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A B S T R A C T

In a theoretical context of side-channel attacks, optimal bounds between success rate, guessing entropy and
statistical distance are derived with a simple majorization (Schur-concavity) argument. They are further
theoretically refined for different versions of the classical Hamming weight leakage model, in particular
assuming a priori equiprobable secret keys and additive white Gaussian measurement noise. Closed-form
expressions and numerical computation are given. A study of the impact of the choice of the substitution
box with respect to side-channel resistance reveals that its nonlinearity tends to homogenize the expressivity
of success rate, guessing entropy and statistical distance. The intriguing approximate relation between guessing
entropy and success rate 𝐺𝐸 = 1∕𝑆𝑅 is observed in the case of 8-bit bytes and low noise. The exact relation
between guessing entropy, statistical distance and alphabet size 𝐺𝐸 = 𝑀+1

2
− 𝑀

2
𝑆𝐷 for deterministic leakages

and equiprobable keys is proved.
. Introduction

Side-Channel analysis (SCA) is a well-known threat for secure chips
n embedded symmetric crypto-systems. They aim at recovering the
ey, byte by byte in a divide-and-conquer approach, by exploiting the
eakage information. The attacker guesses one key byte 𝐾 from several
ide-channel observations 𝑌 (modeled as a random vector) knowing
he corresponding plain or cipher text bytes 𝑇 = 𝑡 and leveraging a
noiseless or noisy) leakage model.

There are two main figures of merit in order to characterize the effi-
iency of the secrets’ recovery: success rate SR and guessing entropy GE.
oughly speaking, SR is the empirical success probability that the best
anked (most likely) key happens to be the correct one, while GE relates
o the number of tries that the attacker has to make before finding
he actual secret, thereby estimating the brute force effort to find the
orrect key by exhaustive search. On one hand, GE is more informative
nsofar as it depends on the whole key ranking distribution for a given
umber of leakage traces. On the other hand, SR computation scales
asily to the whole multibyte key (the global SR being the byte-wise
roduct of SRs) while GE is much harder to estimate in a multibyte
ontext.

In principle, it is desirable to evaluate both SR and GE during the
ttack because it gives a trade-off between the required number of
bservations (traces) and the remaining effort for key enumeration. Of
ourse, there is a clear strong correlation between SR and GE: a lower
E will generally mean higher SR and vice versa. This is true not only

∗ Corresponding author.
E-mail address: julien.beguinot@telecom-paris.fr (J. Béguinot).

for a given attack on a given device as the number of traces increases,
but also to compare different attacks or different devices endowed with
different countermeasures against SCA. In this respect, these metrics are
relevant both for the ‘‘black hat’’ attacker or the ‘‘white hat’’ evaluator,
and the ‘‘blue hat’’ defender.

Another ubiquitous metric in the cryptographic community is the
statistical distance (SD) to the uniform distribution. This quantifies how
far a cryptographic object differs from an ideal randomness. While
guessing entropy and success rate are explicitly related to the ranking
distribution of an attacker, statistical distance lacks some operational
interpretation in terms of attack performance. Still, it can be used
as a measure of information leakage. In particular, a small statistical
distance ensure that no statistical test can distinguish the considered
distribution from the uniform distribution. As a consequence, this
implies that no attack performs better than random guess.

However, there remains a missing theoretical link between SR, GE
and SD that could be exploited to estimate one metric knowing the
other. Obviously there is no one-to-one relation between them, but we
show that one metric can be lower and upper bounded as a function
of the other, which can be optimally determined for a given leakage
model. This extended version complements the conference version [1]
with results from Rioul [2,3] applied for the statistical distance that we
discuss in the side-channel context.

State-of-the-art. Some previous approaches attempted to bridge the gap
by extending the definition of SR to the probability SR𝑖 that the correct
vailable online 25 March 2024
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key belongs to the list of the first 𝑖 best key guesses [4]. For instance [5]
ompares various key enumeration algorithms that allow to estimate
R𝑖 based on the knowledge of the key bytes’ likelihoods. In [6] the
uthors try to link statistical distance, euclidean norm, relative error
nd average relative error. They derive approximations for Hamming
eight leakage models, large number of bits and large noise.

While computing GE can be intractable in practice, [7] heuristi-
ally approximates GE by considering ‘‘security graphs’’ summarizing
oth SR and GE for a given number of traces in the same visual
epresentation.

Chérisey et al. [8] evaluate side channel attacks through SR with
nequalities derived from mutual information. They also improve an
nequality on GE yet the relation between the two metrics is not
nvestigated.

A very different approach in [9] derives fairly tight mathematical
ounds to estimate GE from entropy or Rényi entropy of order 1∕2.

From a purely theoretical viewpoint, [10] derives optimal bounds in
very generic settings for the ‘‘guessing moments’’ with Rényi entropies
of various orders. In this respect, considering entropy of infinite order
and first order guessing moment yields optimal bounds between SR
and GE. In a similar approach, [2,3] derives optimal inequalities for
all randomness measures using majorization theory.

Contribution. In this paper, we first present simple and intuitive argu-
ments to derive the optimal bounds between the three metrics SR, GE
and SD. Such bounds are all the more tighter as the key space is small.
We then refine the relationship in various SCA scenarios and leakage
models, providing closed-form expressions for GE in these scenarios.
We observe that the bounds are all the more tight as the leakage model
is nonlinear (property of an S-Box in a block cipher), which tends to
explain why the expressivity of SR and GE gets similar. This accounts
for their interchangeable use as an attack working factor in the SCA
literature.

Outline. The remainder of this paper is organized as follows. The
notions of SR, GE and SD are introduced in Section 2 with emphasis on
their similar properties such as data processing inequalities. Section 3
establishes the Schur-concavity of GE using majorization theory which
llows one to derive simple and intuitive bounds between GE and SR.
urther SR and SD are recalled to be Schur-convex which permits to
btain all optimal relations between the three metrics. Section 4 derives
he optimal inequalities between the three metrics. The important cases
f Hamming weight leakage model, with an S-Box, and with noise, are
athematically developed in Section 5.

Section 6 concludes the paper.

. Definitions and basic properties

In this section, we define success rate, guessing entropy and statis-
ical distance with emphasis on their similar properties.

asic notations. We consider an 𝑀-ary secret 𝐾 ∈ {1, 2,… ,𝑀} taking
= 2𝑛 values and some side-channel observation 𝑌 used to guess the

ey �̂�. Observation 𝑌 gathers several measurements with known plain
r cipher text bytes 𝑇 = 𝑡. Since �̂� depends on the actual secret key 𝐾
nly through 𝑌 , the triple 𝐾 − 𝑌 − �̂� forms a Markov chain. The guess
̂ is said to be blind if it does not depend on the observation 𝑌 . For
ny finite set 𝐴, |𝐴| denotes its cardinality.

.1. Success rate

efinition 1 (Success Rate (SR)). The success rate of �̂� denoted P𝑠 is
he probability that �̂� guesses the secret,

P𝑠 = P(�̂� = 𝐾). (1)
2

t

heorem 1 (Optimal SR). The maximal success rate is attained with the
AP rule �̂�(𝑦) ∈ argmax𝑘 P(𝐾 = 𝑘|𝑌 = 𝑦) and is given by

P𝑠(𝐾|𝑌 ) = E𝑌
(

max
𝑘

P(𝐾 = 𝑘|𝑌 )
)

. (2)

n particular, for a blind guess, we write

P𝑠(𝐾) = max
𝑘

P(𝐾 = 𝑘) ≥ 1
𝑀

. (3)

Proof. Since 𝐾−𝑌 − �̂� is a Markov chain, P(�̂� = �̂�|𝑌 ,𝐾) = P(�̂� = �̂�|𝑌 )
so that

P𝑠 = E𝑌
(

P(�̂� = 𝐾|𝑌 )
)

(4)

= E𝑌
(
∑

𝑘
P(𝐾 = 𝑘|𝑌 )P(�̂� = 𝑘|𝑌 )

)

(5)

≤ E𝑌
(

max
𝑘

P(𝐾 = 𝑘|𝑌 )
)

(6)

with equality if and only if P(�̂� = �̂�|𝑌 ) = 1 for some �̂� ∈ argmax𝑘 P(𝐾 =
|𝑌 ).

heorem 2 (Data Processing Inequality for P𝑠). One has

P𝑠(𝐾) ≤ P𝑠(𝐾|𝑌 ) (7)

(observing side channel information always increases success). More gener-
ally, if 𝐾 − 𝑌 −𝑍 is a Markov chain, then

P𝑠(𝐾|𝑍) ≤ P𝑠(𝐾|𝑌 ) (8)

data processing can only reduce success).

roof. Since P(𝐾 = 𝑘|𝑌 ) ≤ max𝑘 P(𝐾 = 𝑘|𝑌 ), taking the expectation
ver 𝑌 gives E𝑌 P(𝐾 = 𝑘|𝑌 ) ≤ E𝑌 max𝑘 P(𝐾 = 𝑘|𝑌 ) for every 𝑘, hence

max
𝑘

E𝑌 P(𝐾 = 𝑘|𝑌 ) ≤ E𝑌 max
𝑘

P(𝐾 = 𝑘|𝑌 ) (9)

hich is (7). This in turn implies P𝑠(𝐾|𝑍) ≤ P𝑠(𝐾|𝑌 ,𝑍) by considering
ach fixed value 𝑍 = 𝑧 and taking the expectation over 𝑍. Finally,
𝑠(𝐾|𝑌 ,𝑍) = P𝑠(𝐾|𝑌 ) because 𝐾|𝑌 ,𝑍 is distributed as 𝐾|𝑌 since
− 𝑌 −𝑍 is a Markov chain.

