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Abstract—Physically Unclonable Functions (PUFs) allow to
generate bitstrings for applications such as device identification,
authentication, or key management. For real-world deployment,
the industry has stringent requirements on reliability. In addition,
as it greatly impacts the security of the whole application chain,
the randomness produced by the PUF cannot be compromised.
These two requirements are captured by the notions of dynamic
randomness—to be minimized in order to improve reliability—
and static randomness—to be maximized to increase security.

In this paper, we illustrate the whole methodology on a delay-
PUF called the loop-PUF. To meet the above requirements on
dynamic and static randomness, the PUF’s behavior should be
modeled and validated; such activities are described in the
international standard ISO/IEC 20897. Modeling consists in
establishing a stochastic model of the PUF, to predict bit error
rates due to dynamic noise, and entropies of the static noise.
The model is then verified, its parameters estimated, based on
measures in representative environmental conditions.

Index Terms—Physically Unclonable Function, reliability, en-
tropy, stochastic model, ISO/IEC 20897.

I. INTRODUCTION

PUF has become an inevitable technology to enhance security
in authentication protocols or cryptographic key generation.
Such technology relies on slight and random physical imperfec-
tions in the semiconductor manufacturing process, creating a
“static” randomness source. Static randomness is exploited using
a list of challenge/response pairs (the PUF function) with the
highest possible entropy to forge a unique and unclonable
“fingerprint” which can be used as a device identifier or
cryptographic key.

However, the fingerprint extraction from the PUF is contami-
nated by measurement noise, creating a “dynamic” randomness
source. Dynamic randomness creates measurement errors,
which reduce the PUF’s reliability and can compromise security.
There are two basic strategies to enhance reliability [8]:
Filter out challenges with unreliable responses; and fuzzy
extraction using error-correcting codes. A trade-off has to be
found between PUF reliability and entropy to ensure security.
Correlation between responses to challenges, as well as physical
bias in the PUF layout can also decrease entropy.

In this paper, we formalize the notions of reliability and
entropy of delay-PUFs, whose static randomness is exploited
by differential measurements of propagation delays. We address
both methods of reliability enhancement to combat dynamic
randomness, and study their impact on the PUF entropy.
Section II introduces our basic mathematical model for the
delay-PUF. Section III then formalizes the impact on reliability

of enhancement techniques and of responses’ correlation and
bias. Sections IV and V validate our theoretical findings based
on model parameter estimations and real silicon measurements,
respectively. Section VI concludes.

II. DELAY-PUF MODEL

A PUF is modeled as a function that takes a challenge (bit
vector) c ∈ {±1}n as input, and produces one bit b(c) ∈ {±1}
of output. For delay-PUFs, the output bit is of the form [12]

bx(c) = sign(c · x)

where x = (x1, . . . , xn) ∈ Rn represents some internal PUF
parameter, usually equal to certain delay differences in the PUF
circuit. As shown by simulation over many PUF instances, such
delay differences can be modeled as realizations of independent
Gaussian N (0,Σ2) random variables X = (X1, . . . , Xn).

A. Entropy

Given a set of challenges C ⊂ {±1}n, the PUF entropy is
the entropy of the probability distribution pb = P(bX(C) = b)
of the corresponding random bit vectors bX(C) = {bX(c)}c∈C .
Different types of entropies can be relevant depending on the
PUF use-case [14]: min-entropy H∞, Shannon entropy H =
H1, collision entropy H2, etc. In general, the α-Rényi entropy
of distribution p = {pb} is defined as Hα(p) = 1

1−α log
∑
b p

α
b .

B. Reliability

In practice, bx(c) are evaluated in the presence of measure-
ment noise, which is modeled as additive white Gaussian noise
(AWGN) Z. Thus instead of bx(c) = sign(c · x) we measure
sign(c · x + z) where z is the realization of an independent
Gaussian random variable Z ∼ N (0, σ2). The corresponding
signal-to-noise ratio (SNR) is nΣ2

σ2 , and the bit error rate (BER)
is the probability of a bit flip due to the measurement noise [13]

BER(c, x) = P{sign(c · x) 6= sign(c · x+ Z)}.

Reliability enhancing techniques such as filtering and fuzzy
extraction are needed to obtain sufficiently low values of the
BER for practical applications.

III. RELIABILITY ENHANCING TECHNIQUES

Two basic strategies are used to enhance reliability in the
presence of dynamic randomness. Filtering marks certain
responses as “unreliable”; they are ignored to generate the PUF
identifier. One can either choose to remove a fixed number of



the least reliable challenges [15], or to remove all responses
that are less reliable than a given threshold [13]. We consider
the latter variant as it is easier to analyze.

Fuzzy extraction, e.g., used by PUFKY [9], applies error
correcting codes. It is described by Bösch et al. [1] as follows.
Ê During enrollment:

1) generate PUF string b = (sign(c · x1), . . . , sign(c · xn))
using multiple measurements;

2) generate a random codeword w as a reliable identifier
to compute the public helper data d = w ⊕ b;

3) store the public helper data d in the PUF.
Ë During bitstring generation:

1) a PUF (unreliable) measurement is made, yielding b′;
2) the measurement is XOR’d to the public helper data to

obtain a noisy codeword w′ = d⊕ b′;
3) the noisy codeword w′ is decoded to obtain w.

