Two Steps Multi-Temporal Non-Local Means for SAR Images

Xin Su¹, Charles-Alban Deledalle², Florence Tupin¹ and Hong Sun³
1. Institut Telecom, Telecom ParisTech, LTCI, Paris, France
2. CNRS, Ceremade, Paris Dauphine University, Paris, France
3. School of Electronic Information, Wuhan University, Wuhan, P. R. China
06.2012
Contents

• Backgrounds

• Related Works and Motivation

• The Two Steps Multi-Temporal NLM Filter

• Experiments and Results

• Conclusion and Future Works
Contents

• Backgrounds

• Related Works and Motivation

• The Two Steps Multi-Temporal NLM Filter

• Experiments and Results

• Conclusion and Future Works
Multi-Temporal SAR images & applications

Denoising:
1) Improve stable objects
2) Keep new objects

Change Detection:
• Environmental Monitoring;
• Disaster Evaluation;
• Urban Planning;
• ...

Classification:
• Land-cover Mapping;
• ...

Huge amount of SAR data
Various Denoising Methods

- **Spatial-Domain Methods**
 - Non-local means (NLM) for Gaussian noise, by Buades et al. [1]
 - NLM with adaptive search window, by Kervrann and Boulanger [2]
 - Iterative weighted maximum likelihood denoising with probabilistic patch-based weights (It-PPB), by Deledalle et al. [3]
 - K-SVD, by Elad and Aharon [4]
 -

- **Transform-Domain Methods**
 - BM3D, by Dabov et al. [5]
 - An extension of BM3D to SAR image, by Parrilli et al. [6]
 - Denoising by fusing of wavelet Bayesian and Markov random field, by Xie et al. [7]
 -

- **Multi-temporal SAR image denoising**
 - Adaptive-neighborhood speckle removal in multi-temporal SAR images, by Mihai Ciuc et al. [8]
 -
Contents

- Backgrounds

- Related Works and Motivation
 - Non-Local Means
 - Iterative Probability Patch-based Denoising (It-PPB)
 - Motivation and contribution

- The Two Steps Multi-Temporal NLM Filter

- Experiments and Results

- Conclusion and Future Works
Non-Local Means Denoising

• Estimate actual pixel intensities with image redundancy
 – Search similar pixels
 – Estimate a weighted maximum likelihood with similar pixels

• Image $I = \{y(i)\}$:
 – Additive Gaussian noise model:
 $y(i) = u(i) + n(i)$

 $y(i)$: the observed value;
 $u(i)$: the true value;
 $n(i)$: the noise;

Non-Local Means Denoising

- Estimate of true value $\hat{u}(i)$:
 \[\hat{u}(i) = \sum_{j \in \Omega} w(i, j) y(j) \]

 - Weights:
 \[w(i, j) = \frac{1}{Z} \exp \left(-\frac{S(i, j)}{h} \right) \]

 - Similarity (distances) between patches
 \[S(i, j) = \sum_{k \in K} [y(i, k) - y(j, k)]^2 \]

Ω: search window $\{21 \times 21\}$
K: patch $\{7 \times 7\}$
Z: normalization parameter
h: the decay parameter of weights

• Corrupted by the multiplicative Goodman speckle noise, the pixel intensities Y are modeled as the following distribution:

$$p(y|u) = \frac{2LL^L}{\Gamma(L)u^L} y^{L-1/2} \exp \left(-\frac{Ly}{u} \right)$$

y: the pixel intensity; u: the true value (the reflectivity)
L: the (equivalent) number of looks

• The similarity between noisy patches (based on Generalized likelihood Ratio):

$$S(i, j) = \sum_{k \in K} \log \left(\frac{y(i, k) + y(j, k)}{y^{1/2}(i, k)y^{1/2}(j, k)} \right)$$

K: patch $\{7 \times 7\}$

Iterative Weighted Maximum Likelihood Denoising with Probability Patch-based Weights (It-PPB) for SAR Images

- **Estimate of \mathcal{U}**:
 \[\hat{u}(i) = \sum_{y(i) \in \Omega} w(i, j) y(j) \]

 Ω: search window $\{21 \times 21\}$

- **The iterative weights $w(i, j)$**:
 \[w(i, j) = \frac{1}{Z} \exp \left[-\frac{1}{h_0} S(i, j) - \frac{L}{h_1} R^{m-1}(i, j) \right] \]

 h_0: the decay parameter of similarity
 h_1: the decay parameter of iterative term