.2. Guessing entropy

In a guessing problem, key candidates are guessed one by one
n a sequence (1), (2),… , (𝑀). Such a sequence is a permutation of
1, 2,… ,𝑀} where (𝑖) denotes the 𝑖th ranked key for 𝑖 = 1, 2,… ,𝑀 .
hus, first (1) is guessed, then (2), etc. The number of key guesses before
he actual secret 𝐾 = (𝐼) is found is 𝐼 , a random variable which depends
pon the observation 𝑌 . Hence, 𝐾 − 𝑌 − 𝐼 forms a Markov Chain.

efinition 2 (Guessing Entropy (GE)). The guessing entropy is the
verage number of guesses:

𝐺 = E𝐾,𝑌 (𝐼) (10)

Notice that some previous works define GE as 𝐼 itself [9,11].
Let 𝑝(𝑖)|𝑦 = P(𝐾 = (𝑖)|𝑌 = 𝑦) be the probability of the 𝑖th ranked key

iven observation 𝑌 = 𝑦.

heorem 3 (Optimal GE). The minimal guessing entropy is attained with
he ranking rule

𝑝(1)|𝑦 ≥ 𝑝(2)|𝑦 ≥ ⋯ ≥ 𝑝(𝑀)|𝑦 (11)

nd is given by

𝐺(𝐾|𝑌 ) = E𝑌

( 𝑀
∑

𝑘=1
𝑘 𝑝(𝑘)|𝑌

)

. (12)

n particular, for a blind guess, this reduces to 𝐺(𝐾) =
∑𝑀

𝑘=1 𝑘𝑝(𝑘), where

he 𝑝(𝑘) = P(𝐾 = (𝑘)) are in descending order.
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Often 𝐺(𝐾) is simply referred to as the guessing entropy of 𝐾 while
(𝐾|𝑌 ) is known as the conditional guessing entropy of 𝐾 given 𝑌 .

roof. By the law of total expectation,

𝐺 = E𝑌 E𝐾 (𝐼|𝑌 ) = E𝑌

( 𝑀
∑

𝑖=1
𝑖 ⋅ P(𝐾 = (𝑖)|𝑌 )

)

. (13)

y the rearrangement inequality [12, Thm. 368], since (𝑖) is an in-
reasing sequence, the minimum 𝐺 is obtained when the probabilities
(𝐾 = (𝑖)|𝑌 ) are in descending order.

heorem 4 (Data Processing Inequality). One has

𝐺(𝐾) ≥ 𝐺(𝐾|𝑌 ) (14)

observing side channel information improves guessing).
More generally, if 𝐾 − 𝑌 −𝑍 is a Markov chain, then

𝐺(𝐾|𝑍) ≥ 𝐺(𝐾|𝑌 ) (15)

data processing can only worsen guessing).

roof. Without loss of generality assume that 𝐾 ’s probability distri-
ution is in descending order 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 𝑝𝑀 so that 𝐼 = 𝐾 and
(𝐾) = E(𝐾). Then by definition of minimum guessing, 𝐺(𝐾|𝑌 = 𝑦) ≤

E(𝐾|𝑌 = 𝑦). Taking the expectation over 𝑌 gives 𝐺(𝐾|𝑌 ) ≤ E𝑌 E(𝐾|𝑌 ) =
(𝐾) = 𝐺(𝐾) by the law of total expectation. This proves (14). This in

urn implies 𝐺(𝐾|𝑍) ≥ 𝐺(𝐾|𝑌 ,𝑍) by considering each fixed value of
= 𝑧 and taking the expectation over 𝑍. Finally, 𝐺(𝐾|𝑌 ,𝑍) = 𝐺(𝐾|𝑌 )

because 𝐾|𝑌 ,𝑍 is distributed as 𝐾|𝑌 since 𝐾−𝑌 −𝑍 is a Markov chain.

.3. Statistical distance to the uniform

efinition 3 (Distinguishability). Let 𝐴 be an event. The distinguisha-
bility of the random variable 𝐾 from the uniform random variable 𝑈
nder event 𝐴 is defined as

𝛥𝐴(𝐾) = |P(𝐾 ∈ 𝐴) − P(𝑈 ∈ 𝐴)|. (16)

f 𝛥𝐴(𝐾) is significantly large then 𝐾 can be distinguished from the
niform distribution. In the following we consider the optimal distin-
uishability.

heorem 5 (Optimal Distinguishability). The optimal distinguishability
orresponds to the statistical distance (SD) to the uniform random variable
.e.

𝛥(𝐾) = max
𝐴

𝛥𝐴(𝐾) = 1
2
∑

𝑘
|P(𝐾 = 𝑘) − 1

𝑀
| (17)

=
∑

𝑘

(

P(𝐾 = 𝑘) − 1
𝑀

)+
≤ 1

where (𝑥)+ = max(0, 𝑥) is the positive part function. In the conditional case
we write the average optimal distinguishability

𝛥(𝐾|𝑌 ) = E𝑌 [𝛥(𝐾|𝑌 = 𝑦)]. (18)

Proof. The expression with the positive part is direct from Definition 3.
Equality with (17) is well known, we recall a simple proof for com-
pleteness. Let 𝐴+ = {𝑘|𝑝(𝑘) ≥ 1

𝑀 }. Then ∑

𝑘

(

P(𝐾 = 𝑘) − 1
𝑀

)+
= P(𝐾 ∈

+) − |𝐴+
|

𝑀 = (1 − P(𝐾 ∉ 𝐴+)) − (1 − 𝑀−|𝐴+
|

𝑀 ) = 𝑀−|𝐴+
|

𝑀 − P(𝐾 ∉ 𝐴+) =
∑

𝑘

(

1
𝑀 − P(𝐾 = 𝑘)

)+
. This concludes the proof since 𝑥+ + (−𝑥)+ = |𝑥|.

Duc et al. [13] uses the statistical distance to the uniform that we
erm distinguishability as metric to measure the security of implemen-
ations against side channel analysis. Sometimes the distinguishability
s referred to as total variation in the blind guess setting (no condition-
ng) and statistical distance with side-channel information (conditional
3

ersion).
This notion is relevant in the cryptographic context. A small sta-
istical distance means that the random variable is indistinguishable
rom the uniform random variable. As is clear from its definition, the
robability of success minus the probability of success of a random
uess in a statistical test is upper bounded by the distinguishability.
ence a small distinguishability implies a probability of success close

o a random guess. This notion is related to the notion of distinguishing
dvantage of an adversary in a cryptographic context.

heorem 6 (Data Processing Inequality for SD).

𝛥(𝐾|𝑌 ) ≥ 𝛥(𝐾) (19)

(observing side channel information increases distinguishability).
If 𝐾 − 𝑌 −𝑍 forms a Markov Chain

𝛥(𝐾|𝑌 ) ≥ 𝛥(𝐾|𝑍). (20)

data processing can only decrease distinguishability)

roof. The proof rely on the convexity of the absolute value combined
ith Jensen’s inequality.

𝛥(𝐾|𝑌 ) = E𝑌 [
1
2
∑

𝑘
|𝑝(𝑘|𝑌 ) − 1

𝑀
|] (21)

= 1
2
∑

𝑘
E𝑌 [|𝑝(𝑘|𝑌 ) −

1
𝑀

|] (22)

≥ 1
2
∑

𝑘
|E𝑌 [𝑝(𝑘|𝑌 ) −

1
𝑀

]| (23)

= 1
2
∑

𝑘
|𝑝(𝑘) − 1

𝑀
| (24)

= 𝛥(𝐾). (25)

This in turn implies 𝛥(𝐾|𝑍) ≤ 𝛥(𝐾|𝑌 ,𝑍) by considering each fixed
alue of 𝑍 = 𝑧 and taking the expectation over 𝑍. Finally, 𝛥(𝐾|𝑌 ,𝑍) =
(𝐾|𝑌 ) because 𝐾|𝑌 ,𝑍 is distributed as 𝐾|𝑌 since 𝐾−𝑌 −𝑍 is a Markov
hain.

More generally [2] unified Theorems 2, 4, 6 by showing that all
‘randomness measures’’ verify a data processing inequality where be-
ng a ‘‘randomness measure’’ essentially means being a Schur-concave
unction.

