the desired precision (i.e. quantization level). In N dimensions, there are

3N − 1 vectorial steps di to consider for a given step size di:

di ∈ S (di)
def= {0,−di,+di}N/{0, . . . , 0}.

The joint-regularization algorithm is summarized here:

1: for all s ∈ S do

2: û(0)
s ← {L/2, . . . , L/2}

3: end for

4: n← 0

5: for i = 1 to precision do

6: di ← L/2i

7: for all di ∈ S (di) do

8: û(n+1) ← arg minû(n+1)∈Sd(û(n))E(û(n+1)|u)

9: n← n+ 1

10: end for

11: end for

Line 8 represents the exact binary energy minimization obtained by computing a minimum cut on a graph

build according to section III-B. Note that if we perform unitary steps di ∈ S (1) until convergence at

the termination of our algorithm, exact minimization is then guaranteed for convex energies [13].

D. Complexity

The total number of cuts required by the algorithm depends on the precision chosen and on the number

of jointly regularized images N :

number of cuts = precision× (3N − 1).

Joint regularization of the phase and the amplitude with 8 bit precision therefore requires 64 cuts, while

the regularization of amplitude only or phase only is obtained after 16 cuts, to compare with respectively

65536 and 256 cuts with the α-expansion algorithm.

The algorithm we used to compute the cuts is Kolmogorov’s freely available implementation of the

augmenting path method described in [7]. For a n nodes and e edges graph, this algorithm has a high

worst case complexity: O(n2m|C|), with |C| the cost of the cut. However, this algorithm performs well in

January 3, 2008 DRAFT



14

practice for cuts arising from computer vision problems [7]. The complexity to expect on real data seems

to be bounded by that of push-relabel algorithm (O(n2√m)), which is the bound adopted in [5]. We will

give the running times necessary for image regularization in our experiments conducted in section IV.

E. Hyper-parameter tuning

Hyper-parameter tuning is an essential issue as the regularized solution can be far from the true image

if the hyper-parameters are imperfectly set. Depending on the target application (for example image

enhancement prior to human photo-interpretation, or fully automatic image analysis), the optimal value

of the hyper-parameter may be different. The range of possible values depends both on the log-likelihood

term and on the prior term and is very large. In the case of joint regularization, the hyper-parameters can

differ by several orders of magnitude. An automatic method for adequate hyper-parameter estimation is

therefore necessary.

Considerable effort has been devoted to hyper-parameter estimation [20], [29], [55]. One of the possible

methods to perform hyper-parameter tuning is the analysis of the so-called L-curve [26]. This curve is

the graphical representation of the regularization energy term with respect to the likelihood energy term.

The corner of the curve corresponds to a good trade-off between under-regularization (steep part of the

curve, where the regularization term can be largely improved with minor likelihood modification) and

over-regularization (slowly varying part of the curve, where the regularization term can no longer be

improved, whatever the likelihood price). Note however that the L-curve method is known to fail in

some cases [25]. We successfully apply this method on simulated and real data in the next section.

IV. EXPERIMENTS AND ALGORITHM COMPARISON

A. Amplitude regularization

We evaluate here both the algorithm speed and the quality of the minimization on a synthetic image

(fig. 3). Its size is chosen to let the exact minimization be possible by creating a graph with as many

nodes as the product of pixels times gray levels [16], [27].

a) Algorithm comparison: We compare the convergence of the ICM, α-expansion, and the algorithm

described in section III.

b) Automatic hyper-parameter estimation: The L-curve computed for β values in the range [0, 1.2]

is displayed in figure 4. As expected, the regularization term decreases as β is increased. As for the

likelihood term, it increases with β. The two ends of the L-curve correspond to β = 0 (no regularization,

null likelihood term) and β ≥ βlim for which the regularized image is constant (null regularization
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Fig. 3. 256× 256 pixels synthetic image corrupted by speckle noise. The multiplicative nature of the noise is clearly visible:

the noise amplitude is the largest at the center of the image as the background level is higher than that of the surrounding

regions.

term, maximum likelihood term). It has been empirically shown in [26] that the corner (i.e. maximum

curvature point) of the L-curve gives a good regularization value βcorner. We have used the triangle

method described in [9] to find automatically βcorner (depicted by a black triangle in figure 4). It seems

that the use of a log-log scale for L-curve corner detection as advised in [9] is less relevant when using

TV regularization than it is for quadratic regularization . We therefore used linear scales as shown in

figure 4. Three regularized images were computed for β values respectively less (sub-figure ), equal

(sub-figure ) or greater (sub-figure ) than βcorner. To enhance the details, we display the norm of the

gradient of the regularized images (black means a high gradient norm, white is for null gradient) instead

of the images themselves. Under- and over-regularization clearly correspond respectively to sub-figures

and . The βcorner leads to a satisfying regularized image. It must be noted at this point that a

known drawback of TV regularization is the contrast reduction [50]. This is visible in the change of

gradient magnitude scale (see the scales in the different sub-figures). When contrast preservation matters

(photometric/radiometric precision), a trade-off must be found between noise reduction (i.e. adequate

regularization) and contrast loss.

c) Level-dependent smoothing effect: It can be noticed from figure 4 that the image regions with

high amplitude values tend to be smoothed first, while the noise in the low amplitude regions remains

nearly unmodified for small values of the hyper-parameter (β � βcorner as is the case for subfigure ).