- **Iterative term (refines the weights)**:
 \[R^{m-1}(i, j) = \sum_{k \in K} \frac{[\hat{u}^{m-1}(i, k) - \hat{u}^{m-1}(j, k)]^2}{\hat{u}^{m-1}(i, k) \hat{u}^{m-1}(j, k)} \]

 $\hat{u}^{m-1}(i)$: the $(m - 1)$-th iterative denoising results

The temporal It-PPB for multi-temporal data (A direct extension of It-PPB)

The temporal It-PPB for multi-temporal data (A direct extension of It-PPB)

- The temporal image set: \(S = \{I_{t_1}, I_{t_2}, \ldots I_{t_N}\} \)
- The search cube (window): \(C = \{\Omega_{t_1}, \Omega_{t_2}, \ldots \Omega_{t_N}\} \)
- The estimate of true value \(\hat{u} \):

\[
\hat{u}_t(i) = \sum_{y_{t'}(j) \in C} w(i_t, j_{t'}) y_{t'}(j)
\]

\[
w(i_t, j_{t'}) = \frac{1}{Z} \exp \left[- \frac{1}{h_0} S(i_t, j_{t'}) - \frac{L}{h_1} R^{m-1}(i_t, j_{t'}) \right]
\]

\[
S(i_t, j_{t'}) = \sum_{k \in K} \log \left[\frac{y_t(i, k) + y_{t'}(j, k)}{\sqrt{y_t^{1/2}(i, k)y_{t'}^{1/2}(j, k)}} \right]
\]

\[
R^{m-1}(i_t, j_{t'}) = \sum_{k \in K} \frac{[\hat{u}_t^{m-1}(i, k) - \hat{u}_{t'}^{m-1}(j, k)]^2}{\hat{u}_t^{m-1}(i, k)\hat{u}_{t'}^{m-1}(j, k)}
\]
Test of the temporal It-PPB

• Image data (stable case)
 – Stable objects (no changes over time)
 – A synthetic set of multi-temporal SAR images \(\mathcal{S} = \{I_{t1}, I_{t2}, I_{t3}\} \)
 – 1-look speckle noise
 – \(\bar{\mathcal{S}} \): the temporal mean of \(\mathcal{S} \)

• Denoising methods
 – Exp.1: The temporal It-PPB on the multi-temporal images \(\mathcal{S} \)
 – Exp.2: The original It-PPB on the single image \(I_{t1} \)
 – Exp.3: The original It-PPB on the temporal means \(\bar{\mathcal{S}} \)

• The expected results
 – Exp.1 \(\approx \) Exp.3 \(>> \) Exp.2
 Is it true???
The actual results of stable case

Temporal It-PPB

Original It-PPB

SNR: 21.13dB
Exp.1
≈
Exp.2
<<
Exp.3

SNR: 20.75dB

SNR: 24.25dB
The actual results of stable case
Motivation and contribution

• Taking inspiration from the comparison experiment
 – Using the temporal information to acquire a lower-level noise image
 – Average the spatial pixels (Non local means)

• Contribution in multi-temporal SAR images denoising
 – Find a way to exploit more available information for stable pixels
 – Meanwhile, comparably keep new objects
Contents

• Backgrounds

• Related Works and Motivation

• The Two Steps Multi-Temporal NLM Filter
 – Step 1: Temporal average with binary weights
 – Step 2: Spatial Average

• Experiments and Results

• Conclusion and Future Works
Step 1: Temporal average with binary weights

- Similarity between temporal pixels (change criterion)
 - Denoise each image $I_{tn} = \{y_{tn}(i)\}$ in the multi-temporal image set S and get the pre-denoising results $\hat{I}_{tn} = \{\hat{u}_{tn}(i)\}$
 - Compare pixels in different dates (images) but in same position
 $$P_i(t, t') = \begin{cases} 1, & \text{if } \frac{[\hat{u}_t(i) - \hat{u}_{t'}(i)]^2}{\hat{u}_t(i)\hat{u}_{t'}(i)} > T_{SA} \\ 0, & \text{otherwise} \end{cases}$$
 T_{SA} denotes the temporal similarity threshold $\hat{u}_t(i)$ is the It-PPB denoising result of image I_t

