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Abstract—We consider lower and upper bounds on the differ-
ence of differential entropies of a Gaussian random vector and
an almost Gaussian random vector after both are “smoothed” by
an arbitrarily distributed random vector of finite power. These
bounds are important to prove the optimality of corner points
in the capacity region of Gaussian interference channels. The
upper bound, presented in MaxEnt-2014, follows from the data
processing inequality (DPI). For the lower bound we consider
a class of almost Gaussian distributions and use the DPI and
a symmetry argument. We also show a counterexample that
disproves a conjecture we proposed in MaxEnt-2014 regarding a
certain difference of integrals.

I. INTRODUCTION

The bounding problem we consider is motivated by the
Gaussian interference channel. For simplification, we consider
the degraded Gaussian interference channel. This model is
shown in Fig. 1.

Fig. 1. Degraded Gaussian interference channel.

The channel outputs are given by Y1 = X1 + Z1 and
Y2 = X1 +X2 +Z1 +Z2, where X1 and X2 are independent
input signals constrained to have average powers P1 and P2,
respectively, and Z1 and Z2 are Gaussian noise variables with
variances equal to 1 and N2, respectively. The receivers are
interested in messages sent by their respective transmitters.
Thus X1 encodes a message addressed to receiver 1 and X2

sends a message to receiver 2.

II. PRELIMINARIES

The capacity of an additive white Gaussian noise chan-
nel Y = X + Z, with X constrained to power P and
Z distributed according to N (0, N), is well known to be

C = 1
2 log2(1 + P/N) bits per transmission, or bits per di-

mension.

The degraded interference channel of Fig. 1 has outputs
given by {

Y1 = X1 + Z1

Y2 = X1 +X2 + Z1 + Z2.
(1)

We denote vectors by boldface letters and scalar random
variables by capital Roman letters. H(·) is used to denote
Shannon’s entropy and h(·) denotes differential entropy. I(·;·)
denotes mutual information.

One of the corner points of the capacity region of this
channel is known as the Sato point. Its coordinates are

(R1, R2) = (1
2 log(1 + P1), 1

2 log(1 + P2

1+P1+N2
)),

the rate pair produced when transmitter 1 occupies the channel
at its maximum possible rate and transmitter 2 takes up
whatever is leftover, considering X1’s signal as noise [1].
Fig. 2 shows the two corner points in the achievable rate region

Fig. 2. Achievable rate region for the degraded Gaussian interference channel.

of the degraded Gaussian interference channel. The Sato point
is the star in the lower right. It is a point in the curved boundary
of the capacity region of the associated broadcast channel with
power P = P1 + P2, also graphed in Fig. 2.

The corner point in the other side of the achievable region
(the upper left star), known as the missing corner point [2],
is produced when transmitter 2 takes up the channel at its
maximum possible rate and requires that transmitter 1 do not



inflict a reduction in its rate (R2) by more than an infinitesimal
amount. The point coordinates are

(R1, R2) = (1
2 log(1 + P1

1+P2+N2
), 1

2 log(1 + P2

1+N2
)).

Thus R1 is the capacity of a Gaussian channel with signal
power P1 and noise power 1 + P2 + N2, and R2 is the
capacity of a channel with signal power P2 and noise power
1 +N2. To establish that this is a corner point in the capacity
region of the degraded channel we need to demonstrate that all
communication between X1 and Y1 will be fully decoded by
Y2 as well, even if this is not a requirement of the interference
channel model.

The difficulty in demonstrating this bound arises from a
lack of a Fano type inequality that requires the conditional
equivocation of X1 given Y2, H(X1|Y2), to be n times a
small number ε that goes to zero as the probability of error
of decoding X1 at Y2 goes to zero, with n being the code
length. This Fano type inequality does not exist because Y2 is
not required to decode X1 in the interference channel model.