. Schur properties

.1. Key concepts of majorization theory

We first introduce some notations for the theory of majoriza-
ion [14]. Hereafter we let 𝑝(1), 𝑝(2),… , 𝑝(𝑀) denote the vector 𝑝 =
𝑝1, 𝑝2,… , 𝑝𝑀 ) of non-negative elements arranged in descending order
(1) ≥ 𝑝(2) ≥ ⋯ ≥ 𝑝(𝑀). We also use the cumulative sum notation

𝑃(𝑘) = 𝑝(1) + 𝑝(2) +⋯ + 𝑝(𝑘) (𝑘 = 1,… ,𝑀) (26)

ith the convention 𝑃(0) = 0.

efinition 4 (Majorization). We say that 𝑞 majorizes 𝑝, and we write
⪯ 𝑞 if

𝑃(𝑘) ≤ 𝑄(𝑘) (𝑘 = 1,… ,𝑀 − 1) (27)

nd 𝑃(𝑀) = 𝑄(𝑀). (Notice that this latter condition is always satisfied
hen 𝑝 and 𝑞 are probability distributions since 𝑃(𝑀) =

∑

𝑘 𝑝𝑘 = 1 and
(𝑀) =

∑

𝑘 𝑞𝑘 = 1.)

The intuition behind majorization is that 𝑝 ⪯ 𝑞 means that 𝑝 is more
‘spread out’’ than 𝑞. Thus in the case of a probability distribution 𝑝,
he minimum spread is for a deterministic (but Dirac) distribution and
he maximum spread is for a uniform distribution. Indeed, it is easily
hecked that

1 , 1 ,… , 1 ) ⪯ 𝑝 ⪯ (1, 0, 0,… , 0) (28)
(𝑀 𝑀 𝑀
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for any probability distribution 𝑝 = (𝑝1, 𝑝2,… , 𝑝𝑀 ). More generally
[14],

( 𝑃(𝑀)
𝑀 , 𝑃(𝑀)

𝑀 ,… , 𝑃(𝑀)
𝑀 ) ⪯ 𝑝 ⪯ (𝑃(𝑀), 0, 0,… , 0) (29)

for any vector 𝑝 = (𝑝1, 𝑝2,… , 𝑝𝑀 ).

Definition 5 (Schur-Concavity & Convexity). A function 𝐺 is Schur-
concave if 𝑝 ⪯ 𝑞 ⟹ 𝐺(𝑝) ≥ 𝐺(𝑞). Similarly, 𝐺 is Schur-convex if
𝑝 ⪯ 𝑞 ⟹ 𝐺(𝑝) ≤ 𝐺(𝑞).

In other words, a Schur-concave function is large for ‘‘spread out’’
distributions and small for ‘‘condensed’’ distributions, while inversely
for a Schur-convex function.

3.2. Guessing entropy is Schur-concave, probability of success and distin-
guishability are Schur-convex

It is well known that entropy [14], and more generally the Rényi
entropy of any order [15] (e.g., min-entropy, collision entropy, etc.)
is Schur-concave. Perhaps lesser known is that guessing entropy is
Schur-concave:

Theorem 7 (Schur-Concavity). One has

• Guessing entropy 𝐺(𝐾) =
∑𝑀

𝑘=1 𝑘𝑝(𝑘) is Schur-concave in 𝑝.
• Probability of Success P𝑠(𝐾) is Schur-convex in 𝑝.
• Distinguishability 𝛥(𝐾) is Schur-convex in 𝑝.

Proof. Using summation by parts,
𝑀
∑

𝑘=1
𝑘𝑝(𝑘) =

𝑀
∑

𝑘=1
𝑘(𝑃(𝑘) − 𝑃(𝑘−1)) (30)

= 𝑀𝑃(𝑀) − 𝑃(0) +
𝑀−1
∑

𝑘=1

(

𝑘 − (𝑘 + 1)
)

𝑃(𝑘) (31)

= 𝑀 − 𝑃(1) − 𝑃(2) −⋯ − 𝑃(𝑀−1). (32)

The Schur-concavity of 𝐺(𝐾) is now obvious from the definitions. The
Schur-convexity of the probability of success is immediate from the
definitions. Let 𝑝 ⪯ 𝑞. Let 𝑡 be the largest index such that 𝑝(𝑡) ≥

1
𝑀 . Then

the distinguishability for 𝑝 is 𝑃(𝑡) −
𝑡
𝑀 . Moreover the distinguishability

for 𝑞 is at least 𝑄(𝑡)−
𝑡
𝑀 . The Schur-convexity follows from the definition

s 𝑄(𝑡) ≥ 𝑃(𝑡).

emark 1. Recent works on guessing such as [16] state Schur-
oncavity of Rényi entropy but do not mention the same property
or GE. During the review process we became aware that the Schur-
oncavity of GE was observed earlier by Khouzani and Malacaria [17]
mong many other types of entropies. They established Schur-concavity
y stating (without proof) that 𝐺(𝐾) is symmetric and concave in
he probability distribution of 𝐾. While symmetry is obvious here,
oncavity of GE is precisely established by inequality (14) above. The
chur-convexity of 𝛥 is also shown in [2,3] by stating it is symmetric
nd concave.

emark 2. The proof of this Theorem carries over verbatim for any
unction of the form ∑𝑀

𝑘=1 𝛼𝑘𝑝(𝑘) where (𝛼𝑘) is an increasing sequence.
In particular for guessing moments [18]:

Corollary 1 (Schur-Concavity of Guessing Moments). 𝐺𝜌(𝐾) =
∑𝑀

𝑘=1 𝑘
𝜌𝑝(𝑘)

is Schur-concave in 𝑝.

These results are in line with the known inequalities between guess-
ing entropy (or guessing moments) and entropy (or Rényi entropies) as
established in [18,19].

Remark 3. Since guessing entropy is Schur-concave, it follows from
(28) that guessing entropy is minimized for the deterministic distribu-
tion and maximized for the uniform distribution, which gives the trivial

𝑀+1 .
4

bounds 1 ≤ 𝐺(𝐾) ≤ 2 𝐺
Fig. 1. Relations presented in this article.

4. Optimal bound derivation

In this section, we present the optimal bounds for SR, SD and GE
explicitly. The results are recapped in Fig. 1, which depicts the overall
connections among SR, SD and GE.

4.1. Optimal bounds between GE and SR

Theorem 8 (Optimal Lower and Upper Bounds for Blind Guess). For a
fixed success rate P𝑠(𝐾), the optimal lower and upper bound on guessing
entropy 𝐺(𝐾) are

(

1 + ⌊

1
P𝑠(𝐾) ⌋

)(

1 − 1
2 ⌊

1
P𝑠(𝐾) ⌋P𝑠(𝐾)

)

≤ 𝐺(𝐾) ≤ 1 + 𝑀
2
(1 − P𝑠(𝐾)). (33)

roof. From Theorem 7, for a fixed 𝑝(1), 𝐺(𝐾) − P𝑠(𝐾) =
∑𝑀

𝑘=2 𝑘𝑝(𝑘)
s Schur-concave in (𝑝(2),… , 𝑝(𝑀)). It follows that this quantity is maxi-
um for the uniform distribution (𝑝(2),… , 𝑝(𝑀)) = ( 1−P𝑠𝑀−1 ,

1−P𝑠
𝑀−1 ,… , 1−P𝑠𝑀−1 )

and minimum for the least spread out distribution (𝑝(2),… , 𝑝(𝑀)) with
𝑝(𝑘) ≤ P𝑠. It is easily seen that the latter (least spread out) distribution is
of the form (𝑝(2),… , 𝑝(𝑀)) = (P𝑠,… ,P𝑠, 𝑥, 0,… , 0) where 𝑥 < P𝑠 is such
that ∑𝑀

𝑘=2 𝑝(𝑘) = 1, that is, 𝑥 = 1 − ⌊1∕P𝑠⌋P𝑠. Plugging these values of
(𝑝(1), 𝑝(2),… , 𝑝(𝑀)) into the expression of the guessing entropy gives the
announced lower and upper bounds.

Fig. 2 illustrates the corresponding optimal regions (in blue) be-
tween P𝑠 and 𝐺 for 𝑀 = 2𝑛 with 𝑛 = 2, 4, 8, respectively.

Remark 4. If 𝑋 is a geometric random variable with parameter 𝑝 = P𝑠
defined over N then the guessing entropy of 𝑋 is exactly the inverse of
the optimal probability of guessing 𝑋. This suggests that if a random
variable is well approximated by a geometric random variable then
the approximation that the guessing entropy is the reciprocal of the
probability of success holds.

Theorem 9 (Bounds with Side-Channel Information).

(1 +
⌊ 1
P𝑠(𝐾|𝑌 )

⌋

)(1 −
⌊ 1
P𝑠(𝐾|𝑌 )

⌋P𝑠(𝐾|𝑌 )
2

) ≤ 𝐺(𝐾|𝑌 ) ≤ 1 + 𝑀
2
(1 − P𝑠(𝐾|𝑌 )).