- Temporal average
 $$\tilde{y}_t(i) = \frac{1}{Z} \sum_{t' \in [t_1, t_N]} P_i(t, t') y_{t'}(i)$$
 $$Z = \sum_{t' \in [t_1, t_N]} P_i(t, t')$$
Step 2: Spatial average

- The estimate of true value \mathcal{U} using temporal average image \widetilde{I}_{tn}
 \[
 \hat{\mathcal{U}}'(i) = \sum_{\tilde{y}_t(j) \in \tilde{C}} \tilde{w}(i_t, j_t) \tilde{y}_t(j)
 \]

 - Weights:
 \[
 \tilde{w}(i_t, j_t) = \frac{1}{Z} \exp\left[-\frac{1}{h_0} \tilde{S}(i_t, j_t) - \frac{L}{h_1} R^{m-1}(i_t, j_t) \right]
 \]

 - Similarity between X-looks noisy patches
 \[
 \tilde{S}(i_t, j_t) = \sum_{k \in K} \log \left[\frac{\tilde{L}_{ti} \tilde{y}_t(i, k) + \tilde{L}_{tj} \tilde{y}_t(j, k)}{\tilde{L}_{ti} + \tilde{L}_{tj}} \right]
 \]

 \tilde{L}_{ti} and \tilde{L}_{tj} are the number of looks
The sketch map of the proposed method

- $\mathcal{S} = \{I_{t1}, I_{t2}, I_{t3}\}$: the original multi-temporal images
- \hat{u}_{t1}: the denoising result of I_{t1} using It-PPB
- $P(t1, t2)$: the temporal relation between I_{t1} and I_{t2}
- \tilde{I}_{t1}: the temporal average image
- \hat{u}'_{t1}: the final denoising result
Contents

• Backgrounds

• Related Works and Motivation

• The Two Steps Multi-Temporal NLM Filter

• Experiments and Results

• Conclusion and Future Works
Data Sets

• Synthetic images
 – Noise free image: 100 looks SAR image © ONERA © CNES
 – 1-look multiplicative speckle noise
 – 3-dates: \(S = \{I_{t1}, I_{t2}, t_{t3}\} \)
 – A dark line and a bright target are added only to \(I_{t1} \)
 (in red rectangles)

\[I_{t1} \text{ in } S \]

\[I_{t2} \text{ in } S \ (I_{t3} \text{ is similar to } I_{t2}) \]
Data Sets

- **Real SAR images**
 - 2012 IEEE GRSS Data Fusion Contest
 - Single-look
 - TerraSAR X-bands data
 - 1m X 1m spatial resolution
 - 6 dates (images) in 2007 and 2011
 - Use the sensor parameters for image registration

\[S = \{ I_{t1}, I_{t2}, I_{t3}, I_{t4}, I_{t5}, I_{t6} \} \]

Choice of Parameters

• Search window size and patch size enlarge with the increase of the number of iteration
 – Search window $\Omega \in \{3 \times 3, 7 \times 7, 11 \times 11, 21 \times 21\}$
 – Patch $K \in \{1 \times 1, 3 \times 3, 5 \times 5, 7 \times 7\}$

• Smooth parameter
 – $h_0 = \alpha$-quantile ($\alpha = 0.92$)
 – $h_1 = 0.2K$

• Temporal similarity similarity threshold
 – $T_{SA} = \alpha$-quantile ($0.98 < \alpha < 1$)
Results

- Comparably keep *new* objects
- Preserve more details for *stable* objects
Results

- Preserve more details for *stable* objects (dark lines)
Contents

• Backgrounds
• Related Works and Motivation
• The Two Steps Multi-Temporal NLM Filter
• Experiments and Results
• Conclusion and Future Works
Conclusion and Future Works

• Conclusion
 – Present a two steps multi-temporal non-local means for SAR images denoising
 1) Exploit more available information for stable objects
 2) Comparably keep new objects

• Future works
 – Lower the requirement of input data, such as image registration;
 – Find more effective criterion for change detection;
 – Define new similarity for multi-temporal images;
References

Thanks for your attention
The actual results

Temporal It-PPB

Original It-PPB

Temporal Mean

It-PPB