
ar
X

iv
:s

ub
m

it/
00

37
01

5 
 [

m
at

h.
ST

] 
 8

 M
ay

 2
01

0

Tracking a Threshold Crossing Time of

a Gaussian Random Walk Through

Correlated Observations

Marat V. Burnashev∗ , Aslan Tchamkerten†

Institute for Information Transmission Problems
Russian Academy of Sciences

Moscow, Russia

Communications and Electronics Dpt.
Telecom ParisTech

75634 Paris Cedex 13, France

Abstract: Given two dependent stochastic processes X and Y , and a stop-
ping time τ on X, the tracking stopping time problem consists in finding a
stopping time η on Y that best tracks τ , e.g., so as to minimize the mean
absolute deviation E|η − τ |.

This problem formulation applies in several areas including control, com-
munication, and finance. However, the problem is in general hard to solve
analytically as it generalizes the well-known (Bayesian) change-point de-
tection problem for which solutions have been reported only for specific
settings.

In this paper we provide an analytical solution to a tracking stopping
time problem that cannot be formulated as a change-point problem. For
the setting where X and Y are correlated Gaussian random walks, and
where τ is the crossing time of some given threshold, we provide upper
and lower bounds on infη E|η − τ | whose main asymptotic terms coincide
as the threshold tends to infinity. The results immediately extend to the
continuous time setting where X and Y are correlated standard Brownian
motions with drift.

AMS 2000 subject classifications: Primary 62L10; secondary 60G40.
Keywords and phrases: Optimal stopping, quickest decision, sequential
analysis.

1. Background

The tracking stopping time (TST) problem is defined as follows. Let X =
{Xt}t≥0 be a discrete-time stochastic process and let τ be a stopping time
defined over X . Statistician has access to X only through correlated observa-
tions Y = {Yt}t≥0. Knowing the probability distribution of (X,Y ) and the
stopping rule τ , Statistician wishes to find a stopping η so as to minimize the
mean E|η − τ |. (Recall that a stopping time with respect to a stochastic pro-
cess {Xt}t≥0 is a random variable τ taking values in the positive integers such
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that {τ = t} ∈ Ft, for all t ≥ 0, where Ft denotes the σ-algebra generated by
X0, X1, . . . , Xt.)

The TST problem formulation, introduced in [8], naturally generalizes to
continuous time and other delay penalty functions such as E(η − τ)+ for a
fixed ‘false-alarm’ probability level P(η < τ). Important situations are when the
observation process is a noisy version of X , a delayed version of X , or represents
partial information with respect toX — at time t,Xt = (X̃t, Ỹt) and Statistician

observes only Yt = Ỹt. For specific examples of applications of the TST problem
related to monitoring, forecasting, and communication we refer to [8].

In [8], an algorithmic approach is proposed for discrete-time settings where
all the Xi’s and Yi’s take values in a common finite alphabet (otherwise the
X and Y processes are arbitrary), and where τ is bounded by some constant
c ≥ 1. Given the probability distribution of (X,Y ) and the stopping rule of τ ,
the algorithm outputs the minimum reaction delay E(η − τ)+ together with an
optimal stopping rule, for all false-alarm probability levels P(η < τ) ≤ α, α ∈
[0, 1]. Under certain conditions on (X,Y ) and τ , the computational complexity
of this algorithm is polynomial in c.

What motivated an algorithmic approach for the TST problem, is that it
generalizes the Bayesian change-point detection problem, a long studied problem
with applications to industrial quality control that dates back to the 1940’s [1],
and for which analytical solutions have been reported only for specific, mostly
asymptotic, settings.

In the Bayesian change-point problem, there is a random variable θ, tak-
ing values in the positive integers, and two probability distributions P0 and
P1. Under P0, the conditional density function of Yt given Y1, Y2, . . . , Yt−1 is
f0(Yt|Y1, Y2, . . . , Yt−1), for every t ≥ 0. Under P1, the conditional density func-
tion of Yt given Y1, Y2, . . . , Yt−1 is f1(Yt|Y1, Y2, . . . , Yt−1), for every t ≥ 0. The
observed process is distributed according P θ which assigns the same conditional
density functions as P0 for all t < θ, and the same conditional density functions
as P1 for all t ≥ θ.

The Bayesian change-point problem typically consists in finding a stopping
time η, with respect to {Yt}, that minimizes some function of the delay η − τ .
Shiryaev [9, 10], for instance, considered minimizing

E(η − θ)+ + λP(η < θ)

for some given constant λ ≥ 0. Assuming a geometric prior on the change-point
θ, and that before and after θ the observations are independent with common
density function f0, for t < θ, and f1 for t ≥ θ, Shiryaev showed that an
optimal η stops as soon as the posterior probability that a change occurred
exceeds a certain fixed threshold. Later, Yakir [12] generalized Shiryaev’s result
by considering finite-state Markov chains. For more general prior distributions
on θ, the problem is known to become difficult to handle. However, in the limit
of small false-alarm probabilities P(η < θ) → 0, Lai [3] and, later, Tartakovsky
and Veeravalli [11], derived asymptotically optimal detection policies for the
Bayesian change-point problem under general assumptions on the distributions



Burnashev and Tchamkerten/Tracking Stopping Times 3

of the change-point and observed process. (For the non-Bayesian version of the
change-point problem we refer the reader to [5, 7].)

