

¹ LTCI, CNRS, Telecom ParisTech Université Paris-Saclay, Paris, France

Introduction

A new information-theoretic approach based on Bayesian Experimental Design (BED) is applied to human-computer interaction, and in particular to multiscale navigation. Instead of simply executing user commands, our **BIG** (Bayesian Information Gain) technique is modeling user behavior and tries to gain information by maximizing the expected mutual information provided by the users' subsequent input.

		Notatio	ns
		BED	BIG
θ		parameter to be determined	intended target in users' mind
У		observation	user command
X		experiment design	system feedback
$p(y \boldsymbol{\theta},$	<i>x</i>)	model for making observation y , given θ and x	model for user providing command y , given θ and x
$p(\boldsymbol{\theta})$)	prior	system's prior knowledge about users' goals
$p(\boldsymbol{\theta} \boldsymbol{y},\boldsymbol{y})$	<i>x</i>)	posterior	updated knowledge
$I(\Theta;Y X)$	=x)	utility of the design <i>x</i>	utility of the feedback <i>x</i>
$H(\Theta) - H(\Theta) - H(\Theta) = x,$	-Y = y	utility of the experiment outcome after observation y with design x	utility of the outcome after user input y with system feedback x

A Bayesian Experimental Design Approach Maximizing Information Gain for Human-Computer Interaction

Wanyu Liu^{1,2}, Rafael Lucas d'Oliveira^{3,1}, Michel Beaudouin-Lafon², Olivier Rioul¹

² LRI, Univ. Paris-Sud, CNRS, Inria, Université Paris-Saclay, Orsay, France

Application to Multi-scale Navigation

Contact: Wanyu Liu (<u>wanyu.liu@telecom-paristech.fr</u>)

³ Applied Mathematics, University of Campinas, Campinas, San Paulo, Brazil

X	a particular view the system sends to users
У	user input discretized into 9 commands (8 pan directions and 1 zoom-in region)

- the system's prior knowledge about the $p(\boldsymbol{\theta})$ points of interest in users' mind
- user behavior is modeled from a calibration $p(y|\theta,x)$ session

Website: <u>http://perso.telecom-paristech.fr/wliu/</u>

BIGmap

Apply **BIG** to a more realistic map application where the probability of a city is proportional to its population

Perspectives

The Bayesian Information Gain model opens up a wide range of opportunities for Human-Computer Partnership, which combines user control with machine power:

any system feedback

- any user input
- $p(\theta)$ the system's prior knowledge about users' goals

Other applications: searching tasks such as file search.

Acknowledgements

This research was funded by: Agence Nationale de la Recherche (ANR): ANR-11-LABEX-0045 DIGICOSME

European Research Council (ERC): 695464 ONE Brazilian National Research Council (CNPq): 201545/2015-2

References

[1] D.V. Lindley. "On a measure of the information provided by an experiment." The Annals of Mathematical Statistics. pp.986-1005, 1956.

[2] K. Chaloner & I. Verdinelli. "Bayesian experimental design: A review." Statistical Science. pp.273-304, 1995.

[3] J. Vanlier, C.A. Tiemann, P.A. Hilbers & N.A. van Riel. "A Bayesian approach to targeted experiment design." *Bioinformatics 28*, no. 8:1136-1142, 2012.

[4] W. Liu, R. Lucas d'Oliveira, M. Beaudouin-Lafon and O. Rioul. "BIGnav: Bayesian information gain for guiding multiscale navigation," in Proc. ACM CHI Conference on Human Factors in Computing Systems (CHI 2017), Denver, USA, May 6-11th, 2017.