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Abstract—A framework for deriving Rényi entropy-power
inequalities (REPIs) is presented that uses linearization and an
inequality of Dembo, Cover, and Thomas. Simple arguments
are given to recover the previously known Rényi EPIs and
derive new ones, by unifying a multiplicative form with con-
stant c and a modification with exponent ↵ of previous works.
An information-theoretic proof of the Dembo-Cover-Thomas
inequality—equivalent to Young’s convolutional inequality with
optimal constants—is provided, based on properties of Rényi
conditional and relative entropies and using transportation ar-
guments from Gaussian densities. For log-concave densities, a
transportation proof of a sharp varentropy bound is presented.

This work was partially presented at the 2019 Information Theory
and Applications Workshop, San Diego, CA.

I. INTRODUCTION

We consider the r-entropy (Rényi entropy of exponent
r, where r > 0 and r 6= 1) of a n-dimensional zero-mean
random vector X 2 Rn having density f 2 L

r(Rn):

hr(X) =
1

1� r
log

Z

Rn

f
r(x) dx = �r

0 log kfkr (1)

where kfkr denotes the L
r norm of f , and r

0 = r

r�1 is the
conjugate exponent of r, such that 1

r
+ 1

r0 = 1. Notice that either
r > 1 and r

0
> 1, or 0 < r < 1 and r

0
< 0. The limit as r ! 1

is the classical h1(X) = h(X) = �
R
Rn f(x) log f(x) dx.

Letting N(X) = exp
�
2h(X)/n

�
be the corresponding entropy

power [1], the famous entropy power inequality (EPI) [1], [2]
writes N

⇣P
m

i=1 Xi

⌘
�

P
m

i=1 N(Xi) for any independent
random vectors X1, X2, . . . , Xm 2 Rn. The link with the
Rényi entropy hr(X) was first made in [3] in connection with
a strengthened Young’s convolutional inequality, where the
EPI is obtained by letting exponents tend to 1 [4, Thm 17.8.3].

Recently, there has been increasing interest in Rényi entropy-
power inequalities [5]. The Rényi entropy-power Nr(X) is
defined [6] as the average power of a white Gaussian vector
having the same Rényi entropy as X . If X

⇤ ⇠ N (0,�2I) is
white Gaussian, an easy calculation yields

hr(X
⇤) = n

2 log(2⇡�2) + n

2 r
0 log r

r
. (2)

Since equating hr(X⇤) = hr(X) gives �2 = e
2hr(X)/n

2⇡rr0/r
, we

define Nr(X) = e
2hr(X)/n as the r-entropy power. .

Bobkov and Chistyakov [6] extended the classical EPI to
the r-entropy by incorporating a r-dependent constant c > 0:

Nr

⇣Xm

i=1
Xi

⌘
� c

Xm

i=1
Nr(Xi). (3)

Ram and Sason [7] improved (increased) the value of c by
making it depend also on the number m of independent vectors
X1, X2, . . . , Xm. Bobkov and Marsiglietti [8] proved another
modification of the EPI for the Rényi entropy:

N
r

↵
⇣Xm

i=1
Xi

⌘
�

Xm

i=1
N

r

↵

(Xi) (4)

with a power exponent parameter ↵ > 0. Due to the non-
increasing property of the ↵-norm, if (4) holds for ↵ it also
holds for any ↵0

> ↵. The value of ↵ was further improved
(decreased) by Li [9]. All the above EPIs were found for Rényi
entropies of orders r >1. Recently, the ↵-modification of the
Rényi EPI (4) was extended to orders <1 for two independent
variables having log-concave densities by Marsiglietti and
Melbourne [10]. The starting point of all the above works was
Young’s strengthened convolutional inequality.

In this paper, we build on the results of [11] to provide
simple proofs for Rényi EPIs of the general form

N
r

↵
⇣Xm

i=1
Xi

⌘
� c

Xm

i=1
N

r

↵

(Xi) (5)

with constant c > 0 and exponent ↵ > 0. The present
framework uses only basic properties of Rényi entropies and
is based on a transportation argument from normal densities
and a change of variable by rotation, which was previously
used to give a simple proof of Shannon’s original EPI [12].

II. LINEARIZATION

The first step toward proving (5) is the following linearization
lemma which generalizes [9, Lemma 2.1].