It can be shown that any Bayesian change-point problem can be formulated
as a TST problem, and that a TST problem cannot, in general, be formulated as
a Bayesian change-point problem [8]. The TST problem therefore generalizes the
Bayesian change-point problem, which is analytically tractable only in special
cases.

Our main contribution relates to the situation where X and Y are correlated
Gaussian random walks given by X0 = Y0 = 0, Xt = s · t +

∑t
i=1 Vi and

Yt = Xt + ε
∑t

i=1 Wi, for t ≥ 1 and some arbitrary constant s > 0 and ε > 0.
The Vi’s and Wi’s are assumed to be independent standard Gaussian (i.e., zero
mean unit variance) random variables. The stopping time to be tracked is the
threshold crossing moment τl = inf{t ≥ 0 : Xt ≥ l} for some arbitrary threshold
level l > 0. For this setting, we provide upper and lower bounds on infη E|η− τl|
that imply

inf
η
E|η − τl| =

√
2lε2

πs3(1 + ε2)
(1 + o(1)) (l → ∞) (1.1)

for fixed s > 0 and ε > 0. Interestingly, (1.1) is still valid if we let η be an
estimator of τ that depends on the entire sequence Y ∞

0 ; causality doesn’t come
at the expense of increased delay in the above asymptotic regime.

For the particular case where the random walks have no drift, i.e., s = 0, we
show that E|η − τl|r = ∞ whenever r ≥ 1/2, ε > 0, and l > 0, for any estimate
η of τl that potentially may also depend on the entire observation process Y ∞

0 .
The above results naturally extends to the continuous time setting where∑t
i=1 Vi and

∑t
i=1 Wi are replaced by two independent standard Brownian mo-

tions. In particular, (1.1) remains valid for fixed s > 0 and ε > 0.
Section 2 contains the main results and Section 3 is devoted to the proofs.

2. Problem Formulation and Main Results

We consider the discrete-time processes

X : X0 = 0 Xt =
t∑

i=1

Vi + st t ≥ 1

Y : Y0 = 0 Yt = Xt + ε

t∑

i=1

Wi t ≥ 1

where V1, V2, . . . and W1,W2, . . . are two independent sequences of independent
standard (i.e., zero mean unit variance) Gaussian random variables, and where
s > 0 and ε > 0 are arbitrary constants.

Given the threshold crossing time

τl = inf{t ≥ 0 : Xt ≥ l}
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for some arbitrary level l > 0, we aim at finding a stopping time with respect
to observation process Y that best tracks τl. Specifically, we consider the opti-
mization problem

inf
η
E|η − τl| , (2.1)

where the minimization is over all stopping times η defined with respect to the
natural filtration induced by the Y process.

To avoid trivial situations, we restrict l and ε to be strictly positive. When
l = 0 or ε = 0, (2.1) is equal to zero: for l = 0, η = 0 is optimal, and for ε = 0,
η = τl is optimal.

The reason for restricting our attention to the case where also s is strictly
positive is that, when s = 0, (2.1) is infinite for all l > 0 and ε > 0. In fact,
Proposition 2.1, given at the end of this section, provides a stronger statement:
for s = 0, ε > 0, and l > 0, we have E|η − τl|r = ∞ for any r ≥ 1/2 and any
estimator η = η(Y ∞

0 ) of τl that may depend on the entire observation process
Y ∞
0 (i.e., η need not be a stopping time).
The following theorem provides a non-asymptotic upper bound on (2.1) which

is achieved by a threshold crossing stopping time applied to a certain estimate
of the X process:

Theorem 2.1 (Upper bound). Fix ε > 0, s > 0, l > 0, and define X̂t as

X̂0 = 0 X̂t = st+
1

1 + ε2
(Yt − st) for t ≥ 1.

Then, the stopping time η = inf{t ≥ 0 : X̂t ≥ l} satisfies

E |η − τl| ≤
√

2lε2

π(1 + ε2)s3
+

6

s

(
l

(2πs)3

)1/4

+

√
8(s+ 2)

πs3
+ 10 +

20

s
. (2.2)

The next theorem provides a non-asymptotic lower bound on E|η − τl| for
any estimate η = η(Y ∞

0 ) of τl that has access to the entire sequence Y ∞
0 . The

function Q(x) is defined as Q(x) = (2π)−1/2
∫∞

x
exp(−u2/2)du.

