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Abstract— A physically unclonable function (PUF) is an elec-
tronic circuit that produces an intrinsic identifier in response
to a challenge. These identifiers depend on uncontrollable
variations of the manufacturing process, which make them hard
to predict or to replicate. Various security protocols leverage on
such intrinsic randomness for authentification, cryptographic
key generation, anti-counterfeiting, etc. Evaluating the entropy
of PUFs (for all possible challenges) allows one to assess the
security properties of such protocols.

In this paper, we estimate the probability distribution of
certain kinds of PUFs composed of n delay elements. This
is used to evaluate relevant Rényi entropies and determine
how they increase with n. Such a problem was known to have
extremely high complexity (in the order of 22

n

) and previous
entropy estimations were carried out up to n = 7. Making
the link with the theory of Boolean threshold functions, we
leverage on the representation by Chow parameters to estimate
probability distributions up to n = 10. The resulting Shannon
entropy of the PUF is close to the max-entropy, which is
asymptotically quadratic in n.

I. INTRODUCTION

Physically unclonable functions, or PUFs, are electronic
devices that are used to produce unique identifiers. Small
variations of the manufacturing process are exploited so that
any two devices, built according to the same description,
will likely produce different identifiers. Moreover, since such
process variations are intrinsically random, they cannot be
controlled to replicate the behavior of another device, hence
the name physically unclonable functions. PUFs find many
applications: the identifier can be used to generate a unique
cryptographic key, which cannot be easily extracted from
the device; it can be recorded during manufacturing into a
whitelist to prevent counterfeiting or overproduction; and it
can also be employed in the implementation of challenge-
response protocols at a low cost. This is especially valuable
on devices where implementing asymmetric cryptography
primitives is too computationally expensive.

There are several ways to build PUFs. SRAM-PUFs [1]
exploit the states of SRAM cells after powering up, while
ring-oscillator (RO) PUFs [2] exploit delay differences of
signals in electronic circuits. In this paper, we analyze another
delay PUF, called loop-PUF, first proposed in [3]. Our analysis
will also be valid for the RO-sum PUF [4], which shares
essentially the same mathematical model, as well as the arbiter
PUF [5]. In the remainder of this paper, we will write PUF
as a short-hand for loop-PUF, RO-sum PUF or arbiter PUF.

A. Modelization and Notations

A PUF of size n generates one identifier bit, or response bit,
when queried with a challenge c = (c1, . . . , cn) ∈ {±1}n, a
sequence of n values +1 or −1. The PUF is characterized by
n weights, denoted by x = (x1, . . . , xn) ∈ Rn that represent
delay differences of the PUF circuit. As explained in [6],
for each challenge c ∈ {±1}n, the response bit of the PUF
of parameters x = (x1, . . . , xn) is equal to sgn(c · x) =
sgn(c1x1 + · · ·+ cnxn) ∈ {±1}.

The base for all logarithms in this paper is equal to 2, and
all entropies are given in bits.

Due to manufacturing process variations, the weights xi
are modeled as realizations of random variables Xi. In [6],
a Gaussian model was analyzed, where the Gaussian nature
of the variables Xi ∼ N (0, 1) is justified by simulations of
process variations in electronic circuits [7].

More generally, our analysis is valid for any X =
(X1, X2, . . . , Xn) whose components Xi are i.i.d. continuous
variables with symmetric densities about 0 (whose support
contains 0). The i.i.d. assumption is justified by the fact
that delays are caused by “identical” circuit elements that
lie in different locations in the circuit and can, therefore, be
considered independent. In particular, each xi is the difference
between two delays caused by such “identical” independent
elements, which justifies the symmetry assumption. Simula-
tions in Section V will be made in the Gaussian model, for
which the weight distribution is centered isotropic.

B. Problem Statement

The security of PUFs is related to Rényi entropies Hα of
various orders α [8].

The min-entropy H∞ = log(1/Pmax) is related to the
maximum (worst-case) probability Pmax of successfully
cloning a given PUF. Therefore, min-entropy H∞ should
be as large as possible to ensure a given worst-case security
level.

The collision entropy H2 = log(1/Peq) is related to the
average probability Peq that two randomly chosen PUFs have
the same identifier. Therefore, H2 should also be as large
as possible to ensure a given average security level against
collision.

