
A Primer on Alpha-Information Theory
with Application to Leakage in Secrecy

Systems

Olivier Rioul(B)
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Abstract. We give an informative review of the notions of Rényi’s α-
entropy and α-divergence, Arimoto’s conditional α-entropy, and Sibson’s
α-information, with emphasis on the various relations between them. All AQ1

these generalize Shannon’s classical information measures corresponding
to α = 1. We present results on data processing inequalities and provide
some new generalizations of the classical Fano’s inequality for any α > 0.

This enables one to α-information as a information theoretic metric
of leakage in secrecy systems. Such metric can bound the gain of an
adversary in guessing some secret (any potentially random function of
some sensitive dataset) from disclosed measurements, compared with the
adversary’s prior belief (without access to measurements).
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1 Introduction

Shannon’s information theory is based on the classical notions of entropy H(X),
relative entropy D(P‖Q) a.k.a. divergence, conditional entropy H(X|Y ) and
mutual information I(X;Y ). The fundamental property that makes the the-
ory so powerful is that all these informational quantities satisfy data processing
inequalities1.

An increasingly popular generalization of entropy is Rényi entropy of order
α, or α-entropy Hα(X). Many compatible generalizations of relative and condi-
tional entropies and information have been proposed, yet the only suitable quan-
tities that do satisfy the correct data processing inequalities are Arimoto’s con-
ditional entropy Hα(X|Y ) and Sibson’s α-information Iα(X;Y ). In this paper,
we first review the corresponding α-information theory that beautifully gen-
eralizes Shannon’s classical information theory (which is recovered as the lim-
iting case α → 1). For α #= 1, however, α-information is no longer mutual :
Iα(X;Y ) #= Iα(Y ;X) in general.
1 See [11] for a review of several data processing results.
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The classical Fano inequality H(X|Y ) ≤ h(Pe) + Pe log(M − 1) relating con-
ditional entropy and probability of error Pe for a M -ary variable X can then be
appropriately generalized using the data processing inequality for α-divergence.
We present an appealing application to side-channel analysis.

2 A Primer on α-Information Theory

2.1 Notations

Probability Distributions. In this paper, probability distributions such as
P,Q are such that P & µ and Q & µ where µ is a given reference (σ-finite) mea-
sure. The corresponding lower-case letters denote the Radon-Nykodym deriva-
tives p = dP

dµ , q = dQ
dµ . The probability distribution P of random variable X is

sometimes noted PX . The reference measure is then noted µX and the Radon-
Nykodym derivative is pX = dPX

dµX
.

Discrete and Continuous Random Variables. If X is a discrete random
variable (taking values in a discrete set X ), then µX can be taken as the counting
measure on X ; any integral over µX then reduces to a discrete sum over x ∈ X ,
and we have pX(x) = P(X =x). When X is a continuous random variable taking
values in Rn, µX is the Lebesgue measure on Rn and pX(x) is the corresponding
probability density function. The notation Ex denotes expectation with respect
to µX : Exf(x) = E f(X) =

∫
X f(x)pX(x)dµX(x).

Uniform Distributions. As an example, we write X ∼ U(M) if X is uniformly
distributed over a set X of finite measure M =

∫
X dµ. The corresponding density

is pX(x) = 1X (x)
M . In the discrete case, this means that X takes M equiprobable

values in the set X of cardinality M .

Escort Distributions. For any distribution p = dP
dµ , its escort distribution Pα of

exponent α is given by the normalized α-power:

pα(x) =
pα(x)∫

X pα(x)dµ(x)
. (1)

Joint Distributions. A joint distribution PX,Y of two random variables X,Y
is such that PX,Y & µX ⊗ µY where µX is the reference measure for X and
µY is the reference measure for Y . In this paper, all functions of (x, y) inte-
grated over µX ⊗ µY will always be measurable and nonnegative so that all the
integrals considered in this paper exist (with values in [0,+∞]) and Fubini’s
theorem always applies. The conditional distributions PY |X and PX|Y are such
that pX,Y (x, y) = pX(x)pY |X(y|x) = pY (y)pX|Y (x|y) (µX ⊗ µY )-a.e.. We write
PX,Y = PXPY |X = PX|Y PY . In particular, PX ⊗ PY is simply noted PXPY .
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Random Transformations A random transformation PY |X applies to any
input distribution PX and provides an output distribution PY , which satisfies
pY (y) =

∫
pY |X(y|x)pX(x)dµX(x). We write PX → PY |X → PY . The same

random transformation can be applied to another distribution QX . We then
write QX → PY |X → QY where the corresponding output distribution QY is
such that qY (y) =

∫
pY |X(y|x)qX(x)dµX(x).