Theorem 2.2 (Lower bound). Let ε > 0 and l/s ≥ 2 with s > 0. Then, for
any integer n such that 1 ≤ n < l/s, the following lower bound holds:

inf
η(Y ∞

0 )
E|η − τl| ≥

√
2nε2

πs2(1 + ε2)

(
1−Q

(
l − sn√
n(1 + ε)

))

−
√

2

πs3

(
l− sn+

√
n

2π

)1/2

− 2− 4

s
. (2.3)

When n approaches l/s and l/s tends to infinity in a suitable way, the up-
per and lower bounds (2.2) and (2.3) become tight. The following result is an
immediate consequence of these bounds:
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Theorem 2.3 (Asymptotics). Let q be a constant such that 1/2 < q < 1. In
the asymptotic regime where l/s ≥ 2,

s

(
l

s

)q−1/2

−→ ∞ ,

and (
l

s

)1−q
ε2

1 + ε2
−→ ∞ ,

we have

inf
η(Y ∞

0
)
E|η − τl| = inf

η
E|η − τl| =

√
2lε2

πs3(1 + ε2)
[1 + o(1)] . (2.4)

In particular, (2.4) holds in the limit l → ∞ for fixed s > 0 and ε > 0.

To prove Theorem 2.1, we consider η = inf{t ≥ 0 : X̂
(c)
t ≥ l}, where X̂

(c)
t is

the estimate of Xt defined as X̂
(c)
t = st+ c(Yt− st), then optimize over c ≥ 0. It

should be noted that, in the asymptotic regime (given by Theorem 2.3) where
the upper and lower bounds on infη E|η − τl| coincide, the optimal c (equal to

1/(1 + ε2)) is the value for which the variance of Xt − X̂
(c)
t is minimized.

Let us now consider the setting where
∑t

i=1 Vi and
∑t

i=1 Wi are replaced by
standard Brownian motions, i.e., with the X and the Y processes being defined
as

X : X0 = 0 Xt = Bt + st for t > 0

Y : Y0 = 0 Yt = Xt + εNt for t > 0

where {Bt}t>0 and {Nt}t>0 are two independent standard Brownian motions.
The previous results easily extend to the Brownian motion setting. Indeed, the
analysis is simpler than for the Gaussian random walk setting as there is no
‘excess over threshold’ for a Brownian motion — the value of a Brownian motion
the first time it crosses a certain level equals this level.

Theorems 2.4, 2.5, and 2.6 are analogous to Theorems 2.1, 2.2, and 2.3,
respectively.

Theorem 2.4 (Upper bound: Brownian motion with drift). Fix ε > 0, s > 0,
l > 0, and define X̂t as

X̂0 = 0 X̂t = st+
1

1 + ε2
(Yt − st) for t > 0.

Then, the stopping time η = inf{t ≥ 0 : X̂t = l} satisfies

E |η − τl| ≤
√

2lε2

π(1 + ε2)s3
+

6

s

(
l

(2πs)3

)1/4

.
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Theorem 2.5 (Lower bound: Brownian motion with drift). Let ε > 0, s > 0,
and l > 0, and let n be such that 1 ≤ n < l/s. Then,

inf
η(Y ∞

0 )
E|η − τl| ≥

√
2nε2

πs2(1 + ε2)

(
1−Q

(
l − sn√
n(1 + ε)

))

−
√

2

πs3

(
l− sn+

√
n

2π

)1/2

.

The following Theorem is an immediate consequence of Theorems 2.4 and 2.5.

Theorem 2.6 (Asymptotics : Brownian motion with drift). Theorem 2.3 is
also valid in the Brownian motion setting.

We end this section with a proposition related to the particular case where
s = 0, which we referred to earlier. When s = 0, ε > 0, and l > 0, it is impossible
to finitely track τl, even having access to the entire observation process Y ∞

0 : for
any estimate η = η(Y ∞

0 ), E(|η − τl|r) = ∞ for all r ≥ 1/2. The proposition is
valid in both the Gaussian random walk and the Brownian motion settings.

Proposition 2.1. Let s = 0 and let f(x), x ≥ 0, be a non-negative and non-
decreasing function such that

Ef(τh/2) = ∞ (2.5)

for some constant h > 0. Then,

i. Ef(|τl − η|) = ∞ for any estimate η = η (Y ∞
0 ), whenever ε > 0 and l > 0.

ii. If f(x) = xr, r ≥ 1/2, then (2.5) holds for all h > 0, whenever ε > 0 and
l > 0. (Hence, E|τl− η|r = ∞ for any estimate η = η (Y ∞

0 ) of τl whenever
r ≥ 1/2, s = 0, ε > 0, and l > 0.)

3. Proofs of Results

In this section we prove Theorems 2.1 and 2.2 and Proposition 2.1. Theorems 2.4
and 2.5 are proved in the same way as Theorems 2.1 and 2.2, by merely ignor-
ing the boundary crossing overshoot. The proofs of Theorems 2.4 and 2.5 are
therefore omitted.

Throughout the paper, V andW denote standard Gaussian random variables.

3.1. Useful results

The following result, given in [6, Theorem 2, equation (7)], provides an upper
bound on overshoot that is uniform in the crossing level l.