(34)

roof. Applying Theorem 8 to the random variable 𝐾|𝑌 = 𝑦 for every
alue 𝑦 gives (1 + ⌊

1
P𝑠(𝐾|𝑌=𝑦) ⌋)(1 − ⌊

1
P𝑠(𝐾|𝑌=𝑦) ⌋

P𝑠(𝐾|𝑌=𝑦)
2 ) ≤ 𝐺(𝐾|𝑌 =

) ≤ 1 + 𝑀𝑦
2 (1 − P𝑠(𝐾|𝑌 = 𝑦)) where 𝑀𝑦 ≤ 𝑀 is the number of

possible keys given 𝑌 = 𝑦. Taking the expectation over 𝑌 we obtain
ower and upper bounds on 𝐺(𝐾|𝑌 ) = E𝑦𝐺(𝐾|𝑌 = 𝑦). By Theorem 1,
𝑠(𝐾|𝑌 ) = E𝑦P𝑠(𝐾|𝑌 = 𝑦), we obtain the announced upper bound

𝑀 (1 − P (𝐾|𝑌 )).
(𝐾|𝑌 ) ≤ 1 + 2 𝑠
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Fig. 2. Regions 𝐺(𝐾|𝑌 ) vs. P𝑠(𝐾|𝑌 ) as given by Theorem 9. The red curve is the improved upper bound (49) for the deterministic Hamming weight model. The four green dots
re the exact values computed for 𝑄 ∈ {1, 2, 3, 4} traces. The yellow curve corresponds to the formula 𝐺 = P−1

𝑠 and seems to approximate well the actual relation for 𝑛 = 8 bits.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The lower bound, of the form 𝜙(𝑝) = (1+⌊

1
𝑝 ⌋)(1−⌊

1
𝑝 ⌋

𝑝
2 ), is piecewise

linear and convex in 𝑝 = P𝑠. Indeed, its value at 𝑝 = 1
𝑘 for positive

integer 𝑘 is (1 + 𝑘)(1 − 𝑘
2𝑘 ) =

1+𝑘
2 , hence its successive slopes between

𝑝 = 1
𝑘−1 and 𝑝 = 1

𝑘 are 1∕2
1
𝑘−

1
𝑘−1

= − 𝑘(𝑘−1)
2 , which is increasing as 𝑝 = 1

𝑘

ncreases. Thus, by Jensen’s inequality, we have E𝑦[𝜙(P𝑠(𝐾|𝑌 = 𝑦))] ≥
𝜙(E𝑦[P𝑠(𝐾|𝑌 = 𝑦)]) = 𝜙(P𝑠(𝐾|𝑌 )), which gives the announced lower
bound.

At high noise when 1
𝑀 ≤ P𝑠(𝐾|𝑌 ) ≤ 1

𝑀−1 this simplifies to

𝑀+1
2 − 𝑀(𝑀−1)

2 (P𝑠(𝐾|𝑌 )− 1
𝑀 ) ≤ 𝐺(𝐾|𝑌 ) ≤ 𝑀+1

2 − 𝑀
2 (P𝑠(𝐾|𝑌 )− 1

𝑀 ). (35)

t low noise when P𝑠(𝐾|𝑌 ) = 1 − 𝜖 where 𝜖 ≤ 1
𝑀 , this simplifies to

1 + 𝜖 ≤ 𝐺(𝐾|𝑌 ) ≤ 1 + 𝑀
2 𝜖. (36)

Remark 5. It is immediate from its proof that a refinement of the upper
bound of Theorem 9 is given by

𝐺(𝐾|𝑌 ) ≤ 1 +
max𝑦 𝑀𝑦

2
(1 − P𝑠(𝐾|𝑌 )). (37)

This is particularly interesting for deterministic (noiseless) leakage
since, as shown in the next Section, 𝑀𝑦 decreases rapidly as the number
of traces increases.

4.2. Optimal bounds on GE for a given SD

Theorem 10 (Optimal Inequalities between GE and SD for a Blind Guess).
Let 𝑈 (𝐾) = 𝑀(1 − 𝛥(𝐾)), then for a blind guess,

1 + ⌊𝑈 (𝐾)⌋
2𝑈 (𝐾) − ⌊𝑈 (𝐾)⌋ − 1

2𝑀
≤ 𝐺(𝐾) ≤ 1 + 𝑈 (𝐾)

2
. (38)

Proof. This is proved using majorization in [2,3]. This corresponds to
optimal Pinsker and reverse Pinsker inequalities.

Theorem 11 (Optimal Inequalities between GE and SD with Side-Channel
Information). Let 𝑈 (𝐾|𝑌 ) = 𝑀(1 − 𝛥(𝐾|𝑌 )), then with Side-Channel-
Information 𝑌 ,

1 + ⌊𝑈 (𝐾|𝑌 )⌋
2𝑈 (𝐾|𝑌 ) − ⌊𝑈 (𝐾|𝑌 )⌋ − 1

2𝑀
≤ 𝐺(𝐾|𝑌 ) ≤ 1 + 𝑈 (𝐾|𝑌 )

2
. (39)

Proof. This is proved in [2,3]. The upper is linear and the lower bound
is convex, hence Jensen’s inequality can be applied.

We are often interested in the behavior of the metrics in the high
noise scenario. Hence we explicit the bound when 𝛥(𝐾|𝑌 ) < 1

𝑀 ,

𝑀 + 1
2

− (𝑀 − 1)𝛥(𝐾|𝑌 ) ≤ 𝐺(𝐾|𝑌 ) ≤ 𝑀 + 1
2

−
𝑀𝛥(𝐾|𝑌 )

2
. (40)

As expected, we obtain a bound with a constant term 𝑀+1
2 correspond-

ing to a blind guess. Then a linear term in the statistical distance is
5

subtracted from it. Another interesting case is the noiseless scenario
where 𝛥 = 1 − 1

𝑀 − 𝜖 where 𝜖 ≤ 1
𝑀 ,

1 + 𝜖 ≤ 𝐺(𝐾|𝑌 ) ≤ 1 + 𝑀
2
𝜖. (41)

As expected we obtain a constant term 1 corresponding to a perfect
guess. Then a linear term in 𝜖 is added from it.

Fig. 3 illustrates the corresponding optimal regions (in blue) be-
tween 𝛥 and 𝐺 for 𝑀 = 2𝑛 with 𝑛 = 2, 4, 8, respectively.

4.3. Optimal bounds between SD and SR

Finally, we present the optimal Fano and reverse-Fano inequalities
in between the probability of success and statistical distance. Equiva-
lently we also use optimal Pinsker and reverse Pinsker inequalities to
obtain the optimal regions.

Theorem 12 (Optimal Relation between SD and SR for a Blind Guess).
For a blind guess,

𝛥(𝐾) + 1
𝑀

≥ P𝑠(𝐾) ≥ 1
𝑀

+ 𝛥
⌊𝑀(1 − 𝛥(𝐾))⌋

(42)

r equivalently

P𝑠(𝐾) − 1
𝑀 ≤ 𝛥(𝐾) ≤ 1

2

(

𝑀−1
𝑀 + (P𝑠(𝐾) − 2

𝑀 )⌊P𝑠(𝐾)−1⌋

+|1 − P𝑠(𝐾)⌊P𝑠(𝐾)−1⌋ − 1
𝑀 |

)

.
(43)

Proof. This is also an application of majorization theory as shown
in [2,3]. The application of optimal Pinsker and reverse Pinsker in-
equalities yields (42) while the application of optimal Fano and reverse
Fano inequalities yields (43).

Notice that (42) (43). are equivalent because they correspond to
the same regions which are optimally characterized. This equivalence
would have been difficult to derive directly.

In the high noise scenario where 1
𝑀 ≤ P𝑠 ≤

1
𝑀−1 it simplifies to,

P𝑠(𝐾) − 1
𝑀

≤ 𝛥(𝐾) ≤ (𝑀 − 1)(P𝑠(𝐾) − 1
𝑀

). (44)

In the noiseless scenario where P𝑠(𝐾|𝑌 ) = 1 − 𝜖(𝐾) with 𝜖(𝐾) ≤ 1
𝑀 it

boils down to
𝑀 − 1
𝑀

− 𝜖 ≤ 𝛥(𝐾) ≤ 𝑀 − 1
𝑀

− 2
𝑀

𝜖(𝐾). (45)

heorem 13 (Optimal Relation between SD and SR with Side-Channel
nformation). Let 𝑈 (𝐾|𝑌 ) = 𝑀(1 − 𝛥(𝐾|𝑌 )), then with side-channel
nformation 𝑌 ,

P𝑠(𝐾|𝑌 ) ≥ 1 −
𝑈 (𝐾|𝑌 ) − 1 + ⌊𝑈 (𝐾|𝑌 )⌋⌊𝑈 (𝐾|𝑌 ) − 1⌋

⌊𝑈 (𝐾|𝑌 )⌋⌊𝑈 (𝐾|𝑌 ) + 1⌋
(46)

r equivalently,

(𝐾|𝑌 ) ≤ 𝑀−1
𝑀 − (⌊P𝑠(𝐾|𝑌 )−1 + 1⌋P𝑠(𝐾|𝑌 ) − 1)⌊P𝑠(𝐾|𝑌 )−1⌋ ⌊P𝑠(𝐾|𝑌 )−1⌋−1

𝑀

−(1 − ⌊P (𝐾|𝑌 )−1⌋P (𝐾|𝑌 ))⌊P (𝐾|𝑌 )−1 + 1⌋ ⌊P𝑠(𝐾|𝑌 )−1⌋ . (47)
𝑠 𝑠 𝑠 𝑀
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Fig. 3. Regions 𝐺(𝐾|𝑌 ) vs. 𝛥(𝐾|𝑌 ) as given by Theorem 11. The 4 green dots are the exact values computed for 𝑄 = 1, 2, 3, and 4 traces for deterministic Hamming weight
model. The red dots corresponds to subset of bits revealed. The yellow curve corresponds to the formula 𝐺 = 𝑀+1
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− 𝑀𝛥

2
and is a one-to-one relationship for deterministic leakage

models and uniform secret. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Regions 𝛥(𝐾|𝑌 ) vs. P𝑠(𝐾|𝑌 ) as given by Theorems 13 and 12. The dashed blue line corresponds to the blind guess setting. With side-channel information it is convexified
ith a region in darker blue. The 4 green dots are the exact values computed for 𝑄 = 1, 2, 3, and 4 traces. The red dots corresponds to revealing a subsets of bits of the secret

key. The yellow curve corresponds to the formula P−1
𝑠 ≈ 𝑀+1

2
− 𝑀𝛥

2
and seems to approximate well the actual relation for 𝑛 = 8 bits. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Proof. The convex envelope of (42) yields (46). The concave envelope
of (43) yields (47).

