On the Universality of Burnashev’s Error Exponent

Aslan Tchamkerten and I. Emre Telatar, Member, IEEE

Abstract—We consider communication over a time-invariant discrete memoryless channel (DMC) with noiseless and instantaneous feedback. We assume that the transmitter and the receiver are not aware of the underlying channel, however, they know that it belongs to some specific family of DMCs. Recent results show that for certain families (e.g., binary-symmetric channels and Z channels) there exist coding schemes that universally achieve any rate below capacity while attaining Burnashev’s error exponent. We show that this is not the case in general by deriving an upper bound to the universally achievable error exponent.

Index Terms—Burnashev’s error exponent, discrete memoryless channels (DMCs), feedback, composite hypothesis testing, two-message communication, unknown channel, zero-rate communication.

I. INTRODUCTION

Burnashev [1] proved that, given a discrete memoryless channel (DMC) Q with noiseless and instantaneous (causal) feedback, and with finite input and output alphabets \mathcal{X} and \mathcal{Y}, the maximum achievable error exponent is given by

$$E_H(R,Q) \triangleq \max_{(\mathcal{X},\mathcal{Y})} \sum_{x \in \mathcal{X}} D(Q(x|\cdot) \| Q(x'|\cdot)) \left(1 - \frac{R}{C(Q)}\right)$$

where

$$D(Q(x|\cdot) \| Q(x'|\cdot)) \triangleq \sum_{y \in \mathcal{Y}} Q(y|x) \log \frac{Q(y|x)}{Q(y|x')}$$

is the Kullback–Liebler distance between the output distributions induced by the input letters x and x', and where R and $C(Q)$ denote the rate and the channel capacity. We will refer to $E_H(R,Q)$ as the Burnashev’s error exponent.

Suppose now that the DMC under use is revealed neither to the transmitter nor to the receiver, but that it is known that the channel belongs to some specific set \mathcal{Q} of DMCs. Does Burnashev’s result still hold? In other words, can one design a feedback coding scheme that asymptotically (as the decoding delay tends to infinity) yields the error exponent (1) simultaneously on all channels in \mathcal{Q}? A partial answer to this question is provided in [5] for the family of binary symmetric channels (BSCs) with crossover probability $\epsilon \in [0,1]$ and with $L \in [0,1/2]$. Given any $\gamma \in [0,1)$ there exists coding schemes that achieve simultaneously over that family a rate guaranteed to be at least γ times the channel capacity, and with a corresponding maximum error exponent, i.e., equal to (1). Similarly, if one now is interested in having a low error probability instead of a high communication rate, there exists coding schemes that universally achieve a rate guaranteed to be at most γ times the channel capacity, and with a corresponding error exponent that is also maximum. A similar result holds for the class of Z channels with crossover probability $\epsilon \in [0,1]$ and with $L \in [0,1/2]$. In [5] it is shown that, given any $\gamma \in [0,1)$, there exist coding schemes that simultaneously reach the maximum error exponent at a rate equal to γ times the channel capacity. In other words, for BSCs and Z channels it is possible to achieve Burnashev’s error exponent universally while having a certain control on the rate.

In this correspondence, we consider the possibility of extending the results in [5] to arbitrary families of channels, such as for instance the set of all binary-input channels with some finite output alphabet. We show that, under some conditions on a pair of channels Q_1 and Q_2, zero no-rate coding scheme achieves the Burnashev’s exponent simultaneously on both Q_1 and Q_2. Therefore, the results obtained in [5] cannot be extended to arbitrary families of channels: in general, given a family of DMCs, Burnashev’s error exponent is not universally achievable at all rates below capacity.

II. PRELIMINARIES AND MAIN RESULT

Throughout this correspondence, we shall be concerned with feedback communication and assume that there are two possible messages to be conveyed, either message A or message A'. Assume that the channel is a DMC Q, revealed to both the transmitter and the receiver, and with finite input and output alphabet \mathcal{X} and \mathcal{Y}. In the presence of perfect feedback, the encoder is aware of what has been previously received by the decoder. This allows to have a variable time delivery per message and also allows the encoder to adapt the code-words on the run, based on the available feedback information. Hence, the following definition of coding scheme for feedback communication is natural.\footnote{In denotes the logarithm to the base e.}

\footnote{Definition 1 is standard (see, e.g., [3]).}

Manuscript received September 14, 2004; revised January 26, 2005. This work was supported in part by the National Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation under Grant 5005-67322.