The classical Shannon’s entropy H1 is known to provide a
resistance criterion against modeling attacks—which predict
the response to a new challenge given previous responses to
other challenges [9]. Again H1 should be as large as possible.
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The max-entropy H0 is simply the logarithm of the total
number of PUFs. H0 upper bounds all the other entropies Hα.
Theoretically, it is possible to choose a non i.i.d. weight
distribution such that all PUFs are equiprobable, yielding
Hα = H0 for every α. In this case it is sufficient to count
PUFs. In practice, however, due to the assumption of i.i.d.
weights (typically Gaussian), the upper bound H0 will not
be attained. Therefore, it is important to derive a efficient
method to estimate the various Rényi entropies.

Estimating the various Rényi entropies typically requires
estimating the entire PUF probability distribution. However,
because a PUF of size n is determined by 2n response bits,
there can be as many as 22

n

PUFs of size n. The naive
complexity increases very rapidly with n, in the order of 22

n

.

C. Outline

In this paper, we link the analysis of PUFs to the theory of
Boolean Threshold Functions (BTF) and build an algorithm
that accurately estimates the PUF probability distribution
and entropies up to order n = 10. Our algorithm relies
on determining equivalent classes of PUFs with the same
probability, and then estimating the probability within each
class. The classes are determined using Chow parameters from
BTF theory. The remainder of the paper is thus organized
as follows. Section II recalls known results from the theory
of BTFs which we adapt to PUFs. The key results on the
equivalence classes are proved in Section III. Section IV
describes the simulation algorithm that allows us in Section V
to determine the PUF distributions and entropies up to
order 10. Finally, Section VI concludes.

II. THE CHOW PARAMETERS OF PUFS

Definition 1 (PUF): Let x ∈ Rn be such that for all c ∈
{±1}n, c · x 6= 0. The PUF of size n and weight sequence x
is the function fx : {−1,+1}n → {−1,+1} defined as

fx(c) = sgn(c · x) (1)

where c · x =
∑n
i=1 cixi is the usual scalar product.

This definition coincides with so-called “self-dual” BTFs
of n variables [10]. BTFs have been studied since the 1950’s
as building blocks for Boolean circuits [11] and also find
applications in machine learning [12]. Leveraging the corre-
spondence between PUFs and BTFs, we adapt fundamental
results from BTF theory to conveniently characterize PUFs.

A. All PUFs are Attainable

Recall that in our framework, the PUF parameters x ∈ Rn
are realizations of a random vector X ∈ Rn. Under this
probabilistic model a PUF becomes a randomized mapping
fX such that fX(c) = sgn(c · X) for any (deterministic)
challenge c ∈ {±1}n.

Lemma 1: For every PUF fx, we have P(fX = fx) > 0.
In other words, every PUF fx can be reached by a realization
of weights X with positive probability (even though one has
P(X = x) = 0).

Proof: By assumption all components of X are i.i.d.
with symmetric density of support S containing 0. Hence the
support Sn of the density of X is an n-dimensional manifold
containing the origin in its interior. Let x ∈ Rn be fixed and
let Cx be the cone (scale-invariant set) of all y ∈ Rn such
that fx = fy. This cone Cx has apex 0 and contains the
intersection of all half-spaces {y | sgn(c · y) = sgn(c · x)}
where c ∈ {±1}n. Therefore, it is a n-dimensional manifold
which intersects Sn with positive volume. Hence P(fX =
fx) = P(X ∈ Cx ∩ Sn) > 0.

B. Chow Parameters Characterize PUFs

First introduced by Chow [13] and later studied by
Winder [11] who gave them their name, the so-called Chow
parameters uniquely define a Boolean threshold function.
Their definition is especially simple for PUFs:

Definition 2 (Chow parameters): The Chow parameters
p = (p1, . . . , pn) ∈ Zn of a PUF f of size n is defined
as

p =
∑

c|f(c)=1

c (2)

where the vector sum is carried out componentwise.

We remark that for n ≥ 2, all Chow parameters are even
integers. This is due to the fact that a sum of even number
of elements ±1 must be even. More precisely,

pi mod 2 ≡
∑

c|f(c)=1

ci mod 2 ≡
∑

c|f(c)=1

1 mod 2 (3)

≡ 2n−1 mod 2 ≡ 0 mod 2. (4)

Theorem 1 (Chow’s theorem [13]): Two PUFs with the
same Chow parameters are identical.

For completeness, we give a new proof of Chow’s theorem
rewritten in our PUF framework. Such proof turns out to be
very simple.