To produce a Fano type inequality that leads to the desired
demonstration, we consider the difference between H(X1|Y2)
and H(X1|Y3), where Y3 is an auxiliary random vector
produced by the sum of X1 and an independent Gaussian noise
vector of covariance (1+N2+P2)I , I being the identity matrix.
This motivates the title of this paper. We need to bound the
difference in the equivocation of X1 when it is seen at Y2, a
signal that is produced by X1 added to the almost Gaussian
signal Z1 + Z2 + X2, and when it is seen at the output of
a channel with X1 as the input and additive white Gaussian
noise of power (1+N2 +P2). To simplify the model we let Y3

be given by Y3 = X1 + Z1 + Z2 + Z3, where Z3 is Gaussian
with variance P2.

Consider scalar variables for a moment. By the chain rule
we have

H(X1|Y2) = H(X1) + h(Y2|X1)− h(Y2)

= H(X1) + h(Z1 + Z2 +X2)− h(Y2)
(2)

and
H(X1|Y3) = H(X1) + h(Y3|X1)− h(Y3)

= H(X1) + h(Z1 + Z2 + Z3)− h(Y3).
(3)

Subtracting gives

H(X1|Y3)−H(X1|Y2) = h(Z1 + Z2 + Z3)

− h(Z1 + Z2 +X2) + h(Y2)− h(Y3). (4)

Since the Gaussian distribution maximizes entropy given
a power constraint, and from the hypothesis related to the
extreme point where R2 is maximal, we have that h(Z1 +Z2 +
Z3)− h(Z1 +Z2 +X2) is bounded below by zero and above
by a diminishing ε1 [3] (the almost Gaussian assumption).

Now we consider the vector version of (4). We have that

h(Y2)− h(Y3) ≤ H(X1|Y3)−H(X1|Y2)

≤ nε1 + h(Y2)− h(Y3)
(5)

It is clear that, to bound the difference of equivoca-
tions H(X1|Y3) − H(X1|Y2), we need to obtain upper
and lower bounds for the difference of differential entropies

h(Y3)−h(Y2). An earlier attempt to bound this difference [3,
Appendix B] resulted in a bound with a faster than linear de-
pendence on n, as noted in [4], which impaired the usefulness
of the bound.

In [5], we presented an upper bound based on the data
processing inequality (DPI) for h(Y3) − h(Y2), which is
repeated below for convenience.

III. UPPER BOUND

We obtain an upper bound on h(Y3) − h(Y2). Since
X2 needs to communicate with Y2, we have from Fano’s
inequality that H(X2|Y2) ≤ nε2, where ε2 goes to zero as the
probability of error disappears. As X1 and X2 are independent,
we observe that

I(X1;Y2) = I(X1;Y2|X2)− I(X1;X2|Y2)

≥ I(X1;Y2|X2)− nε2
= H(X1)−H(X1|X1 + Z1 + Z2)− nε2
= I(X1;X1 + Z1 + Z2)− nε2
≥ I(X1;Y3)− nε2, (6)

by the DPI. Equivalently,

h(Y3)− h(Y2) ≤ h(Y3|X1)− h(Y2|X1) + nε2
= h(Z1 + Z2 + Z3)

− h(Z1 + Z2 + X2) + nε2
≤ n(ε1 + ε2), (7)

by the almost Gaussian assumption.

IV. TOWARDS A LOWER BOUND

We now consider a lower bound for the difference h(Y3)−
h(Y2). Let f denote the probability density function of
Z1 + Z2 + X2, the almost Gaussian density, and let g denote
the Gaussian density of Z1 + Z2 + Z3. We assume that
the covariance matrices of f and g are identical and that
0 ≤ h(g)−h(f) ≤ nε1. We also write f = g+∆f , at this point
making no particular assumptions about ∆f . Then we can
expand the Kullback-Leibler (KL) divergence of f from g as
D(f‖g) = h(g)−h(f)+

∫
(g−f) log g = h(g)−h(f) ≤ nε1,

using the assumption of equal covariance matrices.