This can be intuitively understood by considering that speckle noise is multiplicative. Therefore, if we
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Fig. 4. Automatic hyper-parameter estimation: L-curve representation (Eregularization = f(Elikelihood)) and corresponding

β values. The detected βcorner value is displayed with a black triangle. (L-curve computation took less than 1 minute on this

256×256 image). Magnitude of the gradient of three images regularized with different β values are displayed to illustrate three

different regions of the L-curve.

were to choose between two regularized values of equivalent likelihood in regions with different mean

amplitude levels, the choice that would decrease most the global energy would be that which reduces the

variations in the high amplitude region.

To study into more details this phenomenon, let us consider a constant region with amplitude âtrue.
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Fig. 5. Expectation of the L1 error between the regularized value âs and the (true) background value âtrue as a function of

âtrue. The curves were obtained for different regularization levels β. The limiting case β = 0 exhibits a linear part that illustrate

the multiplicative nature of the noise. For high values of âtrue truncation effects dominate the linear evolution (see text). When

considering increasing β values, one can notice that the error is reduced more efficiently when the background level is high.

Due to the presence of noise, amplitude a is observed instead of âtrue (a is considered to be a single-look

image here: M = 1). The probability density function of a is given by equation 1. We are considering

the filtered image â obtained by the MAP criterion using model of equation 5. Let us set the regularized

values ât of the neighbors of site s to the exact value âtrue (i.e. ∀t ∈ Ns, ât = âtrue). We shall now

consider the possible regularized values âs at site s. In this specific case, âs depends only on the noisy

value as and the true value âtrue. The remaining L1 error after regularization is εs = |âs − âtrue|. The

expectation of this error is obtained by summing over all possible as values:

<εs>
def=< |âs − âtrue|>=

∑
as

|âs − âtrue| · p(as|âtrue), (11)

with âs obtained by minimization

âs = arg min
âs

Es(âs|as, âtrue)

of the local energy2 Es:

Es(âs|as, âtrue) = U(as|âs) + 4β · |âs − âtrue|.

2defined here considering a 4 connexity neighborhood
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Figure 5 represents the mean error < εs > as a function of the background level âtrue for given

regularization values β. These curves have been computed for integer values of âtrue in L∗ = [1, 255].

Noisy amplitudes as have been sampled with 0.1 steps from 1 to 500 as the amplitude in SAR images

is measured with a high dynamic (floating point values). For each triplet (β, âtrue,as), âs has been

computed by searching for the minimum argument of Es among integer values in range L∗. By restricting

the possible âs values to the range L∗, we introduce boundary effects. High values of âtrue lead to noisy

amplitudes as for which the energy Es is minimized beyond the upper bound 255. Restricting âs to lie

within the range L∗ moves the regularized values toward the true amplitude âtrue. The resulting error is

therefore reduced, as can be noticed on the different curves for high values of âtrue (âtrue & 200).

The limiting case with no regularization (β = 0) corresponds to maximum likelihood estimation

âs = as. The curve β = 0 is that of a linear function for âtrue values where the boundary effects are

negligible. This is the illustration of the multiplicative nature of speckle noise. As the regularization

hyper-parameter β is increased, the linear dependency is not verified any more. The noise is then no

more multiplicative and it can be observed, in agreement with our remark about figure 4 results, that

the noise in high amplitude regions (i.e. high âtrue values) is regularized more efficiently than that in

low amplitude regions. This is related to the prior model we have chosen. For the application under

consideration (recovery of urban structures), we find this model well adapted. For other purposes such

as small targets detection in low signal-to-noise images, this model might be less suitable due to the risk

of over-regularizing high-amplitude targets.

B. Joint regularization of InSAR images in urban area

We now consider joint regularization on high-resolution data acquired over the city of Toulouse, France.

The images shown in figure 6(a) and 6(b) are 1200×1200 pixels extracts from single-pass interferometric

SAR images acquired by RAMSES (ONERA SAR sensor) in X-band at sub-metric resolution.

The amplitude image is a 2-look image obtained after averaging the intensity of the two images of the

interferometric pair. The interferogram has been computed on a 3 × 3 window and the coherence over

detected shadow-areas set to 0.

We have set hyper-parameter γ to 1 and have estimated iteratively the values of βa and βφ using

1D L-curves: β(0)
a has been estimated considering an independent model. Then, β(0)

φ has been estimated

with βa set to β
(0)
a and â set to â(0) = â(MAP )|β(0)

a
. The values β(0)

a and β
(0)
φ have then been refined

respectively into β
(1)
a and β

(1)
φ given φ̂(0) = φ̂(MAP )|β(0)

a ,β
(0)
φ ,â(0) (resp. â(1) = φ̂(MAP )|β(1)

a ,β
(0)
φ ,φ̂(0)).

