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Introduction. The logical foundations of mathematical analysis were de-
veloped in the 19th century by mathematicians such as Bolzano, Cauchy,
Weierstrass, Dedekind, Cantor, Heine, Borel, and Cousin. They es-
tablished rigorous proofs based on “completeness” axioms that characterize the
real number continuum. As noticed in [16], rigor was not the most pressing ques-
tion, one of the major motivations being teaching. Today, the foundation is still
recognized as satisfactory, and all classical textbooks define R as any ordered
field satisfying a “completeness” axiom. Here is a list of equivalent such axioms1:

[sup] (L.u.b. Property) Any set of reals has a supremum2 (and an infimum2);
[cut] (Dedekind’s Completeness) Any cut defines a (unique) real number;
[nest+arch] (Cantor’s Property) Any sequence of nested closed intervals
has a common point + Archimedean property;
[cauchy+arch] (Cauchy’s Completeness) Any Cauchy sequence converges
+ Archimedean property;
[mono] (Monotone Convergence) Any monotonic sequence has a limit2;
[bw] (Bolzano-Weierstrass) Any infinite set of reals (or any sequence)
has a limit point2;
[bl] (Borel-Lebesgue) Any cover of a closed interval by open intervals has
a finite subcover3;
[cousin] (Cousin’s partition, see e.g., [6]) Any gauge defined on a closed
interval admits a fine tagged partition of this interval;
[ind] (Continuous Induction, see e.g., [11, 9]).

It is somewhat striking that all these equivalent properties look so diverse.
This calls for a need of a unifying principle from which all could be easily
derived. In this work, we introduce and discuss yet another equivalent axiom
in two equivalent versions (definitions to be given below):

[lg] (Local-Global) Any local and additive property is global ;
[gl] (Global-Local) Any global and subtractive property has a limit point.

The earliest reference we could find that explicitly describes this principle is
Guyou’s little-known French textbook [8]. It was re-discovered independently
many times in many various disguises in some American circles [5, 12, 17, 19, 15].

Present Situation. We have studied in detail the logical flow of proofs in
graduate textbooks that are currently most influential in the U.S.A. [18, 1, 2],
France [3, 14] and Brazil [7, 13]—not only proofs of the essential properties
of the reals, but also of the basic theorems for continuity (intermediate value

1Some require the Archimedean property: Any real is upper bounded by a natural number.
2Possibly infinite. (For example, supR=+∞ and sup∅=−∞.)
3This is Borel’s statement, also (somewhat wrongly) attributed to Heine, and later

generalized by Lebesgue and others.
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theorem [ivt], extreme value theorem [evt], Heine’s theorem [heine]) and
differentiation (essentially the mean value theorem [mvt]).

It appears that [sup] is by far the preferred axiom, [nest+arch] being
the only considered alternative in [3, 2]4. Other axioms ([cauchy, arch],
[mono], [bw], often [bl], and sometimes [cut]) are derived as theorems. In
contrast, [cousin] and [ind] are never used5. [bw] is often central to prove
the basic theorems of real analysis (particularly [ivt], [evt], [heine]) with
sometimes [bl] as “topological” alternative. In our opinion, several classical
proofs are difficult and subtle for the beginner (e.g., proofs of [evt] or [heine]
using [bw]). There have been recent attempts to improve this situation by ad-
vocating the use of [cousin] [6] or [ind] [11, 9], although using these methods
can also be cumbersome at times.

Our Proposal. Let us explain the above [lg] and [gl] principles by defining
the following intuitive notions. To simplify the assertions we consider any
[a,b]⊆ [−∞,+∞] and assume that all closed intervals [u,v]⊆ [a,b] are nonde-
generate (u<v). We shall always consider properties P of such intervals and
write “[u,v]∈P” if [u,v] satisfies the property P.

Definition 1. P is additive if [u,v]∈P ∧ [v,w]∈P =⇒ [u,w]∈P.
P is subtractive if ¬P is additive, i.e., [u,w]∈P =⇒ [u,v]∈P ∨ [v,w]∈P.

A useful alternative definition can be given with overlapping intervals (this
would not change the method).

Definition 2. P is local at x if there exists a neighborhood V (x) in which all
intervals [u,v] containing x satisfy P.
P has a limit point x if ¬P is not local at x, i.e., any neighborhood V (x)
contains an interval [u,v] containing x and satisfying P.
P is local if it is local at every point in [a,b]; P is global if [a,b]∈P.

From these definitions it is immediate to see that [lg]⇐⇒ [gl]. Interestingly,
many usual properties/objects can be identified as local/limit points. For
example, a function f is continuous iff for any ε>0, “|f(u)−f(v)|<ε” is local;
a sequence xk converges iff “xk∈ [u,v] for sufficiently large k” has a limit point.
We feel that local/global concepts are central in real analysis. Thus, taking
[lg] or [gl] as the fundamental axiom for the real numbers it becomes easy
and intuitive to prove all the other completeness properties, as well as all the
above mentionned basic theorems of real analysis. Due to lack of space we
provide only three exemplary proofs.

4Some textbooks also mention the possibility of “proving” the fundamental axiom by
first constructing the reals from the rationals—themselves constructed from the natural
numbers— the two most popular construction methods being Dedekind’s cuts and Cantor’s
fundamental sequences. While this approach is satisfactory for logical consistency, the
details are always tedious and not instructive for the student or for anyone using the real
numbers, since the way they can be constructed never influences the way they are used.

5Cousin’s [cousin], although proposed at the same time (1895) as Borel’s [bl], has
been largely overlooked since. It was only recently re-exhumed as a fundamental lemma
for deriving the gauge (Kurzweil-Henstock) integral (see e.g., [6]). [ind] is much more recent,
and in fact inspired from [lg] [4, 10].
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Proof of [bw]. Let A⊂ [a,b] be infinite: the property that “[u,v] contains
infinitely many points of A” is global, and evidently subtractive. By [gl], it
has a limit point, i.e., A has a limit (accumulation) point.

Proof of [bl]. Let be given a covering of [a,b] by open intervals: the property
that “[u,v] has a finite subcover” is local (with only one open interval), and
evidently additive. By [lg], it is global.

Proof of [ivt]. Let f : [a,b]→R be continuous and let y be lying between
f(a) and f(b): the property that y lies between f(u) and f(v) is global, and
evidently subtractive. By [gl], it has a limit point x, which by continuity of f
satisfies y=f(x).

The aim of this work is to draw attention to such local/global concepts in
order to reform teaching of real analysis at undergraduate and graduate levels.
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