Now we assume that X1 has density p, arbitrary except
for the finite power, and consider the effect of smoothing f
and g by the addition of X1. Strictly, X1 may not have a
density as it is typically drawn from a finite set of codewords
(a “porcupine” distribution). We assume the existence of p
for ease of notation since Gaussian smoothing guarantees the
existence of all considered probability densities. We denote the
convolution of g and p by g ∗ p. By the DPI we have that

0 ≤ D(f ∗ p‖g ∗ p) ≤ D(f‖g) ≤ nε1. (8)

Expanding as before we get

0 ≤ h(g ∗ p)− h(f ∗ p) +

∫
(g ∗ p− (g + ∆f) ∗ p) log(g ∗ p)

≤ nε1, (9)

or

0 ≤ h(g ∗ p)− h(f ∗ p)−
∫

(∆f ∗ p) log(g ∗ p) ≤ nε1. (10)



Equivalently,

0 ≤ h(Y3)− h(Y2)−
∫

(∆f ∗ p) log(g ∗ p) ≤ nε1. (11)

This inequality is key to getting the desired lower bound.
In [5], in order to establish the lower bound, we conjectured
that the positive integral given by D(f‖g) + D(g‖f) =∫

(f − g) log f would maintain its sign after smoothing by p.
This conjecture turns out to be false and we present a counter-
example in the Appendix.

V. LOWER BOUND FOR A CLASS OF DISTRIBUTIONS f

To establish the required lower bound, we can map the
loci of authorized points for the quantities h(Y3) − h(Y2)
and −

∫
(∆f ∗p) log(g ∗p) in a graph, as shown in Fig. 3. The

valid points are laid on a diagonal strip of width nε1 and the
upper bound on h(Y3) − h(Y2) further restricts the allowed
values to the left of the n(ε1 + ε2) mark in the horizontal axis.

Fig.3 
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Fig. 3. Region of possible values for h(Y3) − h(Y2) and −
∫

(∆f ∗
p) log(g ∗ p).

We now look at the characteristics of the deviation function
∆f . Notice that

∫
∆f =

∫
x∆f =

∫
‖x‖2∆f = 0, as the

first order moments of f and g are identical1. It is known
that D(f‖g) = 0 if and only if f = g almost everywhere.
The smoothing produced by the additive Gaussian noise takes
care of excluding problematic convergence behavior. Since
D(f‖g) =

∫
(f − g) ≤ nε1, we assume that ∆f will converge

pointwisely to 0 as n → ∞ and ε1 → 0. Thus we consider
the class of densities f = g + ∆f for which |∆f | � g.
Because of the assumption that ∆f converges to 0, we argue
that this condition will be prevalent among all qualifying
distributions f . Considering this class of distributions, we note
that the capacities of the channel from X2 to Y2 (with X1 = 0)
induced by distributions f + ∆f and f −∆f are the same, up
to second order terms. This can be seen by expanding

0 ≤ h(g)− h(g + ∆f)

= −
∫
g log g +

∫
(g + ∆f) log(g + ∆f)

=

∫
g log

g + ∆f

g
+

∫
∆f log

g + ∆f

g
,

(12)

1We assume, without loss of generality, that EX2 = EZ3 = 0.

where we used the fact that
∫

∆f log g =
∫
‖x‖2∆f = 0. For

∆f � g we can use Taylor series expansion to obtain

h(g)− h(g + ∆f) =

∫
∆f − (∆f)2

2g + (∆f)2

g + o( (∆f)2

g )

=

∫
(∆f)2

2g + o( (∆f)2

g ) ≤ nε1. (13)

Similarly we have

0 ≤ h(g)− h(g −∆f) =

∫
(∆f)2

2g + o( (∆f)2

g ) ≤ nε1. (14)

To visualize the fact that f + ∆f and f −∆f induce the
same achievable rates, we can imagine a hypersphere of radius√
n(1 +N2 + P2). The typical set of the X2 codewords plus

the Gaussian noise will be in the shell of this hypersphere
with positive deviations from g at positions that are related to
codeword locations in the

√
nP2-radius codebook hypersphere.

So changing f + ∆f to f −∆f is similar to replacing crests
by troughs in the bumpy hyperspherical shell, which amounts
to a simple rotation in the X2 codebook.