Theorem 3.1 ([6]). Let Z1, Z2, . . . be i.i.d. random variables such that EZ1 ≥ 0.
Define St = Z1 + Z2 + . . . + Zt, µl = inf{t ≥ 1 : St ≥ l}, and Rµl

= Sµl
− l.

Then,

sup
l≥0

E(Rp
µl
) ≤ 2(p+ 2)

(p+ 1)

E|Z1|p+2

E(Z2
1 )

for all p > 0.
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Overshoot has been extensively studied and various other bounds have been
exhibited (see, e.g.,[2, 4]). However, to the best of our knowledge, the bound
given by Theorem 3.1 is a tightest known bound in the sense that it hasn’t been
improved for all s ≥ 0 and p > 0. In particular, it is tighter than Lorden’s bound
[4] for small values of s.

While our non-asymptotic results (Theorems 2.1 and 2.2) can easily be im-
proved with tighter overshoot estimates, our main asymptotic result, Theo-
rem 2.3, doesn’t.

Corollary 3.1. Let Z1, Z2, . . . be i.i.d. random variables according to a mean
s ≥ 0 and variance σ2 ≥ 0 Gaussian distribution, and let St, µl, and Rµl

be
defined as in Theorem 3.1. Then,

sup
l≥0

E(Rµl
) ≤ 2s+ 4σ , (3.1)

and
l ≤ sEµl ≤ l+ 2s+ 4σ. (3.2)

Proof of Corollary 3.1. Since

E|Z1|2 = s2 + σ2 and E|Z1|4 = E(s+ σV )4 = s4 + 6s2σ2 + 3σ4 ,

we have

sup
l≥0

E(R2
µl
) ≤ 8

3

[
s2 + 5σ2 − 2σ4

s2 + σ2

]
,

from Theorem 3.1 with p = 2. Therefore,

sup
l≥0

E(Rµl
) ≤

√
sup
l≥0

E(R2
µl
)

≤
√

8

3

[
s2 + 5σ2 − 2σ4

s2 + σ2

]

≤ 2s+ 4σ ,

which gives (3.1).
Since

l ≤ ESµl
≤ l+ sup

l≥0
E(Rµl

) ,

and ESµl
= sEµl by Wald’s equation, inequality (3.2) follows from (3.1).

Lemma 3.1. The following inequalities hold for all l > 0 and s > 0:

E(l − sτl)+ ≤ E(sτl − l)+ ≤
√

l

2πs
+ s+ 2 , (3.3)

E |sτl − l| ≤
√

2l

πs
+ 2s+ 4 , (3.4)
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E(Xτl − sτl)+ ≤
√

l

2πs
+ 3s+ 6. (3.5)

Proof of Lemma 3.1. Throughout the proof we use ⌊x⌋ to denote the largest
integer not greater than x.

By definition, Xτl ≥ l, hence l ≤ EXτl = sEτl from Wald’s equation. Using
the identity x = x+ − (−x)+, we therefore get

0 ≤ E(τl − l/s) = E(τl − l/s)+ − E(l/s− τl)+ ,

i.e.,

E(l − sτl)+ ≤ E(sτl − l)+ . (3.6)

We upper bound the right-side of (3.6) as

E (τl − l/s)+ = E (τl − l/s; τl > l/s)

≤ E
(
τl − l/s;X⌊l/s⌋ ≤ l

)

= E (τ−G;G ≤ 0) (3.7)

where G is defined as

G = X⌊l/s⌋ − l.

Since G ≤∑⌊l/s⌋
i=1 Vi

d
=
√
⌊l/s⌋V ,1 using Corollary 3.1 with σ2 = 1 yields

E (τ−G;G ≤ 0) ≤ E

[−G

s
+ 2 +

4

s
;G ≤ 0

]

≤
√

l

s3
E(V )+ + 1 +

2

s

=

√
l

2πs3
+ 1 +

2

s
. (3.8)

From (3.6),(3.7), and (3.8) we get

E(l − sτl)+ ≤ E(sτl − l)+ ≤
√

l

2πs
+ s+ 2 , (3.9)

which gives (3.3).
Inequality (3.4) is an immediate consequence of (3.3).
Since Xτl ≥ l, we have

E (Xτl − sτl)+ ≤ E (Xτl − l) + E (l − sτl)+ .

This, together with (3.9) and the inequality

E (Xτl − l) ≤ 2s+ 4 (3.10)

obtained from Corollary 3.1, proves (3.5).

1We use ‘
d
=’ to denote equality in distribution.
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Proof of Theorem 2.1. We prove Theorem 2.1 by considering estimates of the
form

η(c) = inf{t ≥ 1 : X̂
(c)
t ≥ l} ,

where X̂ is defined as

X̂
(c)
0 = 0 X̂

(c)
t = st+ c(Yt − st) = st+ c

[
t∑

i=1

Vi + ε

t∑

i=1

Wi

]
t ≥ 1

for some constant c ≥ 0. To obtain the right-side of (2.2), we first upper bound
E|η(c) − τl|, c ≥ 0, then optimize the bound over c.

