Modélisation géométrique

Pooran MEMARI

Master IMA - Séminaires et pratique en image (PRAT) (SI955)
Janvier 2015
Outline

• Geometric representation methods:
 — Explicit and Implicit

• Curvature:
 - parametric curves
 - parametric surfaces

• Laplacian smoothing
Surface representation

- **Explicit (Parametric)**
 - Represent a surface as a continuous function from a domain in \mathbb{R}^2 to S in \mathbb{R}^3.

- **Implicit**
 - Represent a surface as the zero set of a distance function defined over \mathbb{R}^3.

Surface representation

• Explicit (Parametric)
 – Represent a surface as continuous function from a domain in R2 to S in R3.

- Global parameterization with a single function: not easy at all!
- Instead, collection of local parameterizations defined over simple 2D domains (charts).
- Smooth manifold if the charts are “smoothly compatible”, i.e. for any two charts \((\phi, U), (\psi, V)\),
 \[\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)\] is smooth.
Discrete explicit representation

Triangle meshes : triangulations

• Topology (connectivity):
 Vertices \(\mathcal{V} = \{v_1, \ldots, v_n\} \)
 Edges \(\mathcal{E} = \{e_1, \ldots, e_m\}, \quad e_i \in \mathcal{V} \times \mathcal{V} \)
 Triangles \(\mathcal{F} = \{f_1, \ldots, f_k\}, \quad f_i \in \mathcal{V} \times \mathcal{V} \times \mathcal{V} \)

• Geometry (vertex positions):
 \(\mathcal{P} = \{p_1, \ldots, p_n\}, \quad p_i \in \mathbb{R}^3 \)
Discrete representation: Meshing

- Mesh seen as a partition of a domain in \mathbb{R}^n into cells.
- Two cells are disjoint or share a lower dimensional face (cell complex).
- Examples in R3:
 - 3D tetrahedrization discretizing a volume or
 - 2D triangulation representing a surface.
Topological information: Euler formula

2D triangulation: \(V - E + F - C = 1 \)

- \(F \): number of faces including the exterior face
- \(E \): number of edges
- \(V \): number of vertices
- \(C \): number of components
- \(T \): number of triangles
- \(B \): number of boundary edges
- \(C = 1 \), counting edges in two different ways: \(2E = 3T + B \)
 - \(E = 3V - 3 - B \)
 - \(T = 2V - 2 - B \)

Closed orientable surface: \(V - E + F = 2 - 2g \)
<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>$X = V - E + F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexahedron or Cube</td>
<td></td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Tetrahedron</td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Great Icosahedron</td>
<td></td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>18</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>24</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Interval</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Disk</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Circle</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Torus (Product of 2 Circles)</td>
<td></td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Double Torus</td>
<td></td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>Triple Torus</td>
<td></td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>-4</td>
</tr>
</tbody>
</table>
Discrete explicit representation

• Meshing
 – Interpolating approaches
 (connects sample points by triangles)
 – Precision improved via refinement
 (tradeoff between accuracy and efficiency)
 – Bad for noisy data
 (needs optimization)
 – May lead to holes and non-manifold situations
 (needs repairing)

Will come back to meshing soon!
Surface representation

• Implicit
 - Represent a surface as the zero set of a regular (with non-vanishing derivative) real-valued function defined over R3 (distance function).

Easy and efficient for topological modifications.
Discrete implicit representation

Voxel grids
Values of the distance function on a grid

Adaptative grids
High-precision only near the surface
Implicit to explicit: extracting the surface

\[F(x) = 0 \rightarrow \text{surface} \]

\[F(x) < 0 \rightarrow \text{inside} \]

\[F(x) > 0 \rightarrow \text{outside} \]