Once again we know by construction that (46) and (47) are equiv-
alent which is not obvious from the formulas.

Fig. 4 illustrates the corresponding optimal regions (in blue) be-
tween P𝑠 and 𝛥 for 𝑀 = 2𝑛 with 𝑛 = 2, 4, 8, respectively.

5. Refined bounds for Hamming weight leakage model

5.1. Deterministic leakage for one observed trace

A well-known leakage model of an embedded cryptographic device
in a noiseless scenario is the Hamming weight model

𝑌 = 𝑤𝐻 (𝐾 ⊕ 𝑡) (48)

where 𝑤𝐻 is the bitwise Hamming weight operator [20], ⊕ denotes
the XOR operation and 𝑇 = 𝑡 is given value of plain or cipher text. Let
 = {0, 1,… , 𝑛} be the set of all values taken by 𝑌 and 𝑦 be the set
of key values 𝑘 for fixed 𝑌 = 𝑦.

Theorem 14. For the Hamming weight model, the region (34) reduces
(improves) to the following values of SR and GE:

𝐺(𝐾|𝑌 ) ≤ 1 + 1
2

(

𝑛
⌊

𝑛+1
2 ⌋

)

(1 − P𝑠(𝐾|𝑌 )) (49)

P𝑠(𝐾|𝑌 ) ≥
(

𝑛
⌊

𝑛+1
2 ⌋

)

−1. (50)

Proof. For observed 𝑌 = 𝑦, 𝑀𝑦 = |𝑦| is the number of 𝑛-bit
vectors having Hamming weight 𝑦, that is, 𝑀𝑦 =

(𝑛
𝑦

)

in the improved
bound (37). Since max𝑦 𝑀𝑦 =

( 𝑛
⌊

𝑛+1
2 ⌋

)

, this gives (49).

Since 𝐾|𝑌 = 𝑦 has 𝑀𝑦 possible values, P𝑠(𝐾|𝑌 = 𝑦) = max𝑘 P(𝐾 =
𝑘|𝑌 = 𝑦) ≥ 1

𝑀𝑦
≥ 1∕

( 𝑛
⌊

𝑛+1
2 ⌋

)

. Averaging over 𝑌 gives (50). Equality holds

if and only if 𝐾 is uniformly distributed over the largest class  .
6

𝑦

Fig. 2 illustrates the improvement for 𝑛 = 2, 4, and 8 bits, where
he red curves correspond to the reduced upper bound (49). It can be
bserved that the case of equality in (50) corresponds to the points
here the upper bound (49) (red curve) and the lower bound in (34)

blue curve) meet. In particular for 𝑀 = 22 our improved upper bound
oincide with the lower bound. This proves that in this case the SR and
E are in one to one correspondence with a Hamming Weight leakage
odel.

.2. Case of equiprobable keys

A usual assumption is that 𝐾 is a priori uniformly distributed over
values. In this case the following exact formulas hold. Similar

ormulas for SR and GE can be found in [21].

heorem 15 (Exact Formulas of Equiprobable Keys).

P𝑠(𝐾|𝑌 ) =
||

𝑀

𝐺(𝐾|𝑌 ) = 1
2
+ 1

2𝑀
∑

𝑦∈
𝑀2

𝑦 ,
(51)

𝛥(𝐾|𝑌 ) = 1 − 1
𝑀2

∑

𝑦∈
𝑀2

𝑦 .

ore generally, these formulas hold when 𝑌 is any deterministic function
f 𝐾. It is interesting to remark that the statistical distance and the guessing
ntropy are in one-to-one relationship in this case. Indeed,

𝛥(𝐾|𝑌 ) = 1 −
2𝐺(𝐾|𝑌 ) − 1

𝑀
. (52)

In the special case of the Hamming weight model (48), this gives

P𝑠(𝐾|𝑌 ) = 𝑛 + 1
2𝑛

, 𝐺(𝐾|𝑌 ) =
1 + 2−𝑛

(2𝑛
𝑛

)

2
, (53)

and 𝛥(𝐾|𝑌 ) = 1 − 2−2𝑛
(2𝑛). (54)
𝑛
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If the leakage model is a subset of 𝑘 bits this yields

P𝑠(𝐾|𝑌 ) = 2𝑘∕𝑀, 𝐺𝐸(𝐾|𝑌 ) = 1
2
+ 𝑀2−𝑘

2
, 𝛥(𝐾|𝑌 ) = 1 − 2−𝑘. (55)

Proof. If 𝐾 is equiprobable and 𝑌 = 𝑦 is fixed (with probability
P(𝑌 = 𝑦) = 𝑀𝑦

𝑀 ), then 𝐾|𝑌 = 𝑦 is equiprobable over 𝑀𝑦 = |𝑦|

values so that P𝑠(𝐾|𝑌 = 𝑦) = 1
𝑀𝑦

. Taking the average over 𝑌 gives

𝑠(𝐾|𝑌 ) =
∑

𝑦
𝑀𝑦
𝑀

1
𝑀𝑦

, which yields the announced expression for

SR. Similarly 𝐺(𝐾|𝑌 = 𝑦) = 𝑀𝑦+1
2 for a uniform guess, and taking

the average over 𝑌 gives 𝐺(𝐾|𝑌 ) =
∑

𝑦
𝑀𝑦
𝑀

𝑀𝑦+1
2 , which yields the

nnounced expression for GE. If 𝑌 = 𝑦 is fixed then 𝛥(𝐾|𝑌 = 𝑦) =
1
2 (𝑀𝑦(

1
𝑀𝑦

− 1
𝑀 ) + (𝑀 − 𝑀𝑦)

1
𝑀 ) = 1 − 𝑀𝑦

𝑀 . Taking the average over 𝑌

ields ∑

𝑦
𝑀𝑦
𝑀 (1 − 𝑀𝑦

𝑀 ) = 1 − 1
𝑀2

∑

𝑦∈ 𝑀2
𝑦 . The Hamming weight case

follows from the Vandermonde’s identity ∑𝑛
𝑘=0

(𝑛
𝑘

)2 =
(2𝑛
𝑛

)

.

It is easily seen that we recover the well-known expressions P𝑠(𝐾) =
1
𝑀 , 𝐺(𝐾) = 𝑀+1

2 , and 𝛥(𝐾) = 0 for a blind guess.

.3. Deterministic leakage for multiple observed traces

Consider multiple observed traces (𝑄 queries) 𝑌 = (𝑌1, 𝑌2,… , 𝑌𝑄),
where

𝑌𝑖 = 𝑤𝐻 (𝐾 ⊕ 𝑡𝑖) (𝑖 = 1, 2,… , 𝑄) (56)

for fixed and distinct plain or cipher texts 𝑡1, 𝑡2,… , 𝑡𝑄. In this case we
re faced with a combinational problem since letting 𝑌 = 𝑦 determines

the intersection of 𝑄 Hamming balls.
To simplify the analysis we consider 𝑄 = 2 and the computation of

SR. Without loss of generality we can set 𝑡1 = 0 and consider variable
𝑡2 = 𝑡.

Theorem 16. Let 𝑤 = 𝑤𝐻 (𝑡). Then

P𝑠(𝐾|𝑌 ) =
(𝑤 + 1)(𝑛 −𝑤 + 1)

2𝑛
(57)

In particular for 8-bit bytes (𝑛 = 8), one obtains:

P𝑠 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑛+1
2𝑛 for 𝑤 ∈ {0, 8}
2𝑛
2𝑛 for 𝑤 ∈ {1, 7}
3(𝑛−1)
2𝑛 for 𝑤 ∈ {3, 6}

4(𝑛−2)
2𝑛 for 𝑤 ∈ {4, 5}.