Deterministic Transformations. Any deterministic function Y = f(X) taking
discrete values can be seen as a particular case of a random transformation
PY |X where pY |X(y|x) = δf(x)(y).

2.2 Definitions

Throughout this paper we consider a Rényi order α ∈ (0, 1) ∪ (1,+∞). In the
following definitions, the corresponding quantities for α = 0, 1 and +∞ will be
obtained by taking limits.

Definition 1 (Rényi Entropy [10]). The α-entropy of X ∼ p is

Hα(X) =
1

1 − α
log

∫

X
pα(x) dµ(x). (2)

It can also be noted Hα(P ) or Hα(p). When X is binary with distribution (p, 1−
p), the α-entropy reduces to

hα(p) =
1

1 − α
log

(
pα + (1 − p)α

)
. (3)

Definition 2 (Rényi Divergence [5,10]). The α-divergence or relative α-
entropy of P and Q is

Dα(P‖Q) =
1

α − 1
log

∫

X
pα(x)q1−α(x) dµ(x). (4)

For binary distributions (p, 1 − p) and (q, 1 − q), it reduces to

dα(p‖q) =
1

α − 1
log

(
pαq1−α + (1 − p)α(1 − q)1−α

)
. (5)

Definition 3 (Arimoto-Rényi Entropy [1,7]). The conditional α-entropy of
X given Y is

Hα(X|Y ) =
α

1 − α
log

∫

Y
pY (y)

(∫

X
p

α

X|Y (x|y) dµX(x)
)1/α

dµY (y). (6)

Definition 4 (Sibson’s mutual information [4,14,15]). The α-mutual infor-
mation (or simply α-information) of X and Y is

Iα(X;Y ) =
α

α − 1
log

∫

Y

(∫

X
pX(x)pα

Y |X(y|x) dµX(x)
)1/α

dµY (y) (7)
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=
α

α − 1
log

∫

Y
pY (y)

(∫

X
p

α

X|Y (x|y)p1−α
X (x) dµX(x)

)1/α
dµY (y). (8)

Notice that Iα(X;Y ) #= Iα(Y ;X) in general.
By continuous extension of the above quantities, we recover the classical

entropy H1(X) = H(X), divergence D1(P‖Q) = D(P‖Q), conditional entropy
H1(X|Y ) = H(X|Y ), and mutual information I1(X;Y ) = I(X;Y ).

2.3 Basic Properties

Several known properties of α-divergence, α-entropies, and α-information are
needed in the sequel. For completeness we list them as lemmas along with proof
sketches.

Lemma 1 (α-information inequality [5, Thm. 8]2).

Dα(P‖Q) ≥ 0 (9)

with equality if and only if P = Q.

Proof. Apply Hölder’s inequality
∫

pαq1−α ≤ (
∫

p)α(
∫

q)1−α for α < 1, or the
reverse Hölder inequality for α > 1. Equality holds when p = q µ-a.e., that is,
P = Q. An alternative proof uses Jensen’s inequality applied to x -→ xα, which
is concave for α < 1 and convex for α > 1.

Lemma 2 (link between α-divergence and α-entropy [5, Eq. (2)]). Letting
U = U(M) be the uniform distribution,

Dα(P‖U) = log M − Hα(P ) (10)

Proof. Set Q = U and q = 1/M in (4).

Lemma 2 holds for discrete or continuous distributions. In particular from
(9), (10) implies that if M =

∫
X dµ < ∞ then

Hα(X) ≤ log M (11)

with equality if and only if X ∼ U(M).
The following is the natural generalization for α #= 1 of the well-known Gibbs

inequality H(X) ≤ −E log q(X).