Sample

2D Marching squares
Marching cubes

Ambiguity ...
Outline

• Geometric representation methods:
 – Explicit and Implicit

• Curvature:
 - parametric curves
 - parametric surfaces

• Laplacian smoothing
Parametric curves

\[\mathbf{x} : [a, b] \subset \mathbb{R} \to \mathbb{R}^3 \]

\[
\mathbf{x}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \\
\mathbf{x}_t(t) := \frac{d\mathbf{x}(t)}{dt} = \begin{pmatrix} dx(t)/dt \\ dy(t)/dt \\ dz(t)/dt \end{pmatrix}
\]
Curvature: intuition

Tangent, the first approximation
• limiting secant as the two points come together
Curvature: intuition

Circle of curvature

- Consider the circle passing through 3 points of the curve
- The limiting circle as three points come together
Gauß map

Point on curve maps to point on unit circle

Turning (winding) number, k

number of orbits in Gaussian image
Turning number theorem

For a closed curve, the integral of curvature is an integer multiple of 2π.
Outline

• Geometric representation methods:
 – Explicit and Implicit

• Curvature:
 - parametric curves
 - parametric surfaces

• Laplacian smoothing
Parametric surfaces

• Continuous surface

\[\mathbf{p}(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}, \quad (u, v) \in \mathbb{R}^2 \]

• Normal vector

\[\mathbf{n} = \frac{\mathbf{x}_u \times \mathbf{x}_v}{\| \mathbf{x}_u \times \mathbf{x}_v \|} \]

• Assume regularity on the parameterization

\[\mathbf{x}_u \times \mathbf{x}_v \neq 0 \quad \text{normal exists} \]
Normal curvature

The curve γ is the intersection of the surface with the plane through n and the tangent vector t.

Normal curvature:

$$\kappa_n(\varphi) = \kappa(\gamma(p))$$
Surface Curvatures

• Principal curvatures
 – Maximal curvature \(\kappa_1 = \kappa_{\text{max}} = \max_{\varphi} \kappa_n(\varphi) \)
 – Minimal curvature \(\kappa_2 = \kappa_{\text{min}} = \min_{\varphi} \kappa_n(\varphi) \)

• Mean curvature \(H = \frac{\kappa_1 + \kappa_2}{2} \)

• Gaussian curvature \(K = \kappa_1 \cdot \kappa_2 \)
Principal Directions: examples

Fig from wikipedia ☺️
Principal Directions

- Principal directions: tangent vectors corresponding to φ_{max} and φ_{min}

Fig: Alliez et al.
Euler’s Theorem: Planes of principal curvature are orthogonal and independent of parameterization.

\[\kappa(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi, \quad \varphi = \text{angle with } t_1 \]
Local Surface Shape By Curvatures

Isotropic:
all directions are principal directions

- $K > 0$, $\kappa_1 = \kappa_2$
 - spherical (umbilical)

Anisotropic:
2 distinct principal directions

- $K > 0$
 - $\kappa_2 > 0$, $\kappa_1 > 0$
 - elliptic

- $K = 0$
 - $\kappa_2 = 0$
 - parabolic

- $K < 0$
 - $\kappa_2 < 0$
 - hyperbolic

Slide from Olga Sorkine, Eitan Grinspun
Gauss-Bonnet Theorem

- For a closed surface \mathcal{M}:
 \[
 \int_{\mathcal{M}} K \, dA = 2\pi \chi(\mathcal{M})
 \]

\[
\int K(\text{ball}) = \int K(\text{star}) = \int K(\text{rabbit}) = 4\pi
\]

Intuition: when sphere is deformed, new positive and negative curvature cancel out.