Lemma 1. For independent X1, X2, . . . , Xm, the Rényi EPI

in the general form (5) is equivalent to the following inequality

hr

� mP
i=1

p
�iXi

�
�

mP
i=1

�ihr(Xi) � n

2

� log c

↵
+
�
1
↵
� 1

�
H(�)

�

(6)for any distribution � = (�1, . . . ,�m) of entropy H(�).

Proof. Note the scaling property hr(aX) = hr(X)+n log |a|
for any a 6= 0, established by a change of variable. It follows
that Nr(aX) = a

2
Nr(X). Now first suppose (5) holds. Then

hr

�P
m

i=1

p
�iXi

�
= n

2↵ logN
r

↵
�P

m

i=1

p
�iXi

�
(7)

� n

2↵ log
P

m

i=1 Nr

↵
(
p
�iXi) +

n

2↵ log c

= n

2↵ log
P

m

i=1 �
↵

i
N

r

↵
(Xi) +

n

2↵ log c (8)
� n

2↵

P
m

i=1 �i log
�
�
↵�1
i

N
r

↵
(Xi)

�
+ n

2↵ log c (9)

=
P

m

i=1 �ihr(Xi) +
n(↵�1)

2↵

P
m

i=1 �i log �i +
n

2↵ log c

which proves (6). The scaling property is used in (8) and the
concavity of the logarithm is used in (9).

Conversely, suppose that (6) is satisfied for all �i > 0 such
that

P
m

i=1 �i = 1. Set �i = N
r

↵
(Xi)/

P
m

i=1 Nr

↵
(Xi). Then

N
r

↵�Pm

i=1 Xi

�
= exp 2↵

n
hr

�P
m

i=1

p
�i

Xip
�i

�

� exp 2↵
n

P
m

i=1 �ihr

⇣
Xip
�i

⌘
⇥ c·e(1�↵)

P
m

i=1 �i log
1
�i

= c

mQ
i=1

⇣
N

r

↵
⇣

Xip
�i

⌘
�
↵�1
i

⌘�i

= c

mQ
i=1

⇣
N

r

↵
(Xi)�

�1
i

⌘�i

= c
�P

m

i=1 Nr

↵
(Xi)

�Pm

i=1 �i = c
P

m

i=1 Nr

↵
(Xi)

which proves (5).
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III. THE REPI OF DEMBO-COVER-THOMAS

As a second ingredient we have the following result, which
was essentially established by Dembo, Cover and Thomas [3].
It is this Rényi version of the EPI which led them to prove
Shannon’s original EPI by letting Rényi exponents ! 1.

Theorem 1. Let r1, . . . , rm, r be exponents those conjugates

r
0
1, . . . , r

0
m
, r

0
are of the same sign and satisfy

P
m

i=1
1
r
0
i
= 1

r0

and let �1, . . . ,�m be the discrete probability distribution

�i =
r
0

r
0
i
. Then, for independent zero-mean X1, X2, . . . , Xm,

hr

⇣ mP
i=1

p
�iXi

⌘
�

mP
i=1

�ihri(Xi)

� hr

⇣ mP
i=1

p
�iX

⇤
i

⌘
�

mP
i=1

�ihri(X
⇤
i
)

(10)

where X
⇤
1 , X

⇤
2 , . . . , X

⇤
m

are i.i.d. standard Gaussian N (0, I).
Equality holds if and only if the Xi are i.i.d. Gaussian.

It is easily seen from the expression (2) of the Rényi
entropy of a Gaussian that (10) is equivalent to

hr

⇣ mP
i=1

p
�iXi

⌘
�

mP
i=1

�ihri(Xi) � n

2 r
0
⇣
log r

r
�

mP
i=1

log ri

ri

⌘
. (11)

Note that the l.h.s. is very similar to that of (6) except that
different Rényi exponents are present. This will be the crucial
step toward proving (5).

Theorem 1 (for m = 2) was derived in [3] as a rewriting
of Young’s strengthened convolutional inequality with optimal
constants. Section VII provides a simple transportation proof,
which uses only basic properties of Rényi entropies.