(58)

Proof. We show that || = (𝑤 + 1)(𝑛 − 𝑤 + 1) in (51) as illustrated in
Fig. 5(a), where the set  of points (𝑦1 = 𝑤𝐻 (𝑘), 𝑦2 = 𝑤𝐻 (𝑘 ⊕ 𝑡)) forms
a (rotated) (𝑤 + 1) × (𝑛 − 𝑤 + 1) rectangle. Indeed, let 𝑡 be the binary
7

complement of 𝑡 and write the decomposition 𝑤𝐻 (𝑘) = 𝑤𝐻 (𝑘⋅𝑡)+𝑤𝐻 (𝑘⋅
𝑡) where ⋅ denotes the bitwise product. For fixed 𝑤𝐻 (𝑡) = 𝑤, 𝑤𝐻 (𝑘 ⋅ 𝑡)
can take 𝑤+1 values and 𝑤𝐻 (𝑘 ⋅ 𝑡) takes (𝑛−𝑤)+1 independent values.
Since 𝑤𝐻 (𝑘 ⊕ 𝑡) = 𝑤𝐻 (𝑘) + 𝑤𝐻 (𝑡) − 𝑤𝐻 (𝑘 ⋅ 𝑡) = 𝑤 + 𝑤𝐻 (𝑘 ⋅ 𝑡), we have
(𝑦1, 𝑦2) = (𝑤𝐻 (𝑘 ⋅ 𝑡) + 𝑤𝐻 (𝑘 ⋅ 𝑡), 𝑤 + 𝑤𝐻 (𝑘 ⋅ 𝑡)) which takes all possible
(𝑤 + 1)(𝑛 −𝑤 + 1) values.

More generally, the set  can be determined by exhaustive enumer-
tion of Hamming weights. We computed numerically the resulting SR
nd GE for 𝑄 = 1, 2, 3, and 4 traces. They are plotted as green dots in
ig. 2 for different values of 𝑀 .

.4. Role of the S-Box in the Hamming weight model

To prevent differential and linear cryptanalyses, block ciphers are
omposed with non-linear operations. This non-linearity is performed
y substitution box (S-Box). We investigate different choices for the S-
ox to observe its effect on SR and GE with respect to SCA resistance.
e consider

𝑆𝑖(𝑥) = 𝑎𝑥𝑖 ⊕ 𝑏 ∈ F2𝑛 (59)

or exponents 𝑖 = {1, 7, 19, 101, 254}, constants 𝑎, 𝑏 ∈ F2𝑛 .
As an illustration, Fig. 5 plots the various sets  of Hamming weight

leakage values for 𝑆1 (linear), 𝑆7, and the AES standard 𝑆254 (highly
nonlinear). We observe that the cardinality || increases as exponent
𝑖 increases. This shows that SR (as given by Theorem 15) increases as
nonlinearity increases. Fig. 6 (the 3-D extension of Fig. 5) also plots
𝑀𝑦 as a function of 𝑦 ∈  . Here we observe that 𝑀𝑦 tends to globally
decrease as exponent 𝑖 increases, which shows that GE (as given by
Theorem 15) decreases as nonlinearity increases.

Therefore, the non-linearity of the S-Box diminishes the side channel
resistance. The geometrical explanation of this phenomenon is that the
scatter plots of Figs. 5 and 6 tend to spread out for nonlinear S-Boxes.
This confirms the observation of [22] on the effect of the S-Box on the
confusion coefficient, which for monobit leakage relates to both SR and
GE [23].

5.5. Hamming weight leakage model with Gaussian noise

In this section we derive the expression of SR and GE in an Hamming
Weight leakage scenario

𝑌 = 𝑤𝐻 (𝐾 ⊕ 𝑡) +𝑁 (60)

in the presence of additive white Gaussian Noise (AWGN) 𝑁 ∼
 (0, 𝜎2). Let 𝑓𝑌 and 𝜙𝜎 denote the p.d.f. of 𝑌 and 𝑁 , respectively.
Thus 𝜙𝜎 (𝑥) = 1

√

2𝜋𝜎2
exp(− 𝑥2

2𝜎2 ). Let 𝑄 denote the standard 𝑄-function

(𝑥) = ∫ ∞ 𝑒−
𝑢2
2

√ 𝑑𝑢.
𝑥 2𝜋
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Fig. 6. Number of keys 𝑀𝑦 for given 𝑌 = 𝑦 for 𝑡1 = 0 and 𝑡2 = 3 for different S-Boxes. The 𝑥, 𝑦-axes represent the two coordinates of the 2-dimensional leakage 𝑌 = 𝑦 = (𝑦1 , 𝑦2).
The 𝑧-axis corresponds to the number 𝑀𝑦 of possible keys given 𝑌 = 𝑦, which tends to decrease as the nonlinearity of the S-Box increases. In particular, max𝑦 𝑀𝑦 is respectively
40, 20, 20 thereby improving the bound (37) for nonlinear S-Boxes.

Fig. 7. Numerical evaluation of SR and GE for various noise levels 𝜎2 and increasing number of traces, for various choices of S-Boxes. Each different subfigure corresponds to a
choice for the S-Box. The yellow curve corresponds to GE ≈SR−1, indicating at least for low noise, the GE is approximately the reciprocal of the SR. It can be observed that at
a fixed SR the GE increases with the noise. This effect is amplified in the presence of a nonlinear S-Box. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Numerical evaluation of SR and SD for various noise levels 𝜎2 and increasing number of traces, for various choices of S-Boxes. Each different subfigure corresponds to a
choice for the S-Box. The yellow curve corresponds to 1∕SR ≈ 𝑀+1

2
− 𝑀

2
SD, indicating at least for low noise the approximation holds. It can be observed that at a fixed SR the SD

decreases with the noise. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Numerical evaluation of SD and GE for various noise levels 𝜎2 and increasing number of traces, for various choices of S-Boxes. Each different subfigure corresponds to a
choice for the S-Box. The yellow curve corresponds to GE ≈ 𝑀+1

2
− 𝑀

2
SD, indicating at least for low noise the approximation holds. It can be observed that at a fixed SD the GE

decreases with the noise. Because of the variance in the estimation some points exits the region. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Theorem 17 (Expression with Noisy Leakage).

P𝑠(𝐾|𝑌 ) = 𝑛 + 1
𝑀

− 2𝑛
𝑀

𝑄
( 1
2𝜎

)

, (61)

𝐺(𝐾|𝑌 ) = 1
2
+

(2𝑛
𝑛

)

2𝑀
+

2
( 2𝑛
𝑛+1

)

𝑀
𝑄
( 1
2𝜎

)

+
2𝑛
∑

𝑖=2
𝑓𝑖(𝑛)𝑄

( 𝑖
2𝜎

)

, (62)

𝛥(𝐾|𝑌 ) = 1 −

(2𝑛
𝑛

)

𝑀2
− 2

(

1 +
1−𝑀+(2𝑛+1𝑛+1 )−2(

2𝑛
𝑛 )

𝑀2

)

𝑄( 1
2𝜎

) + 𝑂
(

𝑄( 3
2𝜎

)
)

(63)

here the latter sum is negligible at first order in 𝜎 and where the 𝑓𝑖 are
ational functions in 𝑛 and 𝑀 .

For low noise one recovers (53). The proof is left in Appendix.

.6. Validation by simulation

We evaluated numerically the relation between SR and GE for
ifferent noise levels 𝜎2 and different number of traces. The evaluation
as been performed by 103 repetitions of maximum likelihood attacks
n synthetically generated leakages.

Figs. 7 , 8 and 9 plots the resulting values for various noise lev-
ls and S-Boxes. We observe that for low noise the approximation
(𝐾|𝑌 ) ≈ P𝑠(𝐾|𝑌 )−1 still holds (yellow curve). As the noise increases,

or a given SR, GE increases, and the latter approximation is no longer
alid. The S-Box nonlinearity accentuates this effect because it de-
reases the minimum distance of points in  in Fig. 5 and, therefore,
akes the maximum likelihood attack less robust to noise. As expected,

or low noise the approximation GE≈ 𝑀+1
2 − 𝑀

2 SD holds.

5.7. Validation on real traces from DPA Contest V4.2

Fig. 10 plots the results on values of SR and GE computed on the
three first folders of the DPA Contest V4.2 with a Hamming Weight
template attack with known mask. As expected from the simulation the
guessing entropy is lower bounded by 𝑆𝑅−1.
9

Fig. 10. Results on traces from DPA Contest v4.2.

6. Conclusion

In this paper, optimal bounds between success rate, guessing en-
tropy and distinguishability are derived with a simple majorization
argument, and further improved for the Hamming weight leakage
model—in particular for the classical assumptions of a priori equiproba-
ble secret keys and additive white Gaussian measurement noise. Closed-
form expressions and numerical computations are given for various
leakage scenarios. A study of the impact of the choice S-Box with
respect to SCA resistance confirms that nonlinearity of the S-Box tends
to tighten the bounds between SR and GE. We established that distin-
guishability and guessing entropy are in one to one relationship for
uniform keys and deterministic leakage models. In particular for low
noise we have the approximation 𝐺𝐸 ≈ 𝑀+1

2 − 𝑀
2 𝑆𝐷. The approximate

relation 𝐺𝐸 = 1∕𝑆𝑅 holds in the case of 8-bit bytes and low noise.
This in turns imply that for 8-bit and low noise 1∕𝑆𝑅 ≈ 𝑀+1

2 − 𝑀
2 𝑆𝐷.