- Compare with planar curves: (k turning number)
 \[
 \int_{\gamma} \kappa \, ds = 2\pi \, k
 \]
Surface Curvatures

• Mean curvature: extrinsic

\[\frac{H_p}{2} = \frac{1}{2\pi} \int_0^{2\pi} k_p(\theta) \, d\theta \]

\(H=0 \) everywhere \quad \rightarrow \quad \text{minimal surface}

• Gaussian curvature: intrinsic

\[K_p = \lim_{A \to 0} \frac{A_G}{A} \]

\(K=0 \) everywhere \quad \rightarrow \quad \text{developable surface}
Discrete curvatures

- Mean curvature
 \[H = ||\Delta_S x|| \]

- Gaussian curvature
 \[G = (2\pi - \sum_j \theta_j)/A \]

- Principal curvatures
 \[\kappa_1 = H + \sqrt{H^2 - G} \]
 \[\kappa_2 = H - \sqrt{H^2 - G} \]
Outline

• Geometric representation methods:
 – Explicit and Implicit

• Curvature:
 - parametric curves
 - parametric surfaces

• Laplacian smoothing
The Laplace operator is defined as:

$$\Delta f = \text{div} \nabla f = \sum_i \frac{\partial^2 f}{\partial x_i^2}$$

- **Laplace operator**
- **Gradient operator**
- **2nd partial derivatives**
- **Function in Euclidean space**
- **Divergence operator**
- **Cartesian coordinates**
Laplace-Beltrami operator

- Extension of Laplace to functions on manifolds

\[\Delta_s \mathbf{x} = \text{div}_s \nabla_s \mathbf{x} = -2H \mathbf{n} \]
Laplacian smoothing

\[\Delta p_i = \frac{1}{2}(p_{i-1} - p_i) + \frac{1}{2}(p_{i+1} - p_i) \]

\[p_i \leftarrow p_i + \frac{1}{2}\Delta p_i \]
Discrete Laplace-Beltrami

- Uniform discretization

\[\Delta_{\text{uni}} f(v) := \frac{1}{|N_1(v)|} \sum_{v_i \in N_1(v)} (f(v_i) - f(v)) \]

- Weighted discretization (cotan formula)

\[\Delta_{w} f(v) := \frac{2}{A(v)} \sum_{v_i \in N_1(v)} (\cot \alpha_i + \cot \beta_i) (f(v_i) - f(v)) \]
Discrete Laplace-Beltrami and smoothing

Fig. Desbrun et al. 99

Original
uniform weights
Cotangent weights
Introduction à la Géométrie Algorithmique

Pooran MEMARI

Master IMA - Séminaires et pratique en image (PRAT) (SI955)
Janvier 2015
Outline

• Delaunay Triangulations (& good properties)
• Voronoi Diagram (famous dual)
• Some “elegant & simple” geometric ideas ...
 – Crust algorithm
• Triangle-based meshing/reconstruction:
 – Restricted Delaunay
 – Isotropic remeshing
 – ...

* Some slides from Misha Kazhdan
Outline

• Delaunay Triangulations (& good properties)
• Voronoi Diagram (famous dual)
• Some “elegant & simple” geometric ideas …
 – Crust algorithm
• Triangle-based meshing/reconstruction:
 – Restricted Delaunay
 – Isotropic remeshing
 – …
Convex Hulls

Definition:
Given a finite set of points $P=\{p_1,\ldots,p_n\} \subset \mathbb{R}^n$, the convex hull is the set of points consisting of the convex combinations of points in P:

$$\text{Convex}(P) = \left\{ \sum_{p \in P} \alpha_p p \left| \alpha_p \geq 0 \text{ and } \sum_{p \in P} \alpha_p \right\}$$
Convex Hulls

Definition:
Given a finite set of points $P=\{p_1,\ldots,p_n\}\subset \mathbb{R}^n$, the convex hull is the set of points consisting of the convex combinations of points in P:

$$\text{Convex}(P) = \left\{ \sum_{p \in P} \alpha_p p \middle| \alpha_p \geq 0 \quad \text{and} \quad \sum_{p \in P} \alpha_p \right\}$$
Planar Triangulations

Definition:
A \textit{triangulation} of a finite set of points \(P = \{p_1, \ldots, p_n\} \) is a decomposition of the convex hull of \(P \) into triangles with the property that:

- The set of triangle vertices equals \(P \)
- The intersections of two triangles is either empty or is a common edge or vertex.
Delaunay Triangulation

Canonical triangulation associated to any point set
Delaunay Triangulations

Definition:
A triangulation of the set P is said to be Delaunay if the interior of the triangles’ circumcircles are empty.
Delaunay Triangulations

Definition:
A triangulation of the set P is said to be *Delaunay* if the interior of the triangles’ circum-circles are empty.
Delaunay Triangulations

Definition:
A triangulation of the set P is said to be Delaunay if the interior of the triangles’ circumspheres are empty.
Delaunay Triangulations

Definition:
A triangulation of the set P is said to be *Delaunay* if the interior of the triangles’ circumcircles are empty.
Delaunay Edges

Definition:
An interior edge e is locally Delaunay if the interiors of the circum-circles of the two triangles do not contain the triangles’ vertices.
Delaunay Edges

Definition:
An interior edge e is *locally Delaunay* if the interiors of the circum-circles of the two triangles do not contain the triangles’ vertices.

Property:
An interior edge is Delaunay iff. the sum of the opposite angles is not greater than π.

$\alpha + \beta \leq \pi$
Delaunay Edges

Note:
If the sum of the opposite angles is greater than π, then flipping the edge will give a sum that is less than π.

$$\gamma + \delta = 2\pi - (\alpha + \beta)$$
Delaunay Triangulations

Property:
A triangulation is Delaunay if and only if every interior edge is locally Delaunay.
Delaunay Triangulations

Property:
A triangulation is Delaunay if and only if every interior edge is locally Delaunay.

Edge Flipping Algorithm:
Starting with an arbitrary triangulation, flip edges until each edge is locally Delaunay.
Delaunay Triangulations

Property:
A triangulation is Delaunay if and only if every interior edge is locally Delaunay.

Edge Flipping Algorithm:
Starting with an arbitrary triangulation, flip edges until each edge is locally Delaunay.
Delaunay Triangulations

Property:
A triangulation is Delaunay if and only if every interior edge is locally Delaunay.

Edge Flipping Algorithm:
Starting with an arbitrary triangulation, flip edges until each edge is locally Delaunay.
Delaunay Triangulations

Property:
A triangulation is Delaunay if and only if every interior edge is locally Delaunay.

Edge Flipping Algorithm:
Starting with an arbitrary triangulation, flip edges until each edge is locally Delaunay.
Delaunay Triangulations

Property:
A triangulation is Delaunay if and only if every interior edge is locally Delaunay.

Edge Flipping Algorithm:
Starting with an arbitrary triangulation, flip edges until each edge is locally Delaunay.
Delaunay Triangulations

Edge Flipping Algorithm:
Starting with an arbitrary triangulation, flip edges until each edge is locally Delaunay.

Is this algorithm guaranteed to terminate?
Delaunay Triangulations

Edge Flipping Algorithm:
Starting with an arbitrary triangulation, flip edges until each edge is locally Delaunay.
Is this algorithm guaranteed to terminate?
Termination is proved by:
- Showing that there finitely many different triangulations.
- Defining a global “energy” that is reduced with each flip (e.g. sum of squared circum-radii.)
Delaunay Triangulations

Computing the Delaunay Triangulation:
• Incremental
• Divide and Conquer
• Sweepline (planar)
• Convex hulls of paraboloids
Why should we care?

Meshing

• **Input:** a planar straight-line graph (PSLG) or simply a planar subdivision.
• **Constraints:** shape, boundaries, internal edges to preserve, sizing, orientation (unisotropc)...
• Structured (fixed valence/vertex deg) or not
• Uniform distribution or not
• Application dependent constraints: numerical operator based with geometric interpretation.