IV. REPIS FOR ORDERS >1
If r > 1, then r

0
> 0 and all r

0
i

are positive and greater
than r

0. Therefore, all ri are less than r. Using the well-known
fact that hr(X) is non increasing in r (see also (22) below),

hri(Xi) � hr(Xi) (i = 1, 2, . . . ,m). (12)

Plugging this into (11), one obtains

hr

� mP
i=1

p
�iXi

�
�

mP
i=1

�ihr(Xi) � n

2 r
0�log r

r
�
P

m

i=1
log ri

ri

�
(13)

where �i = r
0
/r

0
i
. From Lemma 1 it suffices to establish that

the r.h.s. of this inequality exceeds that of (6) to prove (5) for
appropriate constants c and ↵. For future reference define

A(�) = |r0|
� log r

r
�

mP
i=1

log ri

ri

�
(14)

= |r0|
mX

i=1

(1� �i
r0 ) log(1�

�i
r0 )�(1� 1

r0 ) log(1�
1
r0 ).

(The absolute value |r0| is needed in the next section where
r
0 is negative.) This function is strictly convex in � =

(�1,�2, . . . ,�m) because x 7! (1 � x/r
0) log(1 � x/r

0) is
strictly convex. Note that A(�) vanishes in the limiting cases
where � tends to one of the standard unit vectors (1, 0, . . . , 0),
. . . , (0, 0, . . . , 0, 1) and since every � is a convex combination
of these vectors and A(�) is strictly convex, one has A(�) < 0.

Using the properties of A(�) it is immediate to recover
known Rényi EPIs:

Proposition 1 (Ram and Sason [7]). The Rényi EPI (3) holds

for r > 1 and c = r
r
0
/r
�
1� 1

mr0

�mr
0�1

.

Proof. By Lemma 1 for ↵ = 1 we only need to check that
the r.h.s. of (13) is greater than n

2 log c for any choice of
the �i’s, that is, for any choice of exponents ri such thatP

m

i=1
1
r
0
i

= 1
r0 . Thus, (3) will hold for log c = min� A(�).

Now, by the log-sum inequality [4, Thm 2.7.1],
mX

i=1

1

ri
log

1

ri
�
� mX

i=1

1

ri

�
log

P
m

i=1
1
ri

m
= (m� 1

r0 ) log
m� 1

r0

m

(15)
with equality if and only if all ri are equal, that is, the
�i are equal to 1/m. Thus, min� A(�) = r

0⇥ log r

r
+ (m �

1/r0) log m�1/r0

m

⇤
= log c.

Note that log c = r
0 log r

r
+ (mr

0 � 1) log
�
1 � 1

mr0

�
< 0

decreases (and tends to r
0 log r

r
� 1) as m increases. Thus, a

universal constant independent of m is obtained by taking

c = inf
m

r
r
0
/r
�
1� 1

mr0
�mr

0�1
=

r
r
0
/r

e
, (16)

as was established by Bobkov and Chistyakov [6].

Proposition 2 (Li [9]). The Rényi EPI (4) holds for r > 1
and ↵ =

⇥
1 + r

0 log2 r

r
+ (2r0 � 1) log2

�
1� 1

2r0

�⇤�1
.

Li [9] remarked that this value of ↵ is strictly smaller (better)
than the value ↵ = r+1

2 obtained previously by Bobkov and
Marsiglietti [8]. In [11] it is shown that it cannot be further
improved in our framework by making it depend on m.

Proof. Since the announced ↵ does not depend on m, we
can always assume that m = 2. By Lemma 1 for c = 1,
we only need to check that the r.h.s. of (13) is greater than
n

2 (1/↵� 1)H(�) for any choice of �is, that is, for any choice
of exponents ri such that

P2
i=1

1
r
0
i
= 1

r0 . Thus, (4) will hold
for 1

↵
� 1 = min�

A(�)
H(�) . Li [9] showed—this is also easily

proved using [10, Lemma 8]—that the minimum is obtained
when � = (1/2, 1/2). The corresponding value of A(�)/H(�)
is

⇥
r
0 log r

r
+ (2r0 � 1) log

�
1� 1

2r0

�⇤
/ log 2 = 1/↵� 1.