We observed that for the probability of success and distinguishability
the optimal reverse Pinsker inequality corresponds to the optimal Fano
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Fig. A.11. 𝜋𝑖(𝑦) for 𝑖 = 0, 1, 2, 3. We can observe that the 𝜋𝑖 are step functions. Their
are constant on the interval of the form [ 𝑝

2
, 𝑝+1

2
) for all integer 𝑝.

nequality and that the optimal reverse Fano inequality corresponds to
he optimal Pinsker inequality.

As a perspective, we notice that our methodology can be easily gen-
ralized to the definitions of the 𝑖th order success rate [4] SR𝑖 vs. GE.
owever, as pointed out in [11], such theoretical work assumes perfect
nowledge on the distribution of 𝐾 given observation 𝑌 . This generally

underestimates the practical GE for a non optimal attack because such
a practical attack generally gives a suboptimal key ranking. Thus the
results of this paper should yield adequate estimates only for optimal
template attacks. The determination of more precise regions SR vs. GE
for other types of attacks is a topic for future investigation.
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Appendix. Proof of Theorem 17

For 𝑗 = 0,… , 𝑛 let 𝜋𝑗 (𝑦) denote the (𝑗 + 1)th closest point to 𝑦 in  .
In particular, 𝜋0(𝑦) is the closest point to 𝑦 in  . It can be checked with
the help of Fig. A.11 that

𝜋0(𝑦) =

⎧

⎪

⎨

⎪

⎩

0 for 𝑦 ≤ − 1
2

𝑖 for 𝑦 ∈ [𝑖 − 1
2 , 𝑖 +

1
2 )

𝑛 for 𝑦 ≥ 𝑛 + 1
2 .

(A.1)

rom (2), one has

P𝑠 =
1
𝑀 ∫ 𝜙𝜎 (𝑦 − 𝜋0(𝑦)) d𝑦

= 1
𝑀

(

2𝑄( 1
2𝜎

) +
𝑛
∑

𝑖=0
∫

𝑖+ 1
2

𝑖− 1
2

𝜙𝜎 (𝑦 − 𝑖)
)

= 1
(

2𝑄( 1 ) + (𝑛 + 1)∫

1
2

1
𝜙𝜎 (𝑦)

)

10

𝑀 2𝜎 − 2
= 1
𝑀

(2𝑄( 1
2𝜎

) + (𝑛 + 1)(1 − 2𝑄( 1
2𝜎

)))

hich after simplification proves (61).
Now from (12), one has

𝐺(𝐾|𝑌 ) = ∫ 𝑓𝑌 (𝑦)
𝑀
∑

𝑘=1
𝑘 𝑝(𝑘)|𝑦 d𝑦 (A.2)

ince the noise is Gaussian, the 𝑝(𝑘)|𝑦 are sorted by Euclidean distance.
pplying Bayes’ rule we obtain

𝑝(𝑘)|𝑦 = 𝜙𝜎 (𝑦 − 𝜋𝑗 (𝑦))
1∕𝑀
𝑓𝑌 (𝑦)

, 𝑘 = 𝑆𝑗−1(𝑦) + 1,… , 𝑆𝑗 (𝑦). (A.3)

where 𝑆𝑗 (𝑦) =
∑𝑗

𝑖=0
( 𝑛
𝜋𝑖(𝑦)

)

for 𝑗 = 0,… , 𝑛 with the convention 𝑆−1(𝑦) =
. Therefore,

𝐺(𝐾|𝑌 ) =∫ 𝑓𝑌 (𝑦)
𝑛
∑

𝑗=0

𝑆𝑗 (𝑦)
∑

𝑘=𝑆𝑗−1(𝑦)+1
𝑘𝜙𝜎 (𝑦 − 𝜋𝑗 (𝑦))

1∕𝑀
𝑓𝑌 (𝑦)

d𝑦

= 1
𝑀

𝑛
∑

𝑗=0
∫

𝑆𝑗 (𝑦)
∑

𝑘=𝑆𝑗−1(𝑦)+1
𝑘𝜙𝜎 (𝑦 − 𝜋𝑗 (𝑦)) d𝑦

= 1
𝑀

𝑛
∑

𝑗=0
∫ 𝐶𝑗 (𝑦)𝜙𝜎 (𝑦 − 𝜋𝑗 (𝑦)) d𝑦

here

𝐶𝑗 (𝑦) =
𝑆𝑗 (𝑦)(𝑆𝑗 (𝑦) + 1) − 𝑆𝑗−1(𝑦)(𝑆𝑗−1(𝑦) + 1)

2
(A.4)

= 1
2

( 𝑛
𝜋𝑗 (𝑦)

)(

2𝑆𝑗−1(𝑦) +
( 𝑛
𝜋𝑗 (𝑦)

)

+ 1
)

. (A.5)

The 𝑗 = 0 term can be written as

∫
𝑆1(𝑦)(1 + 𝑆1(𝑦))

2
𝜙𝜎 (𝑦 −𝑤𝐻 (𝜋1(𝑦))) d𝑦 (A.6)

= [2∫

∞

1
2

𝜙𝜎 (𝑦)𝑑𝑦 +
𝑛
∑

𝑖=0
∫

𝑖+ 1
2

𝑖− 1
2

(𝑛
𝑖

)

(1 +
(𝑛
𝑖

)

)

2
𝜙𝜎 (𝑦 − 𝑖)

]

(A.7)

=
[

2𝑄( 1
2𝜎

) +
𝑛
∑

𝑖=0

(𝑛
𝑖

)

(1 +
(𝑛
𝑖

)

)

2
(1 − 2𝑄( 1

2𝜎
))
]

(A.8)

= 𝑀
2

+ 1
2

(

2𝑛
𝑛

)

−𝑄( 1
2𝜎

)(𝑀 +
(

2𝑛
𝑛

)

− 2). (A.9)

e now compute the 𝑗 = 1 term. It can be checked with the help of
ig. A.11 that

𝜋1(𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 for 𝑦 ≤ − 1
2

𝑖 − 1 for 𝑦 ∈ [𝑖 − 1
2 , 𝑖)

𝑖 + 1 for 𝑦 ∈ [𝑖, 𝑖 + 1
2 )

𝑛 − 1 for 𝑦 ≥ 𝑛 + 1
2 .

(A.10)

In the 𝑗 = 1 term, the contribution of the integral from 1
2 to ∞ and −∞

to − 1
2 both yields a term of value 𝑛(𝑛+3)

2 𝑄( 3𝜎2 ). The contribution of the
integral over [𝑖 − 1

2 , 𝑖) yields

1
2
( 𝑛
𝑖−1

)

[2
(𝑛
𝑖

)

+
( 𝑛
𝑖−1

)

+ 1](𝑄( 1
2𝜎

) −𝑄( 1
𝜎
)). (A.11)

and that over (𝑖, 𝑖 + 1
2 ] yields

1
2
( 𝑛
𝑖+1

)

[2
(𝑛
𝑖

)

+
( 𝑛
𝑖+1

)

+ 1](𝑄( 1
2𝜎

) −𝑄( 1
𝜎
)). (A.12)

Summing the contribution yields, after some calculation,

𝑛(𝑛 + 3)𝑄( 3𝜎
2
) + [𝑀 − 2 + 2

(2𝑛+1
𝑛+1

)

−
(2𝑛
𝑛

)

](𝑄( 1
2𝜎

) −𝑄( 1
𝜎
)). (A.13)

Here we have used the following Vandermonde identities:
𝑛
∑

𝑖=0

( 𝑛
𝑖+1

)2 =
𝑛
∑

𝑖=0

( 𝑛
𝑖−1

)2 =
(2𝑛
𝑛

)

− 1

𝑛
∑

(𝑛
𝑖

)( 𝑛
𝑖−1

)

=
𝑛
∑

(𝑛
𝑖

)( 𝑛
𝑖+1

)

𝑖=0 𝑖=0



Microprocessors and Microsystems 107 (2024) 105045J. Béguinot et al.

S
i

2
i
a

=
𝑛
∑

𝑖=0

(𝑛
𝑖

)

[
(𝑛+1

𝑖

)

−
(𝑛
𝑖

)

]

=
(2𝑛+1
𝑛+1

)

−
(2𝑛
𝑛

)

.

umming the 𝑗 = 0 and 𝑗 = 1 terms simplifies to the first three terms
n (62).

One can go further and compute terms corresponding to 𝑗 =
, 3,… , 𝑛. It is easily seen from the above derivation that splitting the
ntegral with Chasles relation on the interval where 𝜋𝑖 is constant yields
sum of weighted 𝑄( 𝑖

2𝜎 ) as shown in (62).
We first prove expression for the statistical distance.