Note that, for c = 0, we have η(0) = l/s, and (3.4) gives

E

∣∣∣η(0) − τl

∣∣∣ ≤
√

2l

πs3
+ 2 +

4

s
. (3.11)

We now bound E|η(c) − τl| for arbitrary values of c ≥ 0. Since

|x| = 2x+ − x ,

we have

E

∣∣∣η(c) − τl

∣∣∣ = 2E
(
η(c) − τl

)

+
− E

(
η(c) − τl

)
. (3.12)

Applying Corollary 3.1 to τl and η yields

E(η(c) − τl) ≥ −2s+ 4

s
,

hence from (3.12)

E

∣∣∣η(c) − τl

∣∣∣ ≤ 2E
(
η(c) − τl

)

+
+

2s+ 4

s
. (3.13)

Below, we upper bound E(η(c) − τl)+ then use (3.13) to deduce a bound on
E
∣∣η(c) − τl

∣∣.
For notational convenience, throughout the calculations we often omit the

superscript (c) and simply write X̂t and η in place of X̂
(c)
t and η(c). Similarly,

we often drop the subscript l and write τ instead of τl.
Let us introduce the auxiliary stopping time

ν = inf{t ≥ τ : X̂t ≥ l}.

Note that ν is defined with respect to both processes X and Y and that ν ≥
max{η, τ}. It follows that

E (η − τ)+ ≤ E (ν − τ ; η > τ)

≤ E

(
ν − τ ; X̂τ ≤ l

)

=
1

s
E

(
X̂ν − X̂τ ; X̂τ ≤ l

)
(3.14)
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where the second inequality holds since {η > τ} ⊆ {Yτ ≤ l} and where for the
last equality we used Wald’s equation .

Since the random walk X̂ has incremental steps with mean s and variance
c2(1 + ε2), from Corollary 3.1 we get

E

(
X̂ν − X̂τ ; X̂τ ≤ l

)
≤ E

[
l+ 2s+ 4c

√
1 + ε2 − X̂τ ; X̂τ ≤ l

]

≤ E

[
Xτ + 2s+ 4c

√
1 + ε2 − X̂τ ; X̂τ ≤ Xτ

]

≤ s+ 2c
√
1 + ε2 + E(Xτ − X̂τ )+ ,

hence from (3.14)

E

(
η(c) − τ

)

+
≤ 1

s
E(X(c)

τ − X̂τ )+ +
s+ 2c

√
1 + ε2

s
. (3.15)

Before we compute a bound on E(X̂
(c)
τ −Xτ )+ for general values of c ≥ 0, we

consider the simpler case c = 1.

Case c = 1: Here X̂
(1)
t = Yt and η(1) = inf{t ≥ 0 : Yt ≥ l}. Moreover, we have

Yt
d
= Xt + ε

√
tW with W independent of Xt. It follows that

E(Xτ − X̂τ )+ = E(ε
√
τW )+

= εE(
√
τ)E(W )+

=
ε√
2π

E(
√
τ )

≤ ε√
2π

√
E(τ)

≤ ε√
2π

√
l + 2s+ 4

s
(3.16)

where for the first inequality we used Jensen’s inequality, and where the second
inequality follows from Corollary 3.1.

Combining (3.16) with (3.15) (c = 1) yields

E

(
η(1) − τl

)

+
≤ ε

√
l + 2s+ 4√
2πs3

+
s+ 2

√
1 + ε2

s

which, together with (3.13), gives

E

∣∣∣η(1) − τl

∣∣∣ ≤ 2ε
√
l + 2s+ 4√
2πs3

+
4(s+ 1 +

√
1 + ε2)

s
. (3.17)

Comparing (3.17) with (3.11) we note that for fixed s > 0, if ε ≪ 1, then
E
∣∣η(1) − τl

∣∣≪ E
∣∣η(0) − τl

∣∣ for large values of l.

General case c ≥ 0: We compute a general upper bound on E(Xτl − X̂
(c)
τl )+,

c ≥ 0, and use (3.13) and (3.15) to obtain a bound on E|η(c) − τl|.
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Let Ui be the incremental step of the random walk Xt − X̂
(c)
t , i.e.

Ui = (1− c)Vi − cεWi.