If w is chosen from a binary [n, k, d] code, then up to bd2c
error bits can be corrected from noisy b′, and the remaining
min-entropy is at least H∞(p)− (n− k) [4].

While the filtering method requires that the reliability of
a response can be efficiently assessed, the fuzzy extraction
method can be used for any PUF (not only delay-PUFs) but
involves additional hardware at the decoding step.

A. Independent Responses

In this subsection, we assume that the output responses
are independent. As shown in [12], this is the case when all
challenges in C are orthogonal, and the corresponding responses
are then uniformly distributed. The theoretical Shannon entropy
for n delay elements is then H(n) = n raw bits.

As established in [13], without any reliability enhancing tech-
nique, the raw average BER equals (1/π) arctan(1/

√
SNR).

When filtering out challenges for which |c · x| ≤ Θσ where
Θ is some relative threshold and σ2 is the measurement noise
variance, the resulting BER equals

2
erfc( Θ√

2
√

SNR
)

(
T (Θ, 1√

SNR
) + 1

4 erf( Θ√
2
√

SNR
)(erf( Θ√

2
)− 1)

)
where T is Owen’s T-function [11]. Since the remaining
responses are independent, the mean remaining entropy equals

H(n,Θ)SNR = n · erfc(
Θ√

2 · SNR
).

For fuzzy extraction, we consider a concatenation of a
[2r + 1, 1, 2r + 1] repetition code and a [n′, k, d] outer code
as suggested in [1]. Assuming that n′ · (2r+ 1) divides n, the
outer code is repeated n/(n′(2r + 1)) times. Letting B(n, p)
represent a (n, p)-binomial random variable, the key error rate
after error correction is

1− P{B(n′, p1) ≤ d}n/(n
′(2r+1))

where p1 = P{B(2r + 1, (1/π) arctan(1/
√

SNR)) > r}. The
remaining entropy is then

H(n) =
nk

n′(2r + 1)
.
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Fig. 1: Raw number of bits to achieve a key error rate of 10−6

(resp. 10−9) using bit filtering (BF) or fuzzy extraction (FE).
For fuzzy extraction, the outer code has been optimized among
a set of binary Golay, Reed-Muller and (shortened) BCH codes,
and the inner code among a set of repetition codes of length
up to 9.

Fig. 1 compares these two methods in the case of a 128-bit
key. It happens that filtering is much more efficient for larger
values of SNR, since it allows one to achieve both higher
entropy and reliability with lower raw number of bits.

The reliability can also be affected by external parameters,
such as temperature. As shown in [13], on average, a tem-
perature difference can be simply modeled as a loss of SNR
proportional to the temperature difference.

B. Correlated Responses

For the RO-sum PUF [16], arbiter PUF [6] and loop-PUF [2],
one can use up to different 2n challenges and obtain 2n output
bits. Using more than n challenges does increase the entropy
above n bits, which allows the design of PUFs with a lower
silicon footprint. However, these output bits will be strongly
correlated: The min-entropy H∞ of the resulting output bit
distribution will be only linear in n, not exponential in n [3].
The Shannon entropy H = H1 is upper-bounded by n2 [14].

Fuzzy extraction provides bounds only on the min-entropy
after error correction [4], while one would be more interested
on the remaining Shannon entropy in such a setting. As for
filtering, the entropy-loss is much more complicated than with
uncorrelated responses, because the remaining Shannon entropy
is not equal to the entropy of the challenges that are kept. In
this section, we will only consider the case of two challenges
and explain how to compute the conditional entropy of the two
responses, under the assumption that both are reliable.

Suppose we consider a PUF with two challenges c1 and c2.
The responses are distributed as sign(c1 ·X) and sign(c2 ·X).
The objective is to compute the conditional distribution

sign(c1 ·X), sign(c2 ·X) | |c1 ·X| > Θσ, |c2 ·X| > Θσ

where Θ is some relative threshold and σ2 is the measurement
noise variance. Let n1 = n+c1·c2

2 and n2 = n−c1·c2
2 . This

conditional distribution is the same as that of

sign(Y + Z), sign(Y − Z) | |Y + Z| > Θσ, |Y − Z| > Θσ



where Y ∼ N (0, n1Σ2) and Z ∼ N (0, n2Σ2).
Let p1 (resp. p2) be the conditional probability that Y +Z >

0, Y − Z > 0 (resp. Y + Z > 0, Y − Z < 0). One has

p1

p2
=

P{Y > −Z ∩ Y > Z ∩ |Y + Z| > Θ, |Y − Z| > Θσ}
P{Y > −Z ∩ Y < Z ∩ |Y + Z| > Θ, |Y − Z| > Θσ}

=
P{Y > |Z|+ Θσ}
P{Z > |Y |+ Θσ}

=

1
2 − erf

(
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√
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)
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√
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)
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)
where T is Owen’s T-function. From this formula, the condi-
tional Shannon entropy can be computed. Results for n = 8
are presented in Fig. 2, which shows the tradeoff between
the resulting entropy vs. the choice of Θ for different values
of n1, n2, for Σ2