The authors are with the Laboratoire de Théorie de l’Information (LTHI), EPFL, Lausanne, Switzerland (e-mail: aslan.tchamkerten@epfl.ch, emre.telatar@epfl.ch).

Communicated by K. Kobayashi, Senior Editor for Shannon Theory.

Digital Object Identifier 10.1109/TIT.2005.850229.

REFERENCES

Fig. 1. Given a coding scheme \((\Xi, \Gamma, T)\) for a binary-output channel, the set of all received sequences for which a decision is made is represented by the leaves of a complete binary tree. Message \(A\) is declared at the square leaves whereas message \(N\) is declared at the round leaves. The decoder climbs the tree by moving left or right depending whether it receives a zero or a one, until it reaches a leaf and makes a decision accordingly.

Definition 1 (Two-Message Coding Scheme): A codebook (or encoder) is a sequence of functions

\[
\Xi \triangleq \{X_n : \{A, N\} \times Y^{n-1} \rightarrow \mathcal{X}\}_{n \geq 1}
\]

(2)

where \(X_n(m, y^{n-1})\) represents the symbol sent at time \(n\), given that the message to be conveyed is \(m\), and that the received symbols up to time \(n-1\) are \(y^{n-1} \triangleq y_1, y_2, \ldots, y_{n-1}\).

A decoder consists of a sequence of functions

\[
\Gamma \triangleq \{\gamma_n : \mathcal{Y}^n \rightarrow \{A, N\}\}_{n \geq 1}
\]

(3)

and a stopping time (decision time) \(T\) with respect to the received symbols \(Y_1, Y_2, \ldots\). The decoder declares the message \(\gamma_T(y^T)\). A two-message coding scheme is a tuple \((\Xi, \Gamma, T)\).

Consider a two-message coding scheme \((\Xi, \Gamma, T)\) used over the channel \(Q\). Given the decoder \((\Gamma, T)\), the set of all output sequences for which a decision is made can be represented by the leaves of a complete \(|\mathcal{X}|\)-ary tree. The set of leaves is divided into two sets that correspond to declaring either message \(A\) or message \(N\) (see Fig. 1 for an example). The decoder starts climbing the tree from the root. At each time it chooses the branch that corresponds to the received symbol. When a leaf is reached, the decoder makes a decision as indicated by the label of the leaf.

From a probabilistic point of view, the decision time \(T\) determines the probability space of the output sequences, or, equivalently, the set of leaves. On this probability space, each sequence of encoding functions \(\{X_n(m, \cdot)\}_{n \geq 1}, m \in \{A, N\}\), together with the transition probability matrix of the channel \(Q\), induces a probability measure that we denote by \(P_m\). In other words, associated to any channel \(Q\) and two-message coding scheme \((\Xi, \Gamma, T)\), there is a natural probability space with two probability measures \(P_A\) and \(P_N\) that correspond to the sending of message \(A\) or \(N\). It will be important in the sequel to have this perspective in mind, namely, to consider the messages as indicators of probabilities on the probability space defined by the decision time. In the sequel, we shall often be concerned with the relative entropy between \(P_A\) and \(P_N\) that we denote by \(D(P_A \| P_N)\). This quantity is naturally defined on the probability space set by the decision time.

Given a coding scheme \((\Xi, \Gamma, T)\), the probability of declaring message \(N\) while \(A\) is sent is denoted \(P_A(N)\). In other words, \(P_A(N)\) denotes the probability under \(P_A\) of the set of all leaves of the decision tree for which message \(N\) is declared. Similarly, let \(P_N(A)\) be the probability of declaring message \(A\) while \(N\) is sent. With these conventions, the average error probability \(P(\mathcal{E}_i)\) is given by \((1/2)(P_A(N) + P_N(A))\) and the average decoding time \(\mathbb{E}T\) is given by \((1/2)(\mathbb{E}T + \mathbb{E}T)\), where the subscripts indicate to which message the expectations refer to.

Given a DMC \(Q\) and a sequence of two-message coding schemes \(\omega = \{(\Xi, \Gamma, T)\}_{i \geq 1}\), let \(P_A^i(N)\) and \(P_N^i(A)\) denote the error probabilities with respect to \((\Xi, \Gamma, T)\) and \(Q\).