• Delaunay triangulation has “well-formed” triangles, facilitating numerical processing over the triangulation.
2D: Triangle shape quality

- Minimum angle α
- Circumcentric radius / smallest edge length = $\frac{1}{2} \sin(\alpha)$
- Circumcentric radius / incircle radius
- Biggest edge length / minimum height

Delaunay triangulation maximizes the smallest angle

Even more: angular vector is maximal for the lexicographic order
Delaunay triangulation’s good properties:

• Efficient & robust algorithms to compute it.
• Maximizes the smallest angle of triangles.
• Good shape triangles (at least in 2D).
• Contains the nearest neighbor graph.
• Contains the minimum spanning tree.
• Used in many different applications such as reconstruction, mesh refinement, remeshing...

See CGAL library
Outline

• Delaunay Triangulations (& good properties)
• Voronoi Diagram (famous dual)
• Some “elegant & simple” geometric ideas ...
 – Crust algorithm
• Triangle-based meshing/reconstruction:
 – Restricted Delaunay
 – Isotropic remeshing
 – ...

Voronoi Diagram

Definition:
The Voronoi Diagram of the set P is the partition of space into cells $V(p)$ such that for all $q \in V(p)$, q is closer to p than to any other point $p' \in P$.
Voronoi Diagram

The Voronoi Diagram of P is the dual of the Delaunay Triangulation.
Voronoi Diagram

The Voronoi Diagram of P is the dual of the Delaunay Triangulation:

– **2D:**
 - Every vertex of the triangulation is dual to a polygon in the diagram.
 - Every edge of the triangulation is dual to an edge of the diagram.
 - Every triangle of the triangulation is dual to a vertex of the diagram.
The Voronoi Diagram of P is the dual of the Delaunay Triangulation:

- **3D:**
 - Every vertex of the triangulation is dual to a polyhedron in the diagram.
 - Every edge of the triangulation is dual to an face of the diagram.
 - Every triangle of the triangulation is dual to an edge of the diagram.
 - Every tetrahedron of the triangulation is dual to a vertex of the diagram.
Delaunay and simple geometric ideas...

- Curve reconstruction from sample points:
 Delaunay triangulation of the point set E covers the convex hull of E, but ...
Delaunay and simple geometric ideas...

• Curve reconstruction from sample points
And in 3D?

- In 3D some Voronoi vertices are not near medial axis even for dense sampling.

- Poles: a subset of Voronoi vertices which approximates medial axis (Amenta and Bern 98)
Outline

• Delaunay Triangulations (& good properties)
• Voronoi Diagram (famous dual)
• Some “elegant & simple” geometric ideas ...
 – Crust algorithm
• Triangle-based meshing/reconstruction:
 – Restricted Delaunay
 – Isotropic remeshing
 – ...

Restricted Delaunay Triangulation

Goal:
Given a surface S and a set of points P in S, we would like to compute a good triangulation of P that is true* to the surface.

*Note that not every point set P has to admit a true triangulation.
Restricted Delaunay Triangulation

Approach (Take 1):
We could compute a Voronoi Diagram on S using the notion of distances on the surface, and then take the dual to get a Delaunay Triangulation.
Restricted Delaunay Triangulation

Approach (Take 1):
We could compute a Voronoi Diagram on S using the notion of distances on the surface, and then take the dual to get a Delaunay Triangulation.
Restricted Delauney Triangulation

Approach (Take 1):
We could compute a Voronoi Diagram on S using the notion of distances on the surface, and then take the dual to get a Delaunay Triangulation.
Restricted Delaunay Triangulation

Approach (Take 1):
We could compute a Voronoi Diagram on S using the notion of distances on the surface, and then take the dual to get a Delaunay Triangulation.

Challenges:

1. Measuring distances on a surface can be expensive.
2. The dual complex may not be a manifold (or even have any triangles).
Restricted Delaunay Triangulation

Approach (Take 1):
We could compute a Voronoi Diagram on S using the notion of distances on the surface, and then take the dual to get a Delaunay Triangulation.