σ2 = 4, a ratio consistent with the findings
of [13]. As expected, when the responses are not independent,
the remaining entropy decreases with the filtering threshold.
When the challenges are very correlated, (n1 = 1), then the
second challenge hardly increases the total entropy at all when
choosing a filtering threshold Θ = 4 or more, which is typically
needed in order to achieve PUF reliability. For less correlated
challenges (n1 = 3), the entropy loss is much smaller, even
for strong filtering up to Θ = 6.
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Fig. 2: Conditional entropy after filtering

IV. MODEL VALIDATION

A. Gaussian Noise and Delays

The average delay differences have been recorded over
several PUFs of size n = 64 and orthogonal challenges.
The distribution of the corresponding delay differences is
represented in Fig. 3, and that of the noise in Fig. 4. As
can be seen, the delay differences as well as the noise do seem
to follow a Gaussian distribution, with an SNR of about 300.

B. PUF Response Independence

Under the hypothesis of independent delay differences X =
(X1, . . . , Xn), the inner products corresponding to orthogonal
challenges (c1·X1, . . . , cn·Xn) should also be independent [12].
While true independence is hard to prove, it is possible to show
linear independence or decorrelation. We used 49 PUFs to
compute n×n = 64× 64 correlation coefficients ρi,j between
ci ·X and cj ·X . The result is shown in Fig. 5.
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Fig. 3: Empiric delay-difference distribution (n · Σ2 = 7086)
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Fig. 4: Empiric noise distribution (σ2 = 23)

Fig. 5: Correlation matrix ρi,j (1 ≤ i, j ≤ n) on 49 loop-PUFs
of n = 64 delay elements.

Under the independence hypothesis, the Fisher transforma-
tion, that is, the hyperbolic arctangent, of the measured corre-
lation coefficients approximately follows a normal distribution
around the mean, with a variance of

√
n− 3, where n is the

number of samples (here, n = 49). Thus, we can compute a p-
value pi,j for each correlation coefficient ρi,j by inverting this
distribution, and then verify that those p-values are uniformly
distributed. This can be done, for instance, using a χ2 test of
goodness of fit. This yields a p-value of 0.158—when using 50



categories for the 2016 computed p-values—with respect to the
independence hypothesis. Thus, the independence hypothesis
can not be rejected with high confidence (p > 0.05).

Uniformity can also be assessed. The 49 PUFs generate
3136 bits, of which 1579 are ones. The corresponding binomial
distribution B(3136, 1

2 ) has standard-deviation σ =
√

3136 1
4 =

28 and mean µ = 3136
2 = 1568. Therefore, the number of ones

generated by the circuit is less than half a standard-deviation
away from the expected mean. These results strongly suggest
that the loop-PUF, when considering orthogonal challenges,
does have full entropy.

V. REAL-WORLD POST-SILICON VALIDATION

In an industrial context, PUF should remain dependable
under a wide range of conditions. For instance, in EVITA [5]
profile “high”, PUF delivers the master key. The most stringent
automotive environment conditions are referred to as “grade 0”,
where the system shall behave nominally in a range of
temperature equal to [−40, 150]◦C. Thus physical validation
is a strong requirement and can be carried out using climate
chambers.

The tests ideally adhere to some standardized method, such
as that presented in ISO/IEC 20897 standard [7], [10] This
standard explains how responses shall be collected and metrics
such as “steadiness” (called reliability in this paper) and
“randomness” (called entropy in this paper) shall be evaluated.

We present hereafter some experimental measurements which
go beyond the strict application of ISO/IEC 20897, in that we
analyze the entropy source of the loop-PUF and not simply
statistics on the response bits. Validations have been carried out
on an actual test-chip, namely the TOISE ASIC. This circuit
has been fabricated in STMicroelectronics 65 nm process.

For the loop-PUF, the bit is extracted by comparing the time
it takes to achieve 2L (for L = 15) rounds in a loop. This
number of loops depends on the challenge. However, we can
see in the characterization of Fig. 6 that the number of rounds
is tracking over the temperature range. This means that for a
given PUF, if one challenge has the PUF oscillate faster at
a given temperature, then this order holds across the whole
range of temperatures.
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Fig. 6: Number of oscillations in a loop-PUF as a function of
the challenge c and of the temperature, for different PUFs.

VI. CONCLUSION

This paper has shown that stochastic models can actually
provide a thorough understanding of the behavior of delay-
PUFs in terms of reliability and entropy. We show in particular
that for representative SNR values, filtering is more efficient
than fuzzy extraction for PUF reliability improvement. However,
the theoretical assumptions have to be validated using real
world “post-silicon” measurements. Our experiments show that
it is possible to assess that the model parameters are of the
appropriate order of magnitude. Overall, strong PUFs like delay-
PUFs provide definitive advantages in terms of dependability
on the reliability-entropy tradeoff.
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