Definition 2 (Error Exponents): Given a DMC \(Q\) let \(\omega = \{(\Xi, \Gamma, T)\}_{i \geq 1}\) be a sequence of two-message coding schemes such that \(P_A^i(N) \rightarrow 0\) and \(P_N^i(A) \rightarrow 0\) as \(i \rightarrow \infty\). The error exponents with respect to messages \(A\) and \(N\) are defined as

\[
E_A(\omega, Q) \triangleq \liminf_{i \rightarrow \infty} - \frac{1}{\mathbb{E}T_i} \ln P_A^i(N)
\]

(4)

and

\[
E_N(\omega, Q) \triangleq \liminf_{i \rightarrow \infty} - \frac{1}{\mathbb{E}T_i} \ln P_N^i(A)
\]

(5)

and the average error exponent is defined as

\[
E(\omega, Q) \triangleq \liminf_{i \rightarrow \infty} - \frac{1}{\mathbb{E}T_i} \ln P(\mathcal{E}_i)
\]

(6)

where \(P(\mathcal{E}_i)\) and \(\mathbb{E}T_i\) denote the average error probability and the average decoding time with respect to \((\Xi, \Gamma, T)\) and \(Q\).

We now give a precise formulation of our problem. Given a family of DMCs \(Q\), which elements have the same input and output alphabets \(\mathcal{X}\) and \(\mathcal{Y}\), does a sequence of two-message coding schemes \(\omega\) exist such that

\[
E(\omega, Q) = E_B(0, Q)
\]

for all \(Q \in \mathcal{Q}\)? The main result of this correspondence is a sufficient condition on a pair of channels \(Q_1\) and \(Q_2\) under which the answer is negative. First, let us define

\[
K(Q_1, Q_2) \triangleq \max_{(x,r) \in \mathcal{X} \times X} D(Q_1(\cdot | x) \| Q_1(\cdot | x')) + D(Q_2(\cdot | x') \| Q_2(\cdot | x')).
\]

(7)

Theorem: Let \(Q_1\) and \(Q_2\) be two DMCs on \(\mathcal{X} \times \mathcal{Y}\) such that for \((i, j) \in \{(1, 2), (2, 1)\} \setminus \{(2, 2)\}\),

\[
K(Q_i, Q_j) < 2 \max_{(x,r) \in \mathcal{X} \times X} D(Q_i(\cdot | x) \| Q_i(\cdot | x')).
\]

(8)

Clearly, such a sequence exists if the channel capacity \(C(Q)\) is strictly positive.

Notice that \(E_B(0, Q_j) \leq K(Q_i, Q_j)\) for \(i, j \in \{1, 2\}\).
For any sequence of two-message coding schemes \(\omega_i \), either \(E(\omega, Q_1) < E_H(0, Q_1) \), or \(E(\omega, Q_2) < E_H(0, Q_2) \), or both.

Since the zero-rate error exponent is upper-bounded by the error exponent for a fixed number of messages, whenever \(Q_1 \) and \(Q_2 \) satisfy the hypothesis of the theorem, no zero-rate coding scheme achieves an error exponent equal to \(E_H(0, Q_1) \) on \(Q_1 \) and an error exponent equal to \(E_H(0, Q_2) \) on \(Q_2 \). Stated otherwise, if \(Q_1 \) and \(Q_2 \) satisfy the hypothesis of the theorem, then no zero-rate coding scheme achieves on both channels the maximum error exponent that could be obtained if the channels were revealed to both the transmitter and the receiver. A simple example of channels \(Q_1 \) and \(Q_2 \) that satisfy the assumptions of the theorem is given by \(Q_1 = \text{BSC}(\varepsilon) \) and \(Q_2 = \text{BSC}(1 - \varepsilon) \) where \(0 < \varepsilon < 1/2 \). In this case, we have

\[
K(Q_1, Q_2) = \max_{(\varepsilon, \varepsilon') \in [0,1] \times [0,1]} D(Q_1(\cdot | x) \| Q_2(\cdot | x'))
\]

\[
= \max_{(\varepsilon, \varepsilon') \in [0,1] \times [0,1]} D(Q_1(\cdot | x) \| Q_2(\cdot | x'))
\]

\[
= K(Q_2, Q_1)
\]
(9)

and (8) holds.\(^7\)

III. TWO-MESSAGE CODING FOR TWO CHANNELS

In this section, we will prove the theorem.