Proof: Let fx and fy be two PUFs with identical Chow
parameters: ∑

c|fx(c)=1

c =
∑

c|fy(c)=1

c. (5)

Simplifying this expression by
∑

c|fx(c)=1,
fy(c)=1

c, we obtain

∑
c|fx(c)=1,
fy(c)=−1

c =
∑

c|fx(c)=−1,
fy(c)=1

c, (6)

which is equivalent to∑
c|fx(c) 6=fy(c)

fx(c)c = 0. (7)

Taking the scalar product with x, we get∑
c|fx(c) 6=fy(c)

fx(c)c · x =
∑

c|fx(c) 6=fy(c)

|c · x| = 0 (8)

which implies c ·x = 0 whenever fx(c) 6= fy(c). Now we
assumed that c · x is never zero by Def. 1. Thus fx = fy .
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C. Consequence on the Max-Entropy

An upper bound on the max-entropy can be easily deduced
from Chow’s theorem.

Corollary 1: There are no more than 2n
2

PUFs of size n,
i.e., the max-entropy of the PUF of size n satisfies

H0(n) ≤ n2 (∀n ≥ 2). (9)
A more refined version, which can be rewritten as H0(n) ≤
(n− 1)2+1 for n > 1, can be found in [14, Corollary 10.2].
The proof of (9) is again particularly simple for PUFs.

Proof: The Chow parameters pi, i = 1 . . . n, satisfy

pi =
∑

c|f(c)=1

ci ≤
∑

c|f(c)=1,
ci=1

1 ≤ 2n−1 (10)

and similarly, pi ≥ −2n−1. Since there are 2n−1 + 1 even
integers between −2n−1 and 2n−1, there can only be (2n−1+
1)n ≤ 2n

2

different values taken by the Chow parameters.
The conclusion follows from Chow’s Theorem 1.

A lower bound on H0 is also easily found from the
representation of Definition 1, as given by the following
Proposition. The corresponding bound for the number of
BTFs was first established independently by Smith [15] and
Yajima et al. [16] in the 1960s.

Proposition 1: The max-entropy satisfies

H0(n) >
(n− 2)2

2
(∀n ≥ 2). (11)

Proof: Recall from Lemma 1 that every PUF fx can
be reached by a realization of weights X with positive
probability. Hence it is sufficient to consider all fx for all
x ∈ Rn in order to lower-bound the total number of PUFs.

Let fx a PUF of size n. Applying some small perturbation
on x if necessary (without affecting fx) we may always
assume that all the c · x (c ∈ {±1}n) take distinct values.

Now let xn+1 ∈ R be such that 2xn+1 is different from all
the c · x, and define x′ = (x1, · · · , xn−1, xn − xn+1, xn+1).
For any challenge c′ = (c1, . . . , cn, cn+1), we have

fx′(c
′) =

{
fx(c1, . . . , cn) if cn = cn+1

sgn(
∑n
i=1 cixi − 2cnxn+1) otherwise.

(12)
Depending on how many of the 2n−1 values of c · x are
smaller/larger than 2cnxn+1, we can construct 2n−1 + 1
different PUF functions of size n+ 1. Hence each PUF of
size n gives rise to more than 2n−1 PUFs of size n + 1.
Therefore, H0(n+ 1) > n− 1 +H0(n). The result follows
by finite induction:

H0(n) >
(n− 1)(n− 2)

2
+H0(2) >

(n− 2)2

2
.

More recently, Zuev [17] has shown that, asymptotically,
H0(n) > n2(1− 10

ln(n) ). Therefore, for the max-entropy, we
have that H0(n) ∼ n2. As a result, instead of evaluating the
probabilities of 22

n

different PUFs, we will only have to
evaluate about 2n

2

.

As apparent in the proof of Zuev [17, Theorem 1]
although through different geometrical considerations on
normal vectors of hyperplanes, we can further reduce the
number of PUFs to be considered down by a factor of about
2nn!. Section III will derive the exact compression factor
using the equivalence classes on Chow parameters.

D. Order and Sign Stability of Chow Parameters
An important property of the Chow parameters p is that

their share the same signs and relative order as the weights x.
Lemma 2: Let f = fx be a PUF with weight x ∈ Rn, and

p ∈ Zn be the corresponding Chow parameters. Then
• xi ≥ 0 =⇒ pi ≥ 0 and xi ≤ 0 =⇒ pi ≤ 0.
• xi ≤ xj =⇒ pi ≤ pj .
A similar result was shown by Chow in [13], although

with another definition of Chow parameters. Again we give
a simplified proof in the PUF framework.