The above value of ↵ is > 1. However, using the same
method, it is easy to obtain Rényi EPIs with exponent values
↵ < 1. In this way we obtain a new Rényi EPI:

Proposition 3. The Rényi EPI (5) holds for r > 1, 0 < ↵ < 1

with c =
⇥
m r

r
0
/r
�
1� 1

mr0

�mr
0�1⇤↵

/m.

Proof. By Lemma 1 we only need to check that the r.h.s.
of Equation (13) is greater than n

2

�
(log c)/↵+(1/↵�1)H(�)

�
,

that is, A(�) � (log c)/↵ + (1/↵ � 1)H(�) for any choice
of �is, that is, for any choice of exponents ri such thatP

m

i=1
1
r
0
i
= 1

r0 . Thus, for a given 0 < ↵ < 1, (5) will hold for
log c = min� ↵A(�)�(1�↵)H(�). From the preceding proofs
(since both A(�) and �H(�) are convex functions of �), the
minimum is attained when all �is are equal. This gives log c =
↵

⇣
r
0 log r

r
+ (mr

0 � 1) log
�
1� 1

mr0

�⌘
� (1� ↵) logm.

V. REPIS FOR ORDERS <1 AND LOG-CONCAVE DENSITIES

If r < 1, then r
0
< 0 and all r

0
i

are negative and < r
0.

Therefore, all ri are > r. Now the opposite inequality of (12)
holds and the method of the preceding section fails. For log-
concave densities, however, (12) can be replaced by a similar
inequality in the right direction.
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A density f is log-concave if log f is concave in its support,
i.e., for all 0 < µ < 1,

f(x)µf(y)1�µ  f(µx+ (1� µ)y). (17)

Theorem 2 (Fradelizi, Madiman and Wang [13]). If X has a

log-concave density, then hr(rX)�rhr(X) = (1�r)hr(X)+
n log r is concave in r.

This concavity property is used in [13] to derive a sharp
“varentropy bound”. Section VIII provides an alternate trans-
portation proof along the same lines as in Section VII.

By Theorem 2, since n log r + (1 � r)hr(X) is concave
and vanishes for r = 1, the slope n log r+(1�r)hr(X)�0

r�1 is
nonincreasing in r. In other words, hr(X) + n

log r

1�r
is

nondecreasing. Now since all ri are > r,
hri(X)+n

log ri

1�ri
� hr(X)+n

log r

1�r
(i = 1, . . . ,m). (18)

Plugging this into (11), one obtains

hr

⇣ mP
i=1

p
�iXi

⌘
�

mP
i=1

�ihr(Xi)

� n
� log r

1�r
�

mP
i=1

�i
log ri

1�ri

�
+ n

2 r
0� log r

r
�

mP
i=1

log ri

ri

�

=
n

2
r
0� mP

i=1

log ri

ri
� log r

r

�
(19)

where we have used that �i = r
0
/r

0
i

for i = 1, 2, . . . ,m.
Notice that, quite surprisingly, the r.h.s. of (19) for r < 1

(r0 < 0) is the opposite of that of (13) for r > 1 (r0 > 0).
However, since r

0 is now negative, the r.h.s. is exactly equal to
n

2A(�) which is still convex and negative. For this reason, the
proofs of the following theorems for r < 1 are such repeats
of the theorems obtained previously for r > 1.

Proposition 4. The Rényi EPI (3) for log-concave densities

holds for c = r
�r

0
/r
�
1� 1

mr0

�1�mr
0

and r < 1.

Proof. Identical to that of Theorem 1 except for the change
|r0| = �r

0 in the expression of A(�).

Proposition 5 (Marsiglietti and Melbourne [10]). The

Rényi EPI (4) log-concave densities holds for ↵ =
⇥
1 +

|r0| log2 r

r
+ (2|r0|+ 1) log2

�
1 + 1

2|r0|
�⇤�1

and r < 1.

Proof. Identical to that of Theorem 2 except for the change
|r0| = �r

0 in the expression of A(�).

Proposition 6. The REPI (5) for log-concave densities holds

for c=
⇥
mr

�r
0
/r
�
1� 1

mr0

�1�mr
0⇤↵

/m where r < 1, 0<↵<1.

Proof. It is identical to that of Theorem 3 except for the change
|r0| = �r

0 in the expression of A(�).