Consider two probability measures \(P_1 \) and \(P_2 \) on a probability space \((\Omega, \mathcal{F})\). It is well known that unless \(P_1 \) and \(P_2 \) are singular,\(^8\) the quantities \(P_1(B) \) and \(P_2(B') \) cannot both be rendered arbitrarily small by an appropriate choice of \(B \in \mathcal{F} \).\(^9\) More precisely, from the data processing inequality for divergence,\(^10\) we have the following lower bound on \(P_1(B) \):

\[
P_1(B) \geq \exp \left[- D(P_2 \| P_1) - H(P_1(B)) \right]
\]
(12)

where \(H(P_1) \triangleq - \alpha P_1 \log P_1 - (1 - \alpha) \log (1 - \alpha) \). In the sequel, we shall use (12) in order to derive bounds on the maximum error exponents that can simultaneously be achieved over two channels.

\(^7\)Note that there are pairs of BSCs, with crossover probabilities \(\varepsilon_1 \) and \(\varepsilon_2 \), such that \(\varepsilon_1 + \varepsilon_2 \neq 1 \) and that also satisfy (8), e.g., \(\varepsilon_1 = 0.1 \) and \(\varepsilon_2 = 0.77 \).

\(^8\)\(P_1 \) and \(P_2 \) are said to be singular if there exists some \(B \in \mathcal{F} \) such that \(P_1(B) = 0 \) and \(P_2(B) = 1 \).

\(^9\)\(\mathcal{B} \) denotes the complementary set of \(B \) in \(\Omega \).

\(^{10}\)Let \((\Omega, \mathcal{F})\) be a probability space, let \(P_1 \) and \(P_2 \) be two probability measures on \((\Omega, \mathcal{F})\), and let \(B \in \mathcal{F} \). From the data processing inequality for divergence [3, p. 55], we have

\[
D(P_2 \| P_1) \geq D(P_2(B) \| P_1(B))
\]
(10)

where

\[
D(P_2(B) \| P_1(B)) \triangleq P_2(B) \log \frac{P_2(B)}{P_1(B)} + (1 - P_2(B)) \log \frac{1 - P_2(B)}{1 - P_1(B)}
\]
(11)

Expanding (10) we deduce that

\[
P_1(B) \geq \exp \left[- D(P_2 \| P_1) - H(P_1(B)) \right]
\]

where \(H(P_2(B)) \triangleq - P_2(B) \log P_2(B) - (1 - P_2(B)) \log (1 - P_2(B)) \).

Suppose we use some coding scheme \((\Xi, \Gamma, T)\) on a known channel \(Q \). Letting \(B \) be the set of leaves for which message \(A \) is declared, respectively, the set of leaves for which message \(N \) is declared, from (12) we obtain

\[
P_N(A) \geq \exp \left[- D(P_A \| P_N) - H(P_N(A)) \right]
\]

and

\[
P_A(A) \geq \exp \left[- D(P_A \| P_N) - H(P_A(A)) \right]
\]

(13)

Note that since one is usually interested in the case where \(P_N(A) \) and \(P_N(N) \) are small, the terms on the right-hand side of the two inequalities in (13) are essentially \(\exp[- D(P_A \| P_N)] \) and \(\exp[- D(P_N \| P_A)] \).

Assume now that the transmitter and the receiver still want to communicate using \((\Xi, \Gamma, T)\), but that neither the transmitter nor the receiver know which channel will be used, it might be either \(Q_1 \) or \(Q_2 \), both defined on the same common input and output alphabets \(\mathcal{X} \) and \(\mathcal{Y} \). Let \(P_{m,i} \) denote the probability on the output sequences when message \(m \in \{ A, N \} \) is sent through channel \(Q_i \), \(i \in \{ 1, 2 \} \). We now have four distributions defined on the probability space set by the decision time \(T \), namely, \(P_{m,i} \), with \(m \in \{ A, N \} \) and \(i \in \{ 1, 2 \} \). There are also four error probabilities \(P_{A,1}(N) \), \(P_{A,2}(N) \), \(P_{N,1}(A) \), and \(P_{N,2}(A) \). Using (12) with \(B = N \), and \((P_1, P_2) = (P_{A,1}, P_{N,1}), (P_{A,1}, P_{N,2}), \ldots \) we get the following inequalities:

\[
P_{A,1}(N) \geq \exp \left[- D(P_{N,1} \| P_{A,1}) - H(P_{N,1}(N)) \right]
\]
(14)

\[
P_{A,2}(N) \geq \exp \left[- D(P_{N,2} \| P_{A,2}) - H(P_{N,2}(N)) \right]
\]
(15)

\[
P_{N,1}(A) \geq \exp \left[- D(P_{N,1} \| P_{A,1}) - H(P_{N,1}(A)) \right]
\]
(16)

\[
P_{N,2}(A) \geq \exp \left[- D(P_{N,2} \| P_{A,2}) - H(P_{N,2}(A)) \right]
\]
(17)

In a similar fashion one also obtains

\[
P_{N,1}(A) \geq \exp \left[- D(P_{N,1} \| P_{A,1}) - H(P_{N,1}(A)) \right]
\]
(18)

\[
P_{N,2}(A) \geq \exp \left[- D(P_{N,2} \| P_{A,2}) - H(P_{N,2}(A)) \right]
\]
(19)

These equations can be interpreted in terms of the error probabilities of a hypothesis test that distinguishes the two composite hypothesis “message \(A \)” = \(\{ P_{A,1}, P_{N,2} \} \) and “message \(N \)” = \(\{ P_{N,1}, P_{N,2} \} \). The following proposition will be the key ingredient in the proof of the theorem.

Proposition: Let \(Q_1 \) and \(Q_2 \) be two DMCs on \(\mathcal{X} \times \mathcal{Y} \). For any coding scheme \((\Xi, \Gamma, T)\),

\[
D(P_{N,1} \| P_{A,1}) + D(P_{N,1} \| P_{A,2}) \leq K(Q, Q_2) E_{N,1} T
\]

\[
D(P_{N,2} \| P_{A,2}) + D(P_{N,2} \| P_{A,1}) \leq K(Q_1, Q_2) E_{N,2} T
\]

where \(K(Q, Q_1) \) is defined in (7). If \(K(Q, Q_2) = 0 \) and \(E_{N,1}, E_{N,2} \rightarrow \infty \), we set \(K(Q, Q_1) = 0 \).

Proof of the Proposition: We only prove inequality (22). Inequality (23) can then be easily derived from (22) by exchanging the roles of \(Q_1 \) and \(Q_2 \).

We have the following cases:

a. \(K(Q_1, Q_2) = \infty \),

b. \(0 < K(Q_1, Q_2) < \infty \) and \(E_{N,1}, E_{N,2} \rightarrow \infty \),

c. \(K(Q_1, Q_2) < \infty \) and \(E_{N,1}, E_{N,2} \rightarrow \infty \),

d. \(K(Q_1, Q_2) = 0 \) and \(E_{N,1}, E_{N,2} \rightarrow \infty \).
convexity of the Kullback–Leibler distance in both of its arguments (see, e.g., [2, Theorem 2.7.2]) the function

\[\frac{P(\beta^A, \beta^N)}{P(\beta^N)} \mapsto D(P_1(\beta^N)\|P_1(\beta^A)) + D(P_1(\beta^N)\|P_2(\beta^A)) \]

(32)
is convex and its maximum occurs at some \((\beta^A, \beta^N)\) where \(\beta^A\) and \(\beta^N\) have all but one coordinate equal to zero. Therefore we have

\[
\max_{\beta^A, \beta^N} \left[D(P_1(\beta^N)\|P_1(\beta^A)) + D(P_1(\beta^N)\|P_2(\beta^A)) \right] \\
= \max_{(x,x') \in \mathcal{X} \times \mathcal{X}} \left[D(Q_1(\cdot|x)\|Q_1(\cdot|x')) + D(Q_1(\cdot|x')\|Q_2(\cdot|x')) \right] \\
= K(Q_1, Q_2).
\]

(33)

From (29), (31), and (33) we deduce that

\[\mathbb{E}_{N,1} S_1 \leq 0 \]

(34)

and that, for all \(n \geq 1\) and \(y^n \in \mathcal{Y}^n\)

\[\mathbb{E}\left[|s_{n+1} - s_n|\right]^{n, Q_1, N} \leq s_n. \]

(35)

From (28) and (35), the sequence \(\{s_n\}_{n \geq 1}\) is a supermartingale with respect to \(Y_1, Y_2, \ldots\) when this sequence is generated according to \(P_{N,1}\).