Given the fixed time horizon n = ⌊l/s⌋, we have

Xτl − X̂(c)
τl

=
n∑

i=1

Ui − 11{τl < n}
n∑

i=τl+1

Ui + 11{τl > n}
τl∑

i=n+1

Ui , (3.18)

and therefore

E(Xτl − X̂(c)
τl )+ ≤ E

( n∑

i=1

Ui

)

+
+ E

(
− 11{τl < n}

n∑

i=τl+1

Ui

)

+

+ E

(
11{τl > n}

τl∑

i=n+1

Ui

)

+
. (3.19)

We bound each term on the right-side of (3.19). For the first term, since
∑n

i=1 Ui
d
=√

n[(1− c)2 + c2ε2]V , we have

E

(
n∑

i=1

Ui

)

+

=
√
n[(1− c)2 + c2ε2]E(V )+

=

√
n[(1− c)2 + c2ε2]

2π

≤
√

l[(1− c)2 + c2ε2]

2πs
. (3.20)

For the second term on the right-side of (3.19), since τ is independent of
Uτ+1, Uτ+2, . . ., we have

E

(
− 11{τ < n}

n∑

i=τ+1

Ui

)

+
= E

[√
(n− τ)+[(1 − c)2 + c2ε2]V+

]

=

√
(1− c)2 + c2ε2

2π
E

√
(n− τ)+

≤
√

[(1 − c)2 + c2ε2]

2π
E(n− τ)+

≤

√√√√ [(1− c)2 + c2ε2]

2π

[√
l

2πs3
+ 1 +

2

s

]
(3.21)

where the first inequality holds by Jensen’s inequality and where the last in-
equality follows from (3.3).
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For the third term on the right-side of (3.19), we have

E

(
11{τ > n}

τ∑

i=n+1

Ui

)

+
≤ cεE

(
11{τ > n}

τ∑

i=n+1

Wi

)

+

+ (1− c)+E

(
11{τ > n}

τ∑

i=n+1

Vi

)

+

. (3.22)

Since τ and {Wi} are independent, we have

11{τ > n}
τ∑

i=n+1

Wi
d
=
√
[τ − n]+W ,

and a similar calculation as for (3.21) shows that

E

[
11{τ > n}

τ∑

i=n+1

Wi

]

+

≤

√√√√ 1

2π

[√
l

2πs3
+ 1 +

2

s

]
. (3.23)

We now focus on the second expectation on the right-side of (3.22). Note first
that, on {τ > n}, we have

τ∑

i=n+1

Vi = (Xτ −Xn)− s(τ − n).

Therefore, to bound E

(
11{τ > n}

τ∑

i=n+1

Vi

)

+

, we consider the ‘shifted’ sequence

{St = Xt −Xn}t≥n, and its crossing of level l −Xn. Using (3.5) (with l −Xn

instead of l) we have

E

(
11{τ > n}

τ∑

i=n+1

Vi

)

+

≤ E
(
[Xτ −Xn − s(τ − n)]+ ;Xn ≤ l

)

≤ E

√
(l −Xn)+

2πs
+ 3s+ 6

≤
√

E(l −Xn)+
2πs

+ 3s+ 6

≤ l1/4

(2πs)3/4
+ 3s+ 6 , (3.24)

where the third inequality follows from Jensen’s inequality. Combining (3.22)
together with (3.23) and (3.24) yields

E

(
11{τ > n}

τ∑

i=n+1

Ui

)

+
≤ cε

√√√√ 1

2π

[√
l

2πs3
+ 1 +

2

s

]

+ (1− c)+

(
l1/4

(2πs)3/4
+ 3s+ 6

)
, (3.25)
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and from (3.15), (3.19), (3.20), (3.21), and (3.25) we get

E

(
η(c) − τ

)

+
≤
√

l[(1− c)2 + c2ε2]

2πs3
+ cε

√√√√ 1

2πs2

[√
l

2πs3
+ 1 +

2

s

]

+

√√√√ [(1− c)2 + c2ε2]

2πs2

[√
l

2πs3
+ 1 +

2

s

]

+
(1− c)+

s

[
l1/4

(2πs)3/4
+ 3s+ 6

]

+ 1 +
2c
√
1 + ε2

s
. (3.26)

To minimize the first term on the right-side of (3.26), we set c = c̄ = 1/(1+ ε2)
so that to minimize the factor (1−c)2+c2ε2. With c = c̄ we have (1−c)2+c2ε2 =
ε2/(1 + ε2) and get

E

(
η(c̄) − τ

)

+
≤
√

lε2

2π(1 + ε2)s3
+

ε

1 + ε2

√√√√ 1

2πs2

[√
l

2πs3
+ 1 +

2

s

]

+

√√√√ ε2

2π(1 + ε2)s2

[√
l

2πs3
+ 1 +

2

s

]

+
ε2

s(1 + ε2)

[
l1/4

(2πs)3/4
+ 3s+ 6

]

+ 1 +
2

s
√
1 + ε2

.

We further upper bound ε/(1 + ε2) and ε2/(1 + ε2) by one and get the weaker
yet simpler bound

E

(
η(c̄) − τ

)

+
≤
√

lε2

2π(1 + ε2)s3
+

3

s

(
l

(2πs)3

)1/4

+

√
2(s+ 2)

πs3
+ 4 +

8

s
.

(3.27)

Finally, combining (3.27) with (3.13) yields

E|η(c̄) − τ | ≤
√

2lε2

π(1 + ε2)s3
+

6

s

(
l

(2πs)3

)1/4

+

√
8(s+ 2)

πs3
+ 10 +

20

s

from which Theorem 2.1 follows.