Lemma 3 (α-Gibbs inequality [12, Thm 1]). Let X ∼ p. For any probability
distribution φ(x),

Hα(X) ≤ α

1 − α
log E

[
φ

α−1
α (X)

]
(12)

2 We name this “information inequality” after Cover and Thomas which used this
terminology for the usual divergence D1(P‖Q) = D(P‖Q) [3, Theorem 2.6.3].
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with equality if and only if φ = pα, the escort distribution (1) of p. For any
family of conditional densities φ(x|y),

Hα(X|Y ) ≤ α

1 − α
log E

[
φ

α−1
α (X|Y )

]
(13)

with equality if and only if φ(x|Y ) = pα(x|Y ) µY -a.e. where pα(x|y) is the escort
distribution of p(x|y) = pX|Y (x|y).

For uniform q(x) ∼ U(M) in (12) we recover (11).

Proof. Let q = φ1/α so that φ = qα. An easy calculation gives
α

1−α log E
[
φ

α−1
α (X)

]
= D1/α(Pα‖Qα) + Hα(X). The first assertion then follows

from Lemma 1.
Now for fixed y ∈ Y, one has Hα(X|Y =y) ≤ α

1−α log E
[
φ

α−1
α (X|Y =y)

]
with

equality if and only if φ(x|y) = pα(x|y). In both cases α < 1 and α > 1, it follows
that Hα(X|Y ) = α

1−α log Ey exp 1−α
α Hα(X|Y = y) ≤ α

1−α log E
[
φ

α−1
α (X|Y )

]
.

Lemma 4 (conditioning reduces α-entropy [1,7]).

Hα(X|Y ) ≤ Hα(X) (14)

with equality if and only if X and Y are independent.

Proof. Set φ(x|y) = pα(x) in (13), with equality iff pα(x|Y ) = pα(x) a.e., i.e., X
and Y are independent. (An alternate proof [7] uses Minkowski’s inequality.)

Lemma 5 (α-information and conditional α-entropy [13, Eq. (47)]). If
X ∼ U(M),

Iα(X;Y ) = log M − Hα(X|Y ). (15)

Proof. Set pX(x) = 1/M in (8).

It is not true in general that Iα(X;Y ) = Hα(X) − Hα(X|Y ) for nonuni-
form X [15].

Lemma 6 (α-information and α-divergence). Sibson’s identity [14,
Thm. 2.2], [4, Eq. (20)], [15, Thm. 1]:

Dα(PX,Y ‖PXQY ) = Iα(X;Y ) + Dα(Q∗
Y ‖QY ) (16)

for any distribution QY , where Q∗
Y is given by

q∗
Y (y) =

(∫
X pX(x)pα

Y |X(y|x) dµ(x)
)1/α

∫
Y
(∫

X pX(x)pα

Y |X(y|x) dµ(x)
)1/αdµY (y)

(17)

In particular from (9),

Iα(X;Y ) = min
QY

Dα(PX,Y ‖PXQY ) = Dα(PX,Y ‖PXQ∗
Y ) (18)

hence Iα(X;Y ) ≥ 0 with equality if and only if X and Y are independent.
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6 O. Rioul

Proof. Dα(PX,Y ‖PXQY ) = 1
α−1 log

∫
pX(x)

(∫
p

α

Y |X(y|x)q1−α

Y
(y)dµY (y)

)
dµX

(x) = 1
α−1 log

∫
q1−α
Y (y)

(∫
pX(x)pα

Y |X(y|x)dµX(x)
)
dµY (y) where we applied

Fubini’s theorem in the second equality. Substituting the expression inside
parentheses using (17) gives (16). Using Lemma 1 it follows as expected that
Iα(X;Y ) ≥ 0 with equality if and only if X and Y are independent (in which
case Q∗

Y = PY ).