Challenges:

1. Measuring distances on a surface can be expensive.

2. The dual complex may not be a manifold (or even have any triangles).
Restricted Delaunay Triangulation

Approach (Take 1):
We could compute a Voronoi Diagram on S using the notion of distances on the surface, and then take the dual to get a Delaunay Triangulation.

Challenges:
1. Measuring distances on a surface can be expensive.
2. The dual complex may not be a manifold (or even have any triangles).
Restricted Delaunay Triangulation

Approach (Take 2):
Instead of trying to compute a Voronoi Diagram using distances on the surface, compute a regular Voronoi Diagram and look at its restriction to the surface.
Restricted Delaunay Triangulation

Approach (Take 2):
Instead of trying to compute a Voronoi Diagram using distances on the surface, compute a regular Voronoi Diagram and look at its restriction to the surface.
Restricted Delaunay Triangulation

Approach (Take 2):
Instead of trying to compute a Voronoi Diagram using distances on the surface, compute a regular Voronoi Diagram and look at its restriction to the surface.

- Add a Delaunay edge between vertices \(p, p' \in P \) if their Voronoi regions meet on the surface.
- Add a Delaunay triangle between vertices \(p, p', p'' \in P \) if their Voronoi regions meet on the surface.
Restricted Delaunay Triangulation

Approach (Take 2):
Instead of trying to compute a Voronoi Diagram

Note:
• The Voronoi regions of the vertices of a Delaunay edge meet on the surface iff. the dual Voronoi face intersects the surface.
• The Voronoi regions of the vertices of a Delaunay triangle meet on the surface iff. The dual Voronoi edge intersects the surface.

\(p, p' \in P \) if their Voronoi regions meet on the surface.
– Add a Delaunay triangle between vertices \(p, p', p'' \in P \) if their Voronoi regions meet on the surface.
Restricted Delaunay Triangulation

Approach (Take 2):
Instead of trying to compute a Voronoi Diagram using distances on the surface, compute a regular Voronoi Diagram and look at its restriction to the surface.

Note:
• The Voronoi regions of the vertices of a Delaunay edge meet on the surface iff. the dual Voronoi face intersects the surface.
• The Voronoi regions of the vertices of a Delaunay triangle meet on the surface iff. The dual Voronoi edge intersects the surface.

Note that there is (still) no guarantee that the restricted Delaunay Triangulation is manifold.

– Add a Delaunay triangle between vertices \(p, p', p'' \in P \) if their Voronoi regions meet on the surface.
Restricted Delaunay [Boissonnat & Oudot ‘05]

Goal:
Use the restricted Delaunay Triangulation, to triangulate the points $P \subset S$.

Approach:
Ensure that the complex is manifold by inserting a additional points when it is not.
Restricted Delaunay [Boissonnat & Oudot ‘05]

General Idea:
The restricted Delaunay Triangulation will fail to be manifold when the samples are not well-spaced.
Restricted Delaunay [Boissonnat & Oudot ‘05]

Definition:
The *medial axis* or *skeleton* of a shape is the set of points that are simultaneously closest to two points on \(S \).

Note that only the interior skeleton is drawn here.
Restricted Delaunay [Boissonnat & Oudot ‘05]

Definition:
The *reach* of a point on S is its distance to the nearest point on the medial axis. This provides a measure of:

- Curvature
- Proximity of surface sheets

Note that only the interior skeleton is drawn here.
Restricted Delaunay [Boissonnat & Oudot ‘05]

Note:
If we intersect a surface with a ball and the set of points on the intersection have reach smaller than the radius of the ball, then the intersection is connected.
Restricted Delaunay [Boissonnat & Oudot ‘05]

General Idea:
The restricted Delaunay Triangulation will fail to be manifold when the samples are not well-spaced.

More Specifically:
We want points on the Delaunay Triangulation to be closer to each other than their reach.
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:

Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
 (Locally) update the Delaunay Triangulation
Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:

Compute the Delaunay Triangulation.