VI. RELATIVE AND CONDITIONAL RÉNYI ENTROPIES

Before turning to transportations proofs of Theorems 1 and 2,
it is convenient to review some definitions and properties. The
following notions were previously used for discrete variables,
but can be easily adapted to variables with densities.

Definition 1 (Escort Variable [14]). If f 2 L
r(Rn), its escort

density of exponent r is defined by

fr(x) = f
r(x)

.Z

Rn

f
r(x) dx. (20)

Let Xr ⇠ fr denote the corresponding escort random variable.

Proposition 7. Let r 6= 1 and assume that X ⇠ f 2 L
s(Rn)

for all s in a neighborhood of r. Then

@

@r

�
(1� r)hr(X)

�
= E log f(Xr) = �h(XrkX) (21)

@

@r
hr(X) = � 1

(1� r)2
D(XrkX)  0 (22)

@
2

@r2

�
(1� r)hr(X)

�
= Var log f(Xr). (23)

where h(XkY ) =
R
f log(1/g) denotes cross-entropy and

D(XkY ) =
R
f log(f/g) is the Kullback-Leibler divergence.

Proof. By the hypothesis, one can differentiate under the inte-
gral sign. It is easily seen that @

@r

�
(1�r)hr(X)

�
= @

@r
log

R
f
r

=
R
fr log f . Taking another derivative yields @

@r

R
f
r log fR
fr =R

fr(log f)2 � (
R
fr log f)2. Since @

@r

�
(1 � r)hr(X)

�
=

(1 � r) @

@r
hr(X) � hr(X) we have (1 � r)2 @

@r
hr(X) =R

fr log(f/fr) + log
R
f
r =

R
fr log(f/fr).

Eq. (22) gives a new proof that hr(X) is nonincreasing in r.
It is strictly decreasing if Xr is not distributed as X , that is,
if X is not uniformly distributed. Equation (23) shows that
(1� r)hr(X) is convex in r, that is,

R
f
r is log-convex in r

(which is essentially equivalent to Hölder’s inequality).

Definition 2 (Relative Rényi Entropy [15]). Given X ⇠ f

and Y ⇠ g, their relative Rényi entropy of exponent r (relative

r-entropy) is given by

�r(XkY ) = D 1
r
(XrkYr)

where Dr(XkY ) = 1
r�1 log

R
f
r
g
1�r

is the r-divergence [16].

When r ! 1 both the relative r-entropy and the r-divergence
tend to the Kullback-Leibler divergence D(XkY ) = �(XkY )
(also known as the relative entropy). For r 6= 1 the two notions
do not coïncide. It is easily checked from the definitions that

�r(XkY )=�r
0 log

Z
f
1/r
r

g
1/r0

r
=�r

0logE
�
g
1/r0

r
(X)

�
�hr(X)

(24)
hr(X) = �r

0 logE
�
f
1/r0

r
(X)

�
. (25)

Thus, just like for the case r = 1, the relative r-entropy (24)
is the difference between the expression of the r-entropy (25)
in which f is replaced by g, and the r-entropy itself.

Since the Rényi divergence Dr(XkY ) = 1
r�1

R
f
r
g
1�r is

nonnegative and vanishes if and only if the two distributions
f and g coïncide, the relative entropy �r(XkY ) enjoys the
same property. From (24) we have the following

Proposition 8 (Rényi-Gibbs’ inequality). If X ⇠ f ,

hr(X)  �r
0 logE

�
g
1/r0

r
(X)

�
(26)

for any density g, with equality if and only if f = g a.e.

Letting r ! 1 one recovers the usual Gibbs’ inequality.

Definition 3 (Arimoto’s Conditional Rényi Entropy [18]).
hr(X|Z) = �r

0logEkf(·|Z)kr = �r
0logEf1/r0

r
(X|Z)

Proposition 8 applied to f(x|z) and g(x|z) gives the
inequality hr(X|Z = z)  �r

0 logE
�
g
1/r0

r (X|Z = z)
�

which, averaged over Z, yields the following conditional
Rényi-Gibbs’ inequality

hr(X|Z)  �r
0 logE

�
g
1/r0

r
(X|Z)

�
. (27)
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If in particular we put g(x|z) = f(x) independent of z, the
r.h.s. becomes equal to (25). We have thus obtained a simple
proof of the following
Proposition 9 (Conditioning reduces r-entropy [18]).

hr(X|Z)  hr(X) (28)
with equality if and only if X and Z are independent.