We now check that the Stopping Theorem for Supermartingales can be applied, i.e., we verify that for all \(n \geq 1\)

\[
\mathbb{E}\left[|s_{n+1} - s_n|\right]^{s_n, Q_1, N} < M
\]

for some constant \(M < \infty\). If we consider the conditioning on \(y^n\) instead of \(s_n\), from (29) we have

\[
\mathbb{E}\left[|s_{n+1} - s_n|\right]^{y^n, Q_1, N} \leq \frac{K(Q_1, Q_2)}{2} + \mathbb{E}\left[\sum_{k} \frac{P(Y_{n+1} = k|y^n, Q_1, N)}{P(Y_{n+1} = k|y^n, Q_1, A)P(Y_{n+1} = k|y^n, Q_2, A)} \right]^{y^n, Q_1, N}
\]

(36)

From (27) we deduce that the expectation on the right-hand side of (36) can be upper-bounded by some finite constant for all \(n \geq 1\). Hence, there exists some \(M < \infty\) such that

\[\mathbb{E}\left[|s_{n+1} - s_n|\right]^{s_n, Q_1, N} < M \]

(37)

for all \(n \geq 1\). Since by assumption \(\mathbb{E}_{N,1} T < \infty\), the Stopping Theorem for Supermartingales yields

\[0 \geq \mathbb{E}_{N,1} S_1 \geq \mathbb{E}_{N,1} S_T. \]

(38)

Case d: If \(K(Q_1, Q_1) \equiv 0\) the channels \(Q_1\) and \(Q_2\) are the same and with zero capacity. In particular, \(Z_n = 0\) for all \(n \geq 1\) and hence \(D(P_{N,1}\|P_{A,1}) + D(P_{N,1}\|P_{A,2}) \equiv 0\).

Proof of the Theorem. The main idea that underlies the proof is the following. Informally, from the proposition we will first deduce an upper bound on the sum of the error exponents that can be obtained by any sequence of two-message coding schemes \(\omega\) on two channels \(Q_1\) and \(Q_2\). Under the assumption (8), this upper bound is smaller than \(E_{\omega}(0, Q_1) + E_{\omega}(0, Q_2)\), which yields the desired result.

Pick a coding scheme \((\mathcal{E}, \Gamma, T)\). From the proposition we have

\[D(P_{N,1}\|P_{A,1}) + D(P_{N,1}\|P_{A,2}) \leq K(Q_1, Q_2)\mathbb{E}_{N,1} T \]

(39)
and,
\[
D(P_{N,2} \| P_{A,2}) + D(P_{N,2} \| P_{A,1}) \leq K(Q_2, Q_1) E_{N,2} T. \tag{40}
\]

By exchanging the roles of \(A\) and \(N\) we also obtain
\[
D(P_{A,1} \| P_{N,1}) + D(P_{A,1} \| P_{N,2}) \leq K(Q_1, Q_2) E_{A,1} T \tag{41}
\]
and
\[
D(P_{A,2} \| P_{N,2}) + D(P_{A,2} \| P_{N,1}) \leq K(Q_2, Q_1) E_{A,2} T. \tag{42}
\]

From (39)–(42) we get
\[
D(P_{N,1} \| P_{A,1}) + D(P_{N,2} \| P_{A,1}) \\
+ D(P_{A,1} \| P_{N,1}) + D(P_{A,2} \| P_{N,1}) \\
+ D(P_{N,1} \| P_{A,2}) + D(P_{N,2} \| P_{A,2}) \\
+ D(P_{A,1} \| P_{N,2}) + D(P_{A,2} \| P_{N,2}) \\
\leq 2K(Q_1, Q_2) E_{N} T + 2K(Q_2, Q_1) E_{A} T \tag{43}
\]
where \(E_{N} T\) denotes the average decoding time when channel \(Q_1\) is used, i.e., \(E_{N} T = (1/2) (E_{N,1} T + E_{N,2} T)\). From (43), we infer that at least one of the following two inequalities holds:
\[
\min \left\{ D(P_{N,1} \| P_{A,1}) + D(P_{N,2} \| P_{A,1}), \right. \\
D(P_{A,1} \| P_{N,1}) + D(P_{A,2} \| P_{N,1}) \right\} \\
\leq K(Q_1, Q_2) E_{N} T \tag{44}
\]
\[
\min \left\{ D(P_{N,1} \| P_{A,2}) + D(P_{N,2} \| P_{A,2}), \right. \\
D(P_{A,1} \| P_{N,2}) + D(P_{A,2} \| P_{N,2}) \right\} \\
\leq K(Q_2, Q_1) E_{A} T. \tag{45}
\]