Although this iterative refinement process could be carried on, the values β(1)
a and β(1)

φ already provide
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satisfying regularization results. We obtained β(1)
a = 0.129 and β(1)

φ = 3.64× 103 for the images shown

in figure 6(a) and figure 6(b). The jointly regularized images are displayed in figure 6(c) and figure

6(d). The regularization process (given the hyper-parameter values) took less than 3 minutes with our

implementation of the algorithm of section III. The hyper-parameters were determined using a 232×232

pixels sub-image as this step requires many regularization computations. Note that the hyper-parameters

differ by 4 orders of magnitude, which would have made their manual tuning inconvenient. More subtle

approaches have also been suggested to determine multiple regularization parameters (see reference [3]).

¿From the regularization results of figure 6 it can be noticed that the noise has been efficiently reduced

both in amplitude and phase images. The sharp transitions in the phase image that correspond to man-

made structures are well preserved.

Joint regularization gives more precise contours than independent regularization as they are co-located

from the phase and amplitude images (minimum cost images have transitions that occur between the same

neighboring pixels). Small objects also tend to be better preserved by joint-regularization as illustrated in

figure 7. In this figure, an excerpt showing a portion of streets is presented. Four dots (roughly vertically

aligned) are visible in the noisy phase image and less clearly in the amplitude image. They correspond to

the top of streetlights that is higher than the surrounding ground. In the independently regularized phase

image φ̂′, some streetlights have nearly disappeared (see also the gradient image |∇φ̂′| shown to ease

visualization). In the jointly regularized phase image φ̂ the 4 streetlights are still visible, with comparable

contrast from one another. The amplitude image, in which the streetlights are also present, has helped

preserve these small objects. Note that the location of the contours in the jointly regularized images

exactly coincide. As they are obtained in order to match both the amplitude and phase information, they

are more precise than if independently set.

Note however that precise (and fair) comparison between joint and independent regularization is difficult

to carry out as the values of the hyper-parameters are not directly related (since the models differ). The

regularized images shown in figure 7 have been computed using hyper-parameter values obtained using

the same L-curve procedure to reduce as much as possible this problem.

V. CONCLUSION

Speckle noise can be effectively reduced in SAR images with a Markov Random Field approach. TV

minimization results in smoothed homogeneous regions while preserving sharp transitions. The Markovian

formulation provides a convenient way to incorporate priors and to perform joint regularization. We have

shown on real data that this can help to prevent over-regularization effects of objects that are visible
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(a) (b)

(c) (d)

Fig. 6. Joint regularization of InSAR images (1200 × 1200 pixels): (a) noisy amplitude, (b) noisy phase, (c) and (d) are

respectively the jointly regularized amplitude and phase images for βa = 0.129 and βφ = 3.64× 103 determined automatically

with L-curves.

in different images (such as amplitude and interferometric phase). Moreover, the contours of the jointly

regularized images are more precise as all information is merged.
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Fig. 7. Illustration of the use of joint regularization to preserve small objects. A magnified portion of images displayed in

figure 6, centred on a street, shows small round objects that corresponds to streetlights. They are noticeable both in amplitude

(larger reflectivity than the ground) and phase (top of the streetlight is higher than surrounding ground). When independent

regularization of phase and amplitude is performed, the true phase is lost for some of the streetlights that are merged with the

ground by the regularization process. The streetlights are correctly preserved when regularization is jointly performed (bottom

row of images).

Heavy-tailed distributions such as Nakagami law that governs SAR amplitude lead to non-convex

likelihood terms. The underlying minimization problem for MAP estimation is therefore difficult and

many local minimum are present. Graph-cuts offer an efficient approach for these optimization problems.

Although graph-cut-based algorithms that exactly minimize the target energy are known, they can hardly

be applied in practice due to computational and memory constraints. We derived a minimization algorithm

suitable for (joint) regularization of large images.

The regularized images obtained both on synthetic and real data were satisfying. The algorithm is faster

than existing graph-cut-based techniques. We have shown that joint regularization can be performed with
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little computation overload. It helps preventing loss of small objects (over-regularization) by merging all

information.

Contrast loss is an issue that requires further development. It can represent for some applications

a significant drawback, due to the TV prior model chosen. Other prior terms could be used with

our algorithm provided that they are convex. Quadratic regularization with a line process to preserve

discontinuities would overcome this limitation.

The quality of the results could be improved for 3D urban modeling by introducing more evolved prior

knowledge in combination with contextual interpretation of the urban scene. The MRF model is flexible

enough to incorporate higher level prior models. Including radar geometric deformations compensation

in the regularization process could be an interesting step toward successful use of the regularized images.
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