Another important property is the data processing inequal-
ity [16] which implies Dr(T (X)kT (Y ))  Dr(XkY ) for any
transformation T . The same holds for relative r-entropy when
the transformation is applied to escort variables:

Proposition 10 (Data processing inequality for relative
r-entropy). If X

⇤
, Y

⇤
, X, Y are random vectors such that

Xr = T (X⇤
r
) and Yr = T (Y ⇤

r
), (29)

then �r(XkY )  �r(X⇤kY ⇤).

Proof. �r(XkY ) = D 1
r
(XrkYr) = D 1

r
(T (X⇤

r
)kT (Y ⇤

r
)) 

D 1
r
(X⇤

r
kY ⇤

r
) = �r(X⇤kY ⇤).

When T is invertible, inequalities in both directions hold:

Proposition 11 (Relative r-entropy preserves transport). For

an invertible transport T satisfying (29), �r(XkY ) =
�r(X⇤kY ⇤).

From (24) the equality �r(XkY ) = �r(X⇤kY ⇤) can be
rewritten as the following identity:

�r
0 logE

�
g

1
r0
r (X)

�
�hr(X)=�r

0 logE
�
g
⇤

1
r0
r (X⇤)

�
�hr(X

⇤).
(30)

Assuming T is a diffeomorphism, the density g
⇤
r

of Y ⇤
r

is given
by the change of variable formula g

⇤
r
(u) = gr(T (u))|T 0(u)|

where the Jacobian |T 0(u)| is the absolute value of the
determinant of the Jacobian matrix T

0(u). In this case (30)
can be rewritten as

�r
0 logE

�
g

1
r0
r (X)

�
� hr(X)

= �r
0 logE

�
g

1
r0
r (T (X⇤))|T 0(X⇤)| 1

r0
�
� hr(X

⇤).
(31)

VII. A TRANSPORTATION PROOF OF THEOREM 1
We proceed to prove (10). It is easily seen, using finite

induction on m, that it suffices to prove the corresponding
inequality for m = 2 arguments:

hr(
p
�X+

p
1��Y )��hp(X)�(1��)hq(Y )

� hr(
p
�X

⇤+
p
1��Y ⇤)��hp(X

⇤)�(1��)hq(Y
⇤)

(32)

with equality if and only if X,Y are i.i.d. Gaussian. Here
X

⇤ and Y
⇤ are i.i.d. standard Gaussian N (0, I) and the triple

(p, q, r) and its associated � 2 (0, 1) satisfy the following
conditions: p, q, r have conjugates p

0
, q

0
, r

0 of the same sign
which satisfy 1

p0 +
1

q0
= 1

r0 (that is, 1
p
+ 1

q
= 1 + 1

r
) and

� = r
0

p0 = 1� r
0

q0 .

Lemma 2 (Normal Transport). Let f be given and X
⇤ ⇠

N (0,�2I). There exists a diffeomorphism T : Rn ! Rn
with

log-concave Jacobian |T 0| such that X = T (X⇤) ⇠ f .

Thus T transports normal X⇤ to X . The log-concavity property
is that for any such transports T, U and � 2 (0, 1), we have
|T 0(X⇤)|�|U 0(Y ⇤)|1��  |�T 0(X⇤)+ (1��)U 0(Y ⇤)|. (33)

The proof of Lemma 2 is very simple for one-dimensional
variables [19], where T is just an increasing function with
continuous derivative T

0
> 0 and where (33) is the classical

arithmetic-geometric inequality.
For dimensions n > 1, Lemma 2 comes into two flavors:

(i) Knöthe maps: T can be chosen such that its Jacobian
matrix T

0 is (lower) triangular with positive diagonal elements
(Knöthe–Rosenblatt map [20], [21]). Two different elementary
proofs are given in [12]. Inequality (33) results from the
concavity of the logarithm applied to the Jacobian matrices’
diagonal elements.
(ii) Brenier maps: T can be chosen such that its Jacobian
matrix T

0 is symmetric positive definite (Brenier map [22],
[23]). In this case (33) is Ky Fan’s inequality [4, § 17.9].