Proof: We first prove that xi ≥ 0 =⇒ pi ≥ 0, the
other case xi ≤ 0 =⇒ pi ≤ 0 being similar. Suppose that
xi ≥ 0. Let E+

i (resp. E−i ) be the set {c | f(c) = 1, ci = 1}
(resp. {c | f(c) = 1, ci = −1}). By definition,

pi =
∑

c|f(c)=1

ci = |E+
i | − |E

−
i |. (13)

We show the existence of an injective mapping from E−i to
E+
i . Consider the one-to-one mapping φ : {±1}n → {±1}n

defined by

φ(c)j =

{
cj , j 6= i

−cj , j = i
(14)

For any c ∈ E−i , ci = −1, φ(c)i = +1 and
n∑
j=1

φ(c)jxj=

n∑
j 6=i

cjxj + xi (15)

=

n∑
j=1

cjxj︸ ︷︷ ︸
>0

+ 2xi︸︷︷︸
≥0

> 0. (16)

Therefore, f(φ(c)) = 1 and φ(c) ∈ E+
i . Hence, the

bijection φ induces an injection from E−i to E+
i . This implies

that |E+
i | ≥ |E

−
i | hence pi ≥ 0.

To prove the second part, assume that xi ≤ xj for j 6= i.
Let f ′ : {±1}n−1 → {±1} be a PUF given by f ′(c′) =
sgn(c′ · x′), where c′ ∈ {±1}n−1 is obtained from c by
dropping ci, x′` = x` for any ` 6= j, and x′j = xj − xi ≥ 0.
Say the Chow parameters of f ′ is p′. According to the first part
of this lemma, we have p′j ≥ 0. Now, expand the expression
of pj − pi as

pj − pi=
∑

c|f(c)=1

cj −
∑

c|f(c)=1

ci (17)

= 2
∑

c|f(c)=1,cj=−ci

cj (18)

= 2
∑

c′|f ′(c′)=1

c′j = 2p′j ≥ 0. (19)
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III. EQUIVALENCE CLASSES AND CHOW PARAMETERS

Since the Xi are i.i.d. symmetric random variables, the joint
probability distribution of the weights X = (X1, . . . , Xn) is
invariant under permutations and sign changes. Therefore, all
PUFs fx that can be obtained from one another by permuting
or changing signs of their weights x1, x2, . . . , xn can be
clustered together into equivalence classes of PUFs with the
same probability P(fX = fx).

We now establish several properties of these equivalence
classes for PUFs, known as “self-dual” classes [10] in the
context of BTFs. Zuev [17] had already mentioned 2nn!
elements per class in a special case. Our generalization
(Theorem 3) is mentionned in a different form in [18, § 3.1.2]
for calculating the total number of BTFs, yet we couldn’t
find formal proofs published in the literature.

We give a formal definition of the equivalence classes by
the action of the group

Gn = Sn × {−1,+1}n (20)

where Sn is the symmetric group of order n!. An element
g = (σ, s) ∈ Gn is determined by the permutation σ ∈ Sn
and the sign changes s ∈ {−1,+1}n.

Proposition 2: For any x = (x1, . . . , xn) ∈ Rn and g =
(σ, s) ∈ Gn define g · x : Gn × Rn → Rn such that

(g · x)i = sixσ(i). (21)

This defines a group action of Gn on Rn, where the inner
product in Gn is defined by

(σ1, s
1) · (σ2, s2) = (σ1 ◦ σ2, (s1i s2σ1(i)

)i). (22)

Proof: Gn is clearly a group with identity e =
(id, (1, · · · , 1)). For any (σ1, s

1), (σ2, s
2) ∈ Gn and x ∈ Rn,

(σ1, s
1) · ((σ2, s2) · x)= (σ1, s

1) · (s2ixσ2(i))i (23)

= (s1i s
2
σ1(i)

xσ1(σ2(i)))i (24)

= (σ1 ◦ σ2, (s1i s2σ1(i)
)i) · x (25)

= ((σ1, s
1) · (σ2, s2)) · x. (26)

This shows that g ·x defines a group action of Gn on Rn.