𝛥(𝐾|𝑌 ) = ∫R
𝑓𝑌 (𝑦)𝛥(𝐾|𝑌 = 𝑦)𝑑𝑦 (A.14)

= ∫R
𝑓𝑌 (𝑦)

∑

𝑘
(𝑝(𝑘|𝑦) − 1∕𝑀)+ 𝑑𝑦 (A.15)

= ∫R

∑

𝑘

(

𝑓𝑌 (𝑦)𝑝(𝑘|𝑦) − 𝑓𝑌 (𝑦)∕𝑀
)+ 𝑑𝑦 (A.16)

= 1
𝑀 ∫R

∑

𝑘

(

𝜙𝜎(𝑦 −𝑤𝐻 (𝑘)) − 𝑓𝑌 (𝑦)
)+ 𝑑𝑦 (A.17)

= 1
𝑀2

𝑛
∑

𝑤=0

(

𝑛
𝑤

)

∫R
(

𝑛
∑

𝑗=0

(

𝑛
𝑗

)

(𝜙𝜎 (𝑦 −𝑤) − 𝜙𝜎 (𝑦 − 𝑗))
)

+𝑑𝑦

(A.18)

= 1
𝑀2

𝑛
∑

𝑤=0

(

𝑛
𝑤

)

∫R
(

𝑛
∑

𝑗=0

(

𝑛
𝑗

)

(𝜙𝜎 (𝑦) − 𝜙𝜎 (𝑦 − (𝑗 −𝑤)))
)

+𝑑𝑦.

(A.19)

At this point it is hard to determine when the integrand is positive to
simplify the positive part. Hence we split the integral over multiple
slices. Let

𝐼𝑎,𝑏(𝑤) = ∫

𝑏

𝑎
(

𝑛
∑

𝑗=0

(

𝑛
𝑗

)

(

𝜙𝜎 (𝑦) − 𝜙𝜎 (𝑦 − (𝑗 −𝑤))
)

)

+𝑑𝑦 (A.20)

where we omit the subscript when 𝑎 = −∞ and 𝑏 = ∞. Then

𝛥(𝐾|𝑌 ) = 1
𝑀2

𝑛
∑

𝑤=0

(

𝑛
𝑤

)

𝐼(𝑤). (A.21)

If 𝑤 = 0 then for 𝜎 small enough the integrand is positive on (−∞, 12 ]
and negative elsewhere. Then using an Abel summation technique it
follows that

𝐼(0) = 𝐼−∞, 12
(0) (A.22)

= (𝑀 − 1)(1 −𝑄𝜎 (
1
2
)) − 𝑛𝑄𝜎 (

1
2
) −

𝑛−2
∑

𝑗=0

(

𝑛
𝑗 + 2

)

𝑄𝜎 (
3
2
+ 𝑗)

(A.23)

= (𝑀 − 1)(1 −𝑄𝜎 (
1
2
)) − 𝑛𝑄𝜎 (

1
2
) + 𝑂(𝑄( 3

2𝜎
)). (A.24)

If 𝑤 = 𝑛 for 𝜎 small enough the integrand is positive on [− 1
2 ,∞) and

negative elsewhere. It follows that 𝐼(0) = 𝐼(𝑛). Else 1 ≤ 𝑤 ≤ 𝑛 − 1 and
for 𝜎 small enough the integrand is positive on [− 1

2 ,
1
2 ] and negative

elsewhere. It follows that

𝐼(𝑤) = 𝐼− 1
2 ,

1
2
(𝑤) (A.25)

= 𝑀
(

1 − 2𝑄𝜎

( 1
2

))

−
𝑛
∑

𝑗=0

(

𝑛
𝑗

)

(

𝑄
(

𝑤 − 1
2
− 𝑗

)

−𝑄
( 1
2
+𝑤 − 𝑗

))

(A.26)

= 𝑀
(

1 − 2𝑄𝜎

( 1
2

))

−
𝑛
∑

𝑗=0

(

𝑛
𝑗

)

𝑄
(

𝑤 − 1
2
− 𝑗

)

+
𝑛
∑

𝑗=0

(

𝑛
𝑗

)

𝑄
( 1
2
+𝑤 − 𝑗

)

(A.27)

= 𝑀
(

1 − 2𝑄𝜎

( 1
2

))

−
𝑛
∑

𝑗=0

(

𝑛
𝑗

)

𝑄
(

𝑤 − 1
2
− 𝑗

)

+
𝑛−1
∑

(

𝑛
𝑗 + 1

)

𝑄
(

𝑤 − 1
2
− 𝑗

)

(A.28)
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𝑗=−1
= 𝑀
(

1 − 2𝑄𝜎

( 1
2

))

+𝑄𝜎 (
1
2
+𝑤) −𝑄𝜎 (𝑤 − 1

2
− 𝑛)

−
𝑛−1
∑

𝑗=0

(

(𝑛
𝑗

)

−
( 𝑛
𝑗+1

)

)

𝑄
(

𝑤 − 𝑗 − 1
2

)

(A.29)

= 𝑀
(

1 − 2𝑄𝜎

( 1
2

))

− 1 −
𝑛−1
∑

𝑗=0

(

(𝑛
𝑗

)

−
( 𝑛
𝑗+1

)

)

𝑄
(

𝑤 − 𝑗 − 1
2

)

+ 𝑂(𝑄( 3
2𝜎

))

(A.30)

= 𝑀
(

1 − 2𝑄𝜎

( 1
2

))

− 1 −
𝑛−1
∑

𝑗=𝑤−1

(

(𝑛
𝑗

)

−
( 𝑛
𝑗+1

)

)

𝑄
(

𝑤 − 𝑗 − 1
2

)

+ 𝑂(𝑄( 3
2𝜎

)). (A.31)

It only remains to sum the integrals over 𝑤 up to an additive 𝑂( 3
2𝜎 )

term.
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)

𝐼𝑤 = (𝑀 − 2)
(

𝑀
(

1 − 2𝑄𝜎

( 1
2

))

− 1
)

−
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

) 𝑛−1
∑

𝑗=𝑤−1

(

(𝑛
𝑗

)

−
( 𝑛
𝑗+1

)

)

𝑄
(

𝑤 − 𝑗 − 1
2

)

.

(A.32)

We compute the sum 𝑆 =
∑𝑛−1

𝑤=1
(𝑛
𝑤

)
∑𝑛−1

𝑗=𝑤−1

(

(𝑛
𝑗

)

−
( 𝑛
𝑗+1

)

)

𝑄
(

𝑤 − 𝑗

− 1
2

)

to simplify the expression.

𝑆 =
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤 − 1

)

−
(

𝑛
𝑤

))

𝑄
( 1
2

)

+
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤

)

−
(

𝑛
𝑤 + 1

))

(1 −𝑄
( 1
2

)

)

+
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

) 𝑛−1
∑

𝑗=𝑤+1

((

𝑛
𝑗

)

−
(

𝑛
𝑗 + 1

))

(1 −𝑄
(

𝑗 + 1
2
−𝑤

)

)

(A.33)

=
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤 − 1

)

−
(

𝑛
𝑤

))

𝑄
( 1
2

)

+
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤

)

−
(

𝑛
𝑤 + 1

))

(1 −𝑄
( 1
2

)

)

+
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤 + 1

)

−
(

𝑛
𝑛

))

(A.34)

=
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤 − 1

)

−
(

𝑛
𝑤

)

−
(

𝑛
𝑤

)

+
(

𝑛
𝑤 + 1

))

𝑄
( 1
2

)

+
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤

)

−
(

𝑛
𝑤 + 1

)

+
(

𝑛
𝑤 + 1

)

−
(

𝑛
𝑛

))

(A.35)

=
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤 − 1

)

− 2
(

𝑛
𝑤

)

+
(

𝑛
𝑤 + 1

))

𝑄
( 1
2

)

+
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤

)

− 1
)

(A.36)

=
𝑛−1
∑

𝑤=1

(

𝑛
𝑤

)((

𝑛
𝑤 − 1

)

− 2
(

𝑛
𝑤

)

+
(

𝑛
𝑤 + 1

))

𝑄
( 1
2

)

+
(

2𝑛
𝑛

)

−𝑀

(A.37)

=
(

2
(

2𝑛 + 1
𝑛 + 1

)

− 4
(

2𝑛
𝑛

)

− 2𝑛 + 4
)

𝑄
( 1
2

)

+
(

2𝑛
𝑛

)

−𝑀. (A.38)

Summing everything we obtain finally obtain up to 𝑂
(

𝑄
(

3
2

))

,

𝑀2𝛥(𝐾|𝑌 ) = (𝑀 − 2)𝑀(1 − 2𝑄𝜎 (
1
2
)) − (𝑀 − 2)

−
(

2
(

2𝑛 + 1
𝑛 + 1

)

− 4
(

2𝑛
𝑛

)

− 2𝑛 + 4
)

𝑄
( 1
2

)

−
(

2𝑛
𝑛

)

+𝑀 + 2(𝑀 − 1)(1 −𝑄𝜎 (
1
2
)) − 2𝑛𝑄𝜎 (

1
2
) (A.39)

=
(

𝑀2 −
(

2𝑛
))

− 2
(

𝑀2 −𝑀 + 1 +
(

2𝑛 + 1
)

− 2
(

2𝑛
))
𝑛 𝑛 + 1 𝑛
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( 1
2

)
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