The key argument is now the following. Considering
escort variables, by transport (Lemma 2), one can write
Xp = T (X⇤

p
) and Yq = U(Y ⇤

q
) for two diffeomorphims

T and U satisfying (33). Then by transport preservation
(Proposition 11), we have ��p(XkU) + (1� �)�p(Y kV ) =
��p(X⇤kU⇤) + (1 � �)�p(Y ⇤kV ⇤) for any U ⇠ ' and
V ⇠  , which from (31) can be easily rewritten in the form

� r
0 logE

�
�

1
r0 (X,Y )

�
� �hp(X)� (1� �)hq(Y )

= �r
0 logE

⇣�
�(T (X⇤), U(Y ⇤))|T 0(X⇤)|�|U 0(Y ⇤)|1��

� 1
r0
⌘

� �hp(X
⇤)� (1� �)hq(Y

⇤) (34)
where we have noted �(x, y) = '

�

p
(x) 1��

q
(y). Such an iden-

tity holds, by the change of variable x = T (x⇤), y = U(y⇤),
for any function �(x, y) of x and y. Now from (25) we have

hr(
p
�X+

p
1��Y ) = �r

0 logE
�
✓
1/r0

r
(
p
�X+

p
1��Y )

�

where ✓ is the density of
p
�X+

p
1��Y . Therefore, the l.h.s.

of (32) can be written as

hr(
p
�X+

p
1��Y )��hp(X)�(1��)hq(Y ) (35)

=�r0 logE
�
✓

1
r0
r (
p
�X+

p
1��Y )

�
��hp(X)�(1��)hq(Y )

Applying (34) to �(x, y) = ✓r(
p
�x+

p
1��y) and using the

inequality (33) gives
hr(

p
�X+

p
1��Y )��hp(X)�(1��)hq(Y ) (36)

� �r
0 logE

�
'

1
r0 (X⇤

, Y
⇤)
�
��hp(X

⇤)�(1��)hq(Y
⇤)

where '(x⇤
, y

⇤) = ✓r(
p
�T (x⇤)+

p
1��U(y⇤)) · |�T 0(x⇤)+

(1��)U 0(y⇤)|. To conclude we need the following

Lemma 3 (Normal Rotation [12]). If X
⇤
, Y

⇤
are i.i.d.

Gaussian, then for any 0 < � < 1, the rotation

eX=
p
� X

⇤+
p
1� � Y

⇤
, eY =�

p
1� � X

⇤+
p
� Y

⇤ (37)
yields i.i.d. Gaussian variables eX, eY .

Lemma 3 is easy proved considering covariance matrices.
A deeper result (Bernstein’s lemma, not used here) states that
this property of remaining i.i.d. by rotation characterizes the
Gaussian distribution [19, Lemma 4] [24, Chap. 5]).

Since the starred variables can be expressed in terms of the
tilde variables by the inverse rotation X

⇤=
p
� eX�

p
1� � eY ,

Y
⇤=

p
1� � eX +

p
� eY , inequality (36) can be written as

hr(
p
�X +

p
1� �Y )� �hp(X)� (1� �)hq(Y ) (38)

� �r
0 logE

�
 
1/r0( eX|eY )

�
� �hp(X

⇤)� (1� �)hq(Y
⇤),
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where  (ex|ey) = ✓r(
p
�T (

p
�ex�

p
1��ey)+

p
1��U(

p
1��ex+p

�ey)) · |�T 0(
p
�ex�

p
1��ey)+(1��)U 0(

p
1��ex +

p
�ey)|.

Making the change of variable z =
p
�T (

p
�ex �p

1� �ey) +
p
1� �U(

p
1� �ex +

p
�ey), we check thatR

 (ex|ey) dex =
R
✓r(z) dz = 1 since ✓r is a density. Hence,

 (ex|ey) is a conditional density, and by (27),

�r
0 logE

�
 
1/r0( eX|eY )

�
� hr( eX|eY ) (39)

where hr( eX|eY ) = hr( eX) = hr(
p
� X

⇤ +
p
1� � Y

⇤) since
eX and eY are independent. Combining with (38) yields the

announced inequality (32).
It remains to settle the equality case in (32). From the above

proof, equality holds in (32) if and only if both (33) and (39)
are equalities. The rest of the argument depends on whether
Knöthe or Brenier maps are used:
(i) Knöthe maps: In the case of Knöthe maps, Jacobian
matrices are triangular and equality in (33) holds if and
only if for all i, @Ti