Thus we can say that the group Gn acts on the PUFs of
size n, the action being defined as

g · fx = fg·x. (27)

In keeping with Lemma 2, we now show that the group action
is carried over to Chow parameters:

Theorem 2: Let fx a PUF of Chow parameters p, and let
g ∈ Gn. The Chow parameters of fg·x is g · p.

Proof: Let g = (σ, s) ∈ Gn. For any challenge c, we
have that fx(g−1 · c) = fg·x(c). Thus,∑

c|fg·x(c)=1

ci =
∑

c|fx(g−1·c)=1

ci =
∑

c|fx(c)=1

(g · c)i (28)

=
∑

c|fx(c)=1

sicσ(i) = sipσ(i) = (g · p)i. (29)

Changing the signs of the weights or permuting them is
reflected by the same operation on the Chow parameters. This
allows us to compute the size of the equivalence classes:

Theorem 3: Let f be a PUF with Chow parameters p. Let
mp(k) be the number of Chow parameters equal to k or
−k ∈ Z, and let Orb(f) = {g · f | g ∈ Gn} the orbit of f
by Gn, that is, the equivalence class containing f . Then

|Orb(f)| = 2nn!
(
2mp(0)

∏
k∈N

mp(k)!
)−1

. (30)

Proof: By applying the well-known orbit-stabilizer
theorem (see for instance [19, p. 89]), we have

|Orb(f)| = |Gn|
|Stab(f)|

=
|{±1}n| × |Sn|
|Stab(f)|

=
2nn!

|Stab(f)|
(31)

where Stab(f) = {g ∈ Gn | g ·f = f} is the stabilizer of f .
The size of the orbit of f can therefore be deduced from the
size of its stabilizer. Now the latter can be easily computed:
Let g = (σ, s) ∈ Gn such that g · f = f . Since g · p = p, we
have σ(i) = j ⇐⇒ pi = si ·pj and si = sgn(pi)·sgn(pσ(i))
except when pi = 0, in which case si is unconstrained. The
number of such g is exactly 2mp(0)

∏
k∈Nmp(k)!.

IV. MONTE-CARLO ALGORITHM

As seen in the introduction to the previous section, all
PUFs in one equivalence class have the same probability.
It follows that the probability of any particular PUF can be
deduced from the probability of the class to which it belongs.
Therefore, to determine the various entropies, it suffices to
find a method that estimates the probabilities of the various
equivalence classes.

In this section, we propose an algorithm that exploits a
definition of a canonical PUF in any equivalence class in
such a way that for given any PUF, it is trivial to determine
the corresponding canonical PUF. As expected, only about
2n

2

/2nn! probabilities need to be estimated, instead of
approximatively 2n

2

.

Definition 3 (Canonical PUF): A canonical PUF of n
variables is a PUF whose Chow parameters satisfy

p1 ≥ p2 ≥ · · · ≥ pn ≥ 0. (32)

The canonical form of a PUF f is the canonical PUF
belonging to the same class, i.e., f ′ = g · f where g ∈ Gn is
such that f ′ is canonical.

This notion was first introduced by Winder [11] and is
related to the concept of “prime” functions independently
studied by Chow [13].

Proposition 3 (Unicity of the canonical PUF): Two ca-
nonical PUFs in the same class are equal.

Proof: Since f and f ′ are in the same equivalence class,
their Chow parameters are identical up to sign changes and
order. Since both are canonical, the signs and order are fixed.
Their Chow parameters are thus identical and f = f ′.
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Proposition 4: Let x = (x1, . . . , xn) be a weight sequence
of a PUF f = fx, and let g ∈ Gn such that g·x = (x′1, . . . x

′
n)

satisfies
x′1 ≥ x′2 ≥ . . . ≥ x′n ≥ 0. (33)

Then g · f is the canonical form of the PUF f .
Proof: Let us denote by p (resp p′) the Chow parameters

of f (resp g · f ). The PUF obtained from weights x′ is g · f .
From Lemma 2, the p′i satisfy the same ordinal relations
and have the same signs as the x′i. Therefore, f ′ is a
canonical PUF.

These results allow us to efficiently estimate the PUF distri-
bution by Monte-Carlo methods, as described in Algorithm 1.
Such an algorithm can be used for any i.i.d. weight distribution
with symmetric densities (not necessarily Gaussian).

Algorithm 1: How to estimate the PUF distribution.