Lemma 7 (Convexity of α-divergence [4, Appendix], [5, Thm. 12]). Q -→
Dα(P‖Q) is convex: For any λ ∈ (0, 1),

Dα(P‖λQ1 + (1 − λ)Q2) ≤ λDα(P‖Q1) + (1 − λ)Dα(P‖Q2). (19)

Notice that Dα(P‖Q) is not convex in P in general (when α > 1) [4,5].

2.4 Data Processing Inequalities

Lemma 8 (Data processing reduces α-divergence [9], [5, Thm. 1]). For
random transformations PX → PY |X → PY and QX → PY |X → QY , we have
the data processing inequality:

Dα(PX‖QX) ≥ Dα(PY ‖QY ) (20)

with equality if and only if PX|Y = QX|Y , where PX|Y PY = PY |XPX and
QX|Y QY = PY |XQX .

In particular, for any µX-measurable set A ⊂ X ,

Dα(PX‖QX) ≥ dα(pA‖qA) (21)

where pA = P(X ∈ A), qA = Q(X ∈ A), and dα is the binary α-divergence (5).
Equality in (21) holds if and only if PX|X∈A = QX|X∈A and PX|X %∈A = QX|X %∈A.

Proof. Write Dα(PX‖QX) = Dα(PXPY |X‖QXPY |X) = Dα(PY PX|Y ‖QY QX|Y )

= 1
α−1 log

∫
pα

Y q1−α
Y

(∫
p

α

X|Y q
1−α

X|Y dµX

)
dµY ≥ Dα(PY ‖QY ) where we used (9) in

the form
∫

pαq1−α ≤ (
∫

p)α(
∫

q)1−α for α < 1 and the opposite inequality for
α > 1, applied to p = pX|Y and q = qX|Y . The equality condition in (9) implies
PX|Y = QX|Y , which in turns implies equality in (20). Applying the statement to
the deterministic transformation Y = 1X∈A gives (21).

Lemma 9 (Data processing reduces α-information [9, Thm. 5 (2)]). For
any Markov chain3 W − X − Y − Z,

Iα(X;Y ) ≥ Iα(W ;Z) (22)

3 We do not specify a direction since reversal preserves the Markov chain property:
X1 − X2 − · · · − Xn is Markov if and only if Xn − Xn−1 − · · · − X1 is Markov.
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Proof. Let PX,Y → PX,Z|X,Y → PX,Z → PW,Z|X,Z → PW,Z . By the Markov
condition, PX,Z|X,Y = PX|XPZ|X,Y = PX|XPZ|Y where PX|X is the identity
operator; similarly PW,Z|X,Z = PW |X,ZPZ|Z = PW |XPZ|Z . Thus if QY →
PZ|Y → QZ , we find PXQY → PX,Z|X,Y → PXQZ → PW,Z|X,Z → PW QZ .

By the data processing inequality for α-divergence (20), Dα(PX,Y ‖PXQY ) ≥
Dα(PW,Z‖PW QZ) ≥ Iα(W ;Z). Minimizing over QY gives (22).

Lemma 10 (Data processing increases conditional α-entropy [7,
Cor. 1]). For any Markov chain X − Y − Z,

Hα(X|Y ) ≤ Hα(X|Z) (23)

with equality if and only if X − Z − Y forms a Markov chain.

When X ∼ U(M), inequality (23) also follows from (15) and the data processing
inequality for α-information (22) where W = X.

Proof. Since X−Y −Z forms a Markov chain, Hα(X|Y ) = Hα(X|Y,Z). Now set
φ(x|y, z) = pα(x|z) in (13) to obtain Hα(X|Y,Z) ≤ Hα(X|Z), with equality iff
pα(x|Y,Z) = pα(x|Z) a.e., i.e., X − Z − Y is Markov. (Alternate proof: see [7].)