We now note that any valid bound for functions of ∆f
will also imply a symmetric bound corresponding to −∆f
as these two deviation functions from g are equally able to
produce achievable rates. Considering that the vertical ordinate
−
∫

(∆f ∗p) log(g∗p) depends of f only through ∆f , we can,
by symmetry, further limit the authorized points in the plane
to those lying below the n(ε1 + ε2) mark in the vertical axis.
Finally we observe that the authorized region for the points is
situated in the square box of sides 2n(ε1 + ε2) centered at the
origin, as depicted in Fig. 4. Thus we have the desired lower
bound on h(Y3)− h(Y2).

Fig. 4 
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Fig. 4. Bounded supports for horizontal and vertical ordinates.

These arguments are good indication that we can indeed
limit the support of h(Y3) − h(Y2) to a vanishing interval
around the origin. This is valid for the class of distributions
f = g + ∆f for which ∆f � g, that is, close to the limit as
f → g, but with no restrictions on the interfering distribution
p of X1.

VI. CONCLUSION

In this paper we investigate upper and lower bounds for
a difference of differential entropies that arise in the study of
Gaussian interference channels. The upper bound follows from
the DPI and was presented earlier in [5]. The lower bound



is established for a class of distributions f such that, for high
values of n, the deviation ∆f from g is negligible. The argued
bounds on the difference of differential entropies lead to upper
and lower bounds on H(X1|Y3)−H(X1|Y2). This provides a
Fano type inequality that allows us to apply the lower bound on
equivocation given in [3, Appendix C] to establish the validity
of the second corner point of the Z-Gaussian interference
channel. This lower bound on equivocation is a consequence
of the concavity of the entropy power with increasing Gaussian
smoothing. As in [3], this result can be extended to the corner
points in the standard Gaussian interference channel with less
than strong interference, i.e., with interference gains in the
interval (0, 1).

In conclusion, we make reference to two recent pa-
pers [6], [7] that also address this intriguing limiting problem.

APPENDIX

A. THE SIGN OF
∫

(f ∗ p− g ∗ p) log(f ∗ p)
In our MaxEnt paper [5], we conjectured that the positive
integral given by D(f‖g) + D(g‖f) =

∫
(f − g) log f ≥ 0

would maintain its sign after smoothing by p. This conjecture
turns out to be false and we present below a counter-example
in one dimension (n = 1) in which

∫
(f ∗ p− g ∗ p) log(f ∗ p)

assumes negative values.

We use the Hermite coordinate system described in [8].
Let f = (1 + εH)gP and p = (1 + εH ′)gQ, where gP
and gQ denote zero-mean Gaussian densities of variances
P and Q, respectively. Here H and H ′ are polynomials of
even degree, expressed as sums of Hermite polynomials of
order ≥ 3 in the corresponding Hilbert space L2(gP ) and
L2(gQ), respectively. Because of the degrees are even, the
quantity ε can be set to some small positive value such that
both f and p are non negative. Also, since H and H ′ are
orthogonal to polynomials of degree ≤ 2 in their corresponding
Hilbert spaces, f and p share the same moments up to second
order as gP and gQ, respectively. Thus

∫
f =

∫
p = 1,∫

xf(x) dx =
∫
xp(x) dx = 0, and

∫
x2f(x) dx = P ,∫

x2p(x) dx = Q.

We now compute f ∗p and g ∗p using an extended version
of [8, Theorem 2] which is stated in the last section of [8].
For completeness we provide a short proof in the next section
of this Appendix. One obtains

f ∗ p = (1 + εH̃ + εH̃ ′ + ε2H ′′)gP+Q,

g ∗ p = (1 + εH̃ ′)gP+Q,
(15)

for appropriately computed polynomial terms H̃ , H̃ ′ and H ′′.
Expanding to second-order terms, this leads to∫

(f ∗ p− g ∗ p) log(f ∗ p) = ε2
(
‖H̃‖2 + 〈H̃ | H̃ ′〉

)
+ o(ε2),

(16)
with norm and inner product defined in L2(gP+Q). This
quantity can be negative because the inner product can be
sufficiently negative to more than cancel the squared norm of
H̃ . Consider, for example, P = Q = 1, and H = H3 + δH4

and H ′ = −2H3 +δH4, where δ equals some arbitrarily small
positive value (intended to yield even degree polynomials [8])
and H3 and H4 are Hermite polynomials of degrees 3 and