Compute the restricted D. Triangulation

While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:

- Add the intersection of the triangle’s dual with the surface
- (Locally) update the Delaunay Triangulation
- Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:

Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation

While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
 (Locally) update the Delaunay Triangulation
 Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:
Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
(Locally) update the Delaunay Triangulation
Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:
Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
 (Locally) update the Delaunay Triangulation
Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:
Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
(Locally) update the Delaunay Triangulation
Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:
Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
 (Locally) update the Delaunay Triangulation
Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:

Compute the Delaunay Triangulation.

Compute the restricted D. Triangulation

While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:

Add the intersection of the triangle’s dual with the surface

(Locally) update the Delaunay Triangulation

Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:
Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
 (Locally) update the Delaunay Triangulation
 Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:
Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
 (Locally) update the Delaunay Triangulation
Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:

Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation

While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:

Add the intersection of the triangle’s dual with the surface

(Locally) update the Delaunay Triangulation

Update the Restricted D. Triangulation
Restricted Delaunay [Boissonnat & Oudot ‘05]

Algorithm:
Compute the Delaunay Triangulation.
Compute the restricted D. Triangulation
While there are triangles whose circumsphere’s radius is larger than a fraction of the reach:
 Add the intersection of the triangle’s dual with the surface
 (Locally) update the Delaunay Triangulation
 Update the Restricted D. Triangulation

Note that the algorithm would still keep going
Restricted Delaunay [Boissonnat & Oudot ‘05]

Implementation Requirements:

• A single computation of a (restricted) Delaunay Triangulation plus local updates.
• The ability to evaluate the reach of a surface point.
• The ability to intersect the dual Voronoi edge with the surface.
Restricted Delaunay [Boissonnat & Oudot ‘05]

Properties:
• With the appropriate scaling, the method returns a manifold, non-self-intersecting, triangulation with the same topology as S.
• May over-refine in flat regions.
• Requires a strictly positive reach (which is not satisfied by triangle meshes).
Restricted Delaunay [Boissonnat & Oudot ‘05]

Surface mesh generation algorithm:

Do{
• Take a bad shaped facet f
• Insert furthest dual(f)$\cap S$ in Del
• Update Del restricted to S
}
untill all facets are well shaped
Surface mesh algorithm guarantees

- Well shaped triangles (lower bound on angles)
- Resulting mesh is manifold.
- Homeomorphic to input surface under some sampling conditions (dense sampling where curvature is high or near features).
- ε-sampling: distance from any surface point to nearest sample is at most small constant ε times distance to medial axis. Zero at sharp corners
- Good approximation in terms of Haussdorff distance and normals.

Boissonnat and Oudot 2005.
Restricted Delaunay

• Polyhedral Domains (Input conforming):
 – Angle restricted: Chew89, Ruppert92, Miller-Talmor-Teng-Walkington95, Shewchuk98.

• Smooth Surfaces (Topology conforming):
 – Chew93 (w/out guarantee), Cheng-Dey-Edelsbrunner-Sullivan01 (skin surfaces), Boissonnat-Oudot03 and Cheng-Dey-Ramos-Ray04, Oudot-Rineau-Yvinec06 (Volumes).

• Non-smooth:
 – Boissonnat-Oudot06 (Lipschitz surfaces).
 – Cheng-Dey-Ramos07 (piecewise smooth complexes).
Outline

• Delaunay Triangulations (& good properties)
• Voronoi Diagram (famous dual)
• Some “elegant & simple” geometric ideas ...
 – Crust algorithm
• Triangle-based meshing/reconstruction:
 – Restricted Delaunay
 – Isotropic remeshing
 – ...

Isotropic Remeshing [Alliez et al. ‘03]

Observation:
Given a parameterization of S over a 2D domain, we can pull back a triangulation of the 2D domain to a triangulation of the mesh.