Suppose now there exists a sequence of two-message coding schemes \(\omega = \{(E_i, \Gamma_i, T_i)\}_{i=1}^\infty\) such that the error probabilities \(P_{A,1}^i (N), P_{A,2}^i (N), P_{N,1}^i (A),\) and \(P_{N,2}^i (A)\) vanish as \(i \to \infty\). It follows that at least one of the following two inequalities holds for infinitely many \(i:\)
\[
\min \left\{ D(P_{N,1}^i \| P_{A,1}^i) + D(P_{N,2}^i \| P_{A,1}^i), \right. \\
D(P_{A,1}^i \| P_{N,1}^i) + D(P_{A,2}^i \| P_{N,1}^i) \right\} \\
\leq K(Q_1, Q_2) E_{N} T \tag{46}
\]
\[
\min \left\{ D(P_{N,1}^i \| P_{A,2}^i) + D(P_{N,2}^i \| P_{A,2}^i), \right. \\
D(P_{A,1}^i \| P_{N,2}^i) + D(P_{A,2}^i \| P_{N,2}^i) \right\} \\
\leq K(Q_2, Q_1) E_{A} T. \tag{47}
\]

Suppose that (46) holds for infinitely many \(i\). Since by assumption
\[
K(Q_1, Q_2) < 2 \max_{x, x'} D(Q_1 (\cdot | x) \| Q_1 (\cdot | x')), \tag{48}
\]
from the inequalities (14)–(15) and (18)–(19) we deduce that at least one of the following two inequalities holds:
\[
E_x (\omega, Q_1) < \max_{x, x'} D(Q_1 (\cdot | x) \| Q_1 (\cdot | x')) \tag{49}
\]
\[
E_N (\omega, Q_1) < \max_{x, x'} D(Q_1 (\cdot | x) \| Q_1 (\cdot | x')) \tag{50}
\]
and, therefore,
\[
E(x, Q_1) < \max_{x, x'} D(Q_1 (\cdot | x) \| Q_1 (\cdot | x')). \tag{51}
\]
Similarly, if (47) holds for infinitely many \(i\)
\[
E(x, Q_2) < \max_{x, x'} D(Q_2 (\cdot | x) \| Q_2 (\cdot | x')). \tag{52}
\]
Hence, whenever \(Q_1\) and \(Q_2\) satisfy the hypothesis of the theorem, for any sequence of coding schemes \(\omega\), either \(E(x, Q_1) < E_H (0, Q_1)\) or \(E(x, Q_2) < E_H (0, Q_2)\).

IV. CONCLUSION

Given a family of DMCs \(Q\), in general, no zero-rate coding scheme achieves the maximum error exponent universally over \(Q\). Hence, the property of the families of BSCs and Z channels that was shown in [5] does not hold for an arbitrary class of channels. Even with perfect feedback, the fact that the channel is unknown may result in an error exponent smaller than the best error exponent that could have been obtained if the channel were revealed to the transmitter and the receiver [1]. If we look at the problem of two-message coding over two channels from a hypothesis testing perspective, as already mentioned previously, the goal of the decoder is to discriminate between two composite hypothesis “message \(A^i\) = \{\(P_{A,1}^i, P_{A,2}^i\)\} and “message \(A=e\) = \{\(P_{N,1}, P_{N,2}\)\}. The encoder, with the help of feedback has a certain control on the output of the channel so that it may help the decoder to better distinguish between the two hypothesis. From our result, we may conclude in a certain sense that, in spite of the help provided by feedback, it alone may not be enough if the underlying channel is unknown to both the transmitter and the receiver.

ACKNOWLEDGMENT

The authors wish to thank I. Csiszár and C.-E. Pfister for stimulating discussions, and M. V. Burnashev, J. L. Massey, and B. Rimoldi for valuable comments on the manuscript.

REFERENCES