Lemma 11 (Data processing inequalities for binary α-divergence).
Suppose 0 ≤ p ≤ q ≤ r ≤ 1 (or that 1 ≥ p ≥ q ≥ r ≥ 0). Then

dα(p‖r) ≥ dα(p‖q) and dα(p‖r) ≥ dα(q‖r). (24)

Proof. Consider an arbitrary binary channel with with parameters δ, ε ∈ [0, 1]
and transition matrix PY |X =

(
1−δ δ

ε 1−ε

)
. By Lemma 8 applied to PX = (1−p, p)

and QX = (1−q, q), one obtains dα(p‖q) ≥ dα(δ(1−p)+(1−ε)p ‖ δ(1−q)+(1−ε)q)
for any p, q ∈ [0, 1]. Specializing to values of δ, ε such that εp = δ(1 − p) or
εq = δ(1 − q) gives (24).

3 Fano’s Inequality Applied to a Side-Channel Attack

We now apply α-information theory to any Markov chain X–Y –X̂, modeling
a side-channel attack using leaked information in a secrecy system. Here X is
a sensitive data that depends on some secret (cryptographic key or password),
input to a side channel PX → PY |X → PY through which information leaks, and
Y is disclosed to the attacker (e.g., using some sniffer or probe measurements),
and the attack provides X̂ as a function of Y estimating X using the maximum
a posteriori probability (MAP) rule so as to maximize the probability of success
Ps = Ps(X|Y ) = P(X̂ = X |Y ), or equivalently, minimize the probability of
error Pe = Pe(X|Y ) = P(X̂ #= X |Y ).

The classical Fano inequality [6] then writes H(X|Y ) ≤ h(Pe)+Pe log(M −1)
when X ∼ U(M). It was generalized by Han and Verdú [8] as a lower bound
on the mutual information I(X;Y ) ≥ d(Ps(X|Y )‖Ps(X)) = d(Pe(X|Y )‖Pe(X))
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where d(p‖q) denotes discrete divergence, and where Ps(X) = 1 − Pe(X) cor-
responds to the case where X (possibly nonuniform) is guessed without even
knowing Y . Using the MAP rule it can be easily seen that

{
Ps(X|Y ) = E

[
max
x∈X

pX(x|Y )
]

= exp
(
−H∞(X|Y )

)

Ps(X) = supx∈X pX(x) = exp
(
−H∞(X)

)
.

(25)

We now generalize the (generalized) Fano inequality to any value of α > 0.

Theorem 1 (Generalized Fano’s Inequality for α-Information).

Iα(X;Y ) ≥ dα(Ps(X|Y )‖Ps(X)) = dα(Pe(X|Y )‖Pe(X)) (26)

Proof. By the data processing inequality for α-information (Lemma 9),
Iα(X;Y ) ≥ Iα(X; X̂). Then by (18), Iα(X; X̂) = Dα(PX,X̂‖PXQ∗

X̂
) ≥

dα(Ps(X|Y )‖P′
s) where we have used the data processing inequality for α-

divergence (Lemma 8, inequality (21)) to the event A = {X̂ = X}. Here P(X̂ =
X) = Ps(X|Y ) by definition and P′

s =
∑

x pX(x)q∗
X̂

(x) ≤ maxx pX(x) = Ps(X).
Now by the binary data processing inequality (Lemma 11), dα(Ps(X|Y )‖P′

s) ≥
dα(Ps(X|Y )‖Ps(X)).

Our main Theorem 1 states that α-information Iα(X;Y ) bounds the gain
dα(Ps(X|Y )‖Ps(X)) of any adversary in guessing secret X from disclosed mea-
surements Y with success Ps(X|Y ), compared with the adversary’s prior belief
without access to measurements, with lower success Ps(X). It additionally pro-
vides an implicit upper bound on Ps(X|Y ) (or lower bound on Pe(X|Y )) as a
function of α-information—which can be loosened to obtain explicit bounds on
success or error by further lower bounding the binary α-divergence.

Also, bounding α-information (by some “α-capacity” of the side channel)
one can obtain bounds on the success of any possible attack for a given secrecy
system based on some leakage model, in a similar fashion as what was made in
the classical case α = 1 in [2]. This is particularly interesting for the designer
who needs to evaluate the robustness of a given implementation to any type of
side-channel analysis, regardless of the type of attacker.
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12. Rioul, O.: Rényi entropy power inequalities via normal transport and rotation.
Entropy 20(9, 641), 1–17 (2018)
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