*May have intersecting triangles
Isotropic Remeshing [Alliez et al. ‘03]

Observation:
Given a parameterization of S over a 2D domain, we can pull back a triangulation of the 2D domain to a triangulation of the mesh.*

*May have intersecting triangles
Isotropic Remeshing [Alliez et al. ‘03]

Questions:
1. Which parameterization do we choose?
2. How do we triangulate the 2D domain?
Isotropic Remeshing [Alliez et al. ‘03]

1. **Which parameterization do we choose?**
Use a conformal parameterization. The distortion is strictly due to scaling, so we can undo that by appropriately tesselating the 2D domain.

[Global Conformal Surface Parameterization, Gu and Yau]
Isotropic Remeshing [Alliez et al. ‘03]

2. How do we triangulate the 2D domain?
If we have a point sampling, we can compute the (constrained) Delaunay triangulation...
So how do we choose the point set?
Isotropic Remeshing [Alliez et al. ‘03]

Goal:
We would like to undue the area distortion caused by the conformal map.

[Global Conformal Surface Parameterization, Gu and Yau]
Isotropic Remeshing [Alliez et al. ‘03]

Goal:
We would like to undue the area distortion caused by the conformal map.

Approach:
Use the distortion to sample the 2D domain adaptively.
Isotropic Remeshing [Alliez et al. ‘03]

Goal:
We would like to undo the area distortion caused by the conformal map.

Approach:
Use the distortion to sample the 2D domain adaptively.

Challenge:
Just because the points are randomly distributed, that doesn’t make them uniform. [Isotropic Surface Remeshing, Alliez et al.]
Isotropic Remeshing [Alliez et al. ‘03]

Update/Solve for well-distributed positions.
Given a density function ρ, solve for a point set P and a partition of the 2D domain:

$$\Omega = \bigcup_{p \in P} R_p$$

that minimizes:

$$E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \|x - p\|^2 \, dx$$
Isotropic Remeshing [Alliez et al. ‘03]

\[E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \|x - p\|^2 \, dx \]

Lloyd Relaxation:
Though finding the optimal solution is hard, improving on a solution is easy.

[Isotropic Surface Remeshing, Alliez et al.]
Isotropic Remeshing [Alliez et al. ‘03]

\[E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \| x - p \|^2 \, dx \]

Lloyd Relaxation:
Though finding the optimal solution is hard, improving on a solution is easy.

Observations:
- Given the positions \(P \), the \(R_p \) minimizing the energy are the Voronoi regions of \(p \in P \).
Isotropic Remeshing [Alliez et al. ‘03]

\[E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \| x - p \|^2 \, dx \]

Lloyd Relaxation:
Though finding the optimal solution is hard, improving on a solution is easy.

Observations:

– Given the positions \(P \), the \(R_p \) minimizing the energy are the Voronoi regions of \(p \in P \).

– Given the regions \(R_p \), the \(p \) minimizing the energy are the \(\rho \)-weighted centers of \(R_p \).
Isotropic Remeshing [Alliez et al. ‘03]

\[E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \| x - p \|^2 \, dx \]

Implementation:
Iteratively alternate between computing the Voronoi regions of the points in \(P \), and computing the centers of the regions.
Isotropc Remeshing [Alliez et al. ‘03]

\[E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \left\| x - p \right\|^2 dx \]

Applying this using the distortion weights from the conformal map, we get an isotropic tessellation.
Isotropic Remeshing [Alliez et al. ‘03]

\[E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \|x - p\|^2 \, dx \]

Adapting the weights to take into account, curvature, you can get curvature-adapted tessellations.
Isotropic Remeshing [Alliez et al. ‘03]

\[E(P, R) = \sum_{p \in P} \int_{x \in R_p} \rho(x) \| x - p \|^2 \, dx \]

Constraining the Delaunay Triangulation, you can preserve edges in the triangulation.
And many other interesting problems in this domain...

Computational geometry and geometry processing:
fascinating research fields
 – needs theoretical guarantees
 – Needs efficient and practical results
Questions?

memari@telecom-paristech.fr