Data: n > 0, nbRounds > 0
Result: Estimation of PUF probability distribution
Initialize HashMaps counts, proba, size;
for i← 1 to nbRounds do

Generate n realizations x1, . . . , xn;
Sort the absolute values of the xi to obtain x′;
Compute the Chow parameters p of fx′ ;
if p ∈ counts then

counts [p] ← counts [p] + 1;
else

counts [p] ← 1;
end

end
for p ∈ counts do

size[p]← 2nn!

2mp(0)
∏

k mp(k)!
;

proba[p]← counts[p]
size[p] ∗ nbRounds

;

end
return (proba, size) ;

V. ENTROPIES ESTIMATION

In this section, we present the simulation results in the
Gaussian case where the weights Xi are i.i.d. ∼ N (0, 1).
Exact values were already determined up to n = 4 in [20].

A. Estimating the Max-Entropy H0

According to Lemma 1, every PUF can be attained by
some realization of weights. Therefore, the max-entropy of
the PUF distribution is simply the logarithm of the total
number of PUFs with n weights. This number is equal to
the total number of BTFs of n − 1 variables and has been
computed up to n = 10 in [18, § 3.1.2], see Table I.

B. Estimating the Shannon Entropy H1

For any PUF f , let [f ] denote the equivalence class of f
with cardinality |[f ]|, P(f) its probability, Fn the set of all
PUFs and Fn/Gn the quotient group induced by the action
of the group Gn. Then, letting P([f ′]) =

∑
f∈[f ′] P(f), one

has

H1(n)= −
∑
f∈Fn

P(f) log(P(f)) (34)

TABLE I
EXACT VALUES OF H0

n # PUFs H0 (bits)
1 2 1
2 4 2
3 14 3.8074. . .
4 104 6.7004. . .
5 1882 10.8781. . .
6 94572 16.5291. . .
7 15028134 23.8411. . .
8 8378070864 32.9640. . .
9 17561539552946 43.9974. . .
10 144130531453121108 57.0001. . .

= −
∑

f ′∈Fn/Gn

∑
f∈[f ′]

P(f) log(P(f)) (35)

= −
∑

f ′∈Fn/Gn

P([f ′]) log(P(f ′)) (36)

= −
∑

f ′∈Fn/Gn

P([f ′]) log(P([f ′])) + E[log(|[fX ]|)].

(37)

In other words, the Shannon entropy of the PUF distribution
is simply the sum of the entropy of the equivalence classes
and the average of their logarithmic size. The latter term
can be estimated using the unbiased empirical mean, where
a confidence interval can be determined using Student’s t-
distribution [21]. The former term, however, is an entropy,
for which no unbiased estimator exists [22]. The NSB
estimator [23] has a reduced bias and a low variance.
However, because we generated much more PUFs than
equivalence classes (by a factor of at least 100000), the plug-
in estimator, based on the empirical frequency estimates,
performs quite well: Its bias can be upper bounded as
described in [22] and was found to be less than 0.01 bit. The
results are summarized in Table II.

TABLE II
CONFIDENCE INTERVALS AT THE 95% LEVEL FOR H1

(EXACT VALUES UP TO n = 4).

n PUF Sample size H1 (bits)
1 — 1
2 — 2
3 — 3.6655. . .
4 — 6.2516. . .
5 1010 10.0134 – 10.0156
6 1010 15.1903 – 15.1925
7 1010 21.9856 – 21.9879
8 2 · 1010 30.5628 – 30.5645
9 2 · 1010 41.0367 – 41.0384
10 3 · 1012 53.4737 – 53.4740

C. Estimating the Collision Entropy H2

The collision entropy was estimated using an unbiased
estimator adapted from [24, § 1.4.2]. Let N[f ] be the number
of PUF samples that belong to the equivalence class of [f ]
among a number of Poisson-distributed PUFs with parameter
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N , and N2
[f ] = N[f ] · (N[f ] − 1). We can compute

E
[ ∑
f∈Fn/Gn

N
2
[f ]

|[f ]|N2

]
=

∑
f∈Fn/Gn

E
[N2

[f ]

N2

] 1

|[f ]|
(38)

=
∑

f∈Fn/Gn

P([f ])2

|[f ]|
(39)

=
∑
f∈Fn

P(f)2 (40)

where we used the fact that E[
N

2

[f]

N2 ] = P([f ])2 from [24,
§ 2.2]. It follows that

∑
f∈Fn/Gn

N
2
[f ]

|[f ]|N2
. (41)

is an unbiased estimator for the power-sum
∑
f∈Fn

P(f)2. As
can be also checked, the variance of this estimator admits the
same upper bound as the one described in [24, § 1.4.2]. This
allows us to determine confidence intervals for the collision
entropy as shown in Table III.