Proof of Theorem 2.2. We prove Theorems 2.2 by establishing a lower bound on
E|η− τl| for any estimator η = η(Y ∞

0 ) that has access to the entire observation
sequence Y ∞

0 .
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Fix an arbitrary integer n such that 1 ≤ n < l/s (by assumption l/s ≥ 2),
and let us break the minimization problem into two parts as

inf
η(Y ∞

0 )
E|η − τl| ≥ inf

η(Y ∞

0 )
E

[∣∣∣∣
(
η − n− l −Xn

s

)
+

(
n+

l −Xn

s
− τl

)∣∣∣∣ ;Yn ≤ l

]

≥ inf
η(Y ∞

0 )
E

[∣∣∣∣η − n− l −Xn

s

∣∣∣∣ ;Yn ≤ l

]

− E

[∣∣∣∣n+
l −Xn

s
− τl

∣∣∣∣ ;Yn ≤ l

]

=
1

s
inf

η(Y ∞

0 )
E [|η −Xn|;Yn ≤ l]− E

[∣∣∣∣n+
l −Xn

s
− τl

∣∣∣∣ ;Yn ≤ l

]
.

(3.28)

We first upperbound the second expectation on the right-side of (3.28). Using
(3.4), we have for Xn ≤ l

E

[∣∣∣∣n+
l −Xn

s
− τl

∣∣∣∣

∣∣∣∣Xn, Yn ≤ l

]
≤
√

2(l −Xn)

πs3
+ 2 +

4

s
. (3.29)

Since Xn
d
= sn+

√
nV and since l − sn > 0 by assumption, we have

E(l −Xn)+ = E(l − sn−
√
nV )+

≤ l − sn+
√
nEV+

= l − sn+

√
n

2π
.

Hence, from Jensen’s inequality

E

√
(l −Xn)+ ≤

√
E(l −Xn)+

≤
(
l − sn+

√
n

2π

)1/2

,

and therefore from (3.29)

E

[∣∣∣∣n+
l −Xn

s
− τl

∣∣∣∣ ;Yn ≤ l

]
≤
√

2

πs3

(
l− sn+

√
n

2π

)1/2

+ 2 +
4

s
. (3.30)

To lower bound the first expectation on the right-side of (3.28), we proceed
as follows. Since Xn and Yn are jointly gaussian, we may represent Xn as

Xn
d
=
√
nε2/(1 + ε2)V + c · Yn + d ,

where V is a standard Gaussian random variable independent of Yn, and where
c and d are (nonnegative) constants (that depend on s and ε). Using this alter-
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native representation of Xn yields

inf
η(Y ∞

0 )
E [|η −Xn| ;Yn ≤ l] = inf

η(Y ∞

0 )
E

[∣∣∣η −
√
nε2/(1 + ε2)V − c · Yn − d

∣∣∣ ;Yn ≤ l
]

=

√
nε2

1 + ε2
inf

η(Y ∞

0 )
E [|η − V | ;Yn ≤ l]

=

√
nε2

1 + ε2
(inf

e
E |e− V |)P(Yn ≤ l)

=

√
nε2

1 + ε2
(E |V |)P(Yn ≤ l)

=

√
2nε2

π(1 + ε2)

(
1−Q

(
l − sn√
n(1 + ε)

))
(3.31)

where the infimum on the right-side of the third equality is over constant es-
timators (i.e., independent of Y ∞

0 ), and where for the fourth equality we used
the fact that the median of a random variable is its best estimator with respect
to the average absolute deviation.

Combining (3.28), (3.30), and (3.31) we obtain

inf
η(Y ∞

0 )
E|η − τl| ≥

√
2nε2

πs2(1 + ε2)

(
1−Q

(
l − sn√
n(1 + ε)

))

−
√

2

πs3

(
l− sn+

√
n

2π

)1/2

− 2− 4

s
,

yielding the desired result.

Proof of Proposition 2.1. We prove the result only for the Gaussian random
walk setting. The proof for the Brownian motion setting follows the same argu-
ments and is therefore omitted.

Throughout the proof we fix some ε > 0, l > 0, and let s = 0.
To prove claim i., we show that, for any h > 0, infη(Y ∞

0
) Ef(|η − τl|) is lower

bounded by Ef(τh/2) multiplied by some strictly positive constant.
The first step consists in removing the ‘noise’ in the observation process

Y from time t = 2 onwards, i.e., instead of {Yt}t≥0, we consider the better
observation process {Zt}t≥0 defined as

Z0 = 0

Z1 = X1 + εW1 = V1 + εW1

Zt = Xt −Xt−1 = Vt t ≥ 2.