@xi
(X⇤) = @Ui

@yi
(Y ⇤) a.s. Since X

⇤

and Y
⇤ are independent Gaussian, this implies that @T

@xi

and @U

@yi
are constant and equal. In particular the Jacobian

|�T 0(
p
�ex�

p
1� �ey)+ (1��)U 0(

p
1� �ex+

p
�ey)| is con-

stant. Now since hr( eX|eY ) = hr( eX) equality in (39) holds
only if  (ex|ey) does not depend on ey, which implies thatp
�T (

p
�ex �

p
1� �ey) +

p
1� �U(

p
1� �ex +

p
�ey) does

not depend on the value of ey. Taking derivatives with respect
to yj for all j, we have @Ti

@xj
(X⇤) = @Ui

@yj
(Y ⇤) a.s. for all i, j.

In other words, T 0(X⇤) = U
0(Y ⇤) a.s.

(ii) Brenier maps: In the case of Brenier maps the argument
is simpler. Jacobian matrices are symmetric positive definite
and by strict concavity, Ky Fan’s inequality (33) is an equality
only if T 0(X⇤) = U

0(Y ⇤) a.s.
In both cases, since X

⇤ and Y
⇤ are independent, this

implies that T
0(X⇤) = U

0(Y ⇤) is constant. Therefore, T

and U are linear transformations, equal up to an additive
constant (= 0 since the random vectors are assumed of zero
mean). It follows that Xp = T (X⇤

p
) and Yq = U(Y ⇤

q
) are

Gaussian with respective distributions Xp ⇠ N (0,K/p) and
Yq ⇠ N (0,K/q). Hence, X and Y are i.i.d. Gaussian N (0,K).
This ends the proof of Theorem 1.

We note that this section has provided an information-
theoretic proof the strengthened Young’s convolutional inequal-
ity (with optimal constants), since (32) is a rewriting of this
convolutional inequality [3].

VIII. A TRANSPORTATION PROOF OF THEOREM 2
Define r = �p+ (1� �)q where 0 < � < 1. It is required

to show that (1 � r)hr(X) + n log r � �
�
(1 � p)hp(X) +

n log p
�
+ (1� �)

�
(1� q)hq(X) + n log q

�
.

By Lemma 2 there exists two diffeomorphisms T, U such
that one can write pXp = T (X⇤) and qXq = U(X⇤). Then,
by these changes of variables X

⇤ has density
1
pn fp

�
T (x⇤)

p

�
|T 0(x⇤)| = 1

qn
fq

�
U(x⇤)

q

�
|U 0(x⇤)| (40)

which can be written
f
p
�
T (x⇤)

p

�
|T 0(x⇤)|

exp
�
(1� p)hp(X) + n log p

�=
f
q
�
U(x⇤)

q

�
|U 0(x⇤)|

exp
�
(1� q)hq(X) + n log q

� .

Taking the geometric mean, integrating over x
⇤ and taking

the logarithm gives the representation
�
�
(1�p)hp(X)+n log p

�
+(1��)

�
(1�q)hq(X)+n log q

�

=log

Z
f
�p
�
T (x⇤)

p

�
f
(1��)q�U(x⇤)

q

�
|T 0(x⇤)|�|U 0(x⇤)|1�� dx⇤

.

Now, by log-concavity (17) (with µ = �p/r) and (33),
�
�
(1�p)hp(X) + n log p

�
+ (1��)

�
(1�q)hq(X) + n log q

�

 log

Z
f
r
�
�T (x⇤)+(1��)U(x⇤)

r

�
|�T 0(x⇤)+(1��)U 0(x⇤)| dx⇤

= log
�
r
n

Z
f
r
�
= (1� r)hr(X) + n log r.

This ends the proof of Theorem 2.
This theorem asserts that the second derivative @

2

@r2

�
(1 �

r)hr(X)+n log r
�
 0. From (23) this gives Var log f(Xr) 

n/r
2, that is, Var log fr(Xr)  n. Setting r = 1, this is the

varentropy bound Var log f(X)  n of [13].
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