TABLE III
CONFIDENCE INTERVALS AT THE 95% LEVEL FOR H2

(EXACT VALUES UP TO n = 4)

n PUF Sample size H2 (bits)
1 — 1
2 — 2
3 — 3.5462. . .
4 — 5.7105. . .
5 1010 8.4551 – 8.4568
6 1010 11.5977 – 11.6023
7 1010 14.8819 – 14.89805
8 2 · 1010 18.5201 – 18.5753
9 2 · 1010 22.0309 – 22.4067
10 3 · 1012 25.9070 – 26.1983

D. Estimating the Min-Entropy H∞
In order to determine the min-entropy of the PUF dis-

tribution, one needs to estimate the probability of the most
likely PUF. Our experiments, as well as those of Delvaux et
al. [25], strongly suggest that for a Gaussian distribution of the
weights, the most likely PUFs are the 2n PUFs corresponding
to the Boolean functions ci and ci, i = 1...n.

The maximum likelihood estimator of that probability is
simply the sample frequency, which is an unbiased estimator.
A confidence interval for this estimator can be obtained using
the Wilson score interval [26], which yields a confidence
interval for the min-entropy H∞.

Because we have already determined that there are exactly
2n PUFs in the equivalence class of the most likely PUF, we
only need to estimate a confidence interval on the sample
frequency of the equivalence class. Once such an interval was
obtained, for instance [p−, p+], then the confidence interval
for the min-entropy is given by

[− log2(p+) + log2(2n),− log2(p−) + log2(2n)].

TABLE IV
CONFIDENCE INTERVALS AT THE 95% LEVEL FOR H∞

(EXACT VALUES UP TO n = 4)

n PUF Sample size H∞ (bits)
1 — 1
2 — 2
3 — 3.2086. . .
4 — 4.5850. . .
5 1010 6.1006 – 6.1008
6 1010 7.7352 – 7.7354
7 1010 9.4731 – 9.4735
8 2 · 1010 11.3020 – 11.3024
9 2 · 1010 13.2123 – 13.2132
10 3 · 1012 15.1899 – 15.1901

The confidence intervals of the min-entropy are presented in
Table IV.

The results of the simulation, up to n = 10, are presented
in Figure 1. The results show that the Shannon entropy is
close to the max-entropy, which as seen in Section II is
asymptotically equivalent to n2 as n increases.

2 4 6 8 10
# of delay elements (n)

0

10

20

30

40

50

bi
ts

Max-entropy H0
Shannon entropy H1
Collision entropy H2
Min-entropy H1
Min-entropy upper-bound

Fig. 1. Entropy estimates for n ≤ 10. The upper bound of the min-entropy
(dashed line) is taken from [25].

VI. CONCLUSIONS AND PERSPECTIVES

While it had been previously shown [6] that the entropy
of the loop-PUF of n elements could exceed n, the exact
values were only known for very small values of n. Making
the link with BTF theory using Chow parameters, we have
extended these results to provide accurate approximations
up to n = 10. Our results suggest that the entropy of the
loop-PUF might be quadratic in n: This would be a very
positive result for circuit designers, since it implies that the
PUF has a very good resistance to machine learning attacks.
However, because the min-entropy and collision entropy are
much smaller (on the order of n) the resistance to cloning
may not be as high as expected.

Two interesting theoretical aspects of the PUF entropy
are still open: First, to what extent does the entropy of the
PUF stay close to the max-entropy for larger values of n?
Second, is it possible to obtain a quasi-quadratic entropy in n
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when choosing a small subset of all 2n possible challenges?
The latter point is of great practical interest since it would
reduce the time required to obtain the PUF identifier while
maintaining a high resistance to machine learning attacks.

For values of n larger than 10, our method seems to become
too costly in space and time to produce accurate estimates of
the PUF probability distributions under reasonable conditions.
One could perhaps have recourse to entropy estimation
methods that dispense with learning the distribution itself,
such as the NSB estimation [23]. This could be used to check
the predicted trend of the PUF entropy for increasing n.
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