Clearly, it is easier to estimate τl based on Z∞
0 than based on Y ∞

0 ; one gets
Yt − Yt−1 by artificially adding the ‘noise’ εWt to Zt, t ≥ 1. Therefore,

inf
η(Y ∞

0 )
Ef(|η − τl|) ≥ inf

η(Z∞

0 )
Ef(|η − τl|) . (3.32)
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Given Z∞
0 , estimation errors on τl are only due to the unknown value of X1

because of the unknown value of the noise εW1. In turn, given Z∞
0 , it is sufficient

to consider only Z1 in order to estimate X1 (Z1 is a sufficient statistic for X1).
Below, we are going to make use of the important property that the condi-

tional density function of X1(= V1) given Z1 is not degenerated since it is given
by

p (x|z) =
√
1 + ε2

ε
√
2π

exp

{
− (1 + ε2)

2ε2

(
x− z

1 + ε2

)2
}

,

and since ε > 0 by assumption.
Define C = C (Z1) = Z1/(1 + ε2) − h/2 and D = D (Z1) = Z1/(1 + ε2) +

h/2 where h > 0 is some arbitrary constant. From the above non-degeneration
property it follows that

P (X1 ≤ C) = P (X1 ≥ D) = δ1 = δ1(h, ε) > 0 .

Using this, we lower bound

inf
η(Z∞

0 )
Ef(|η − τl|)

by considering the following three hypothesis problem: with probability 1− 2δ1,
X1 is known exactly (hence τl is known exactly as well), and with equal proba-
bility δ1, X1 is either equal to C or equal to D (and no additional information on
X1 is available). More specifically, denoting by τCl the value of τl when X1 = C,
and by τDl the value of τl when X1 = d, we have

inf
η(Z∞

0 )
Ef(|η − τl|) ≥ inf

η(Z∞

0 )
{E[f(|η − τl|);X1 ≤ C] + E[f(|η − τl|);X1 ≥ D]}

≥ inf
η(Z∞

0 )

{
E[f(|η − τCl |);X1 ≤ C] + E[f(|η − τDl |);X1 ≥ D]

}

= δ1 inf
η(Z∞

0 )
E
[
f(|η − τCl |) + f(|η − τDl |)

]

≥ δ1Ef

(
τCl − τDl

2

)
, (3.33)

where the second and third inequalities follow from the assumption that f(x)

is non-negative and non-decreasing. Further, since τCl
d
= τ(l−C)+ and since τl1 −

τl2
d
= τl1−l2 , l1 ≥ l2, from (3.33) we get

inf
η(Z∞

0 )
Ef(|η − τl|) ≥ δ1Ef

(
τCl − τDl

2

)

= δ1Ef

(
τ(l−C)+ − τ(l−D)+

2

)

= δ1Ef
(τ(l−C)+−(l−D)+

2

)
. (3.34)
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Now, on {D ≤ l} we have

(l − C)+ − (l −D)+ = D − C = h ,

therefore from (3.34) we get

inf
η(Z∞

0 )
Ef(|η − τl|) ≥ δ1δ2Ef

(τh
2

)
, (3.35)

where
δ2 = δ2(h, l, ε) = P(D ≤ l) > 0 .

Claim i. follows from (3.35) and (3.32).
We now prove claim ii.. Let {Bt}t≥0 be a standard Brownian motion with

B0 = 0. For l > 0 introduce the crossing time

τ
(B)
l = inf{t ≥ 0 : Bt = l}.

Since τ
(B)
l ≤ τl for all l > 0, had we proved that Ef

(
τ
(B)
h /2

)
= ∞, h > 0,

equation (2.5) would be satisfied since f(x) is non-decreasing.
Now, using the reflection principle we get

P(τ
(B)
h ≤ t) = 2P(Bt ≥ h) = 2Q

(
h√
t

)
h > 0, t > 0 ,

hence

Ef
(
τ
(B)
h /2

)
= 2

∞∫

0

f(t/2)dQ

(
h√
t

)

=
h√
2π

∞∫

0

f(t/2)

t3/2
e−h2/2tdt

>
he−h/2

√
2π

∞∫

h

f(t/2)

t3/2
dt.

Therefore, if f(x) = xr with r ≥ 1/2, then Ef
(
τ
(B)
h /2

)
= ∞ for all h > 0.

Claim ii. follows.

4. Concluding Remarks

We considered the TST problem with two correlated Gaussian random walks
(or two correlated Brownian motions with drift) and a threshold crossing time
to be tracked τl. Non-asymptotic upper and lower bounds on infη E|η− τl| have
been derived that coincide in certain asymptotic regimes.
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Some analysis suggests that ideas used to obtain the upper and lower bounds
given by Theorems 2.1 and 2.2 could be extended to higher order loss functions
of the form E|η − τl|r, r > 1. However, while a more refined estimate analysis
may result in a tight asymptotic characterization of infη E|η − τl|r, simple non-
asymptotic bounds as given by Theorems 2.1 and 2.2 may be more difficult to
obtain.

Finally, extensions of our results to non-Gaussian random walks settings may
be envisioned. Here a main difficulty appears to be the derivation of a good lower
bound. In fact, a main step in the proof of Theorem 2.2 (see argument after
equation 3.30) takes advantage of the fact that Xn and Yn are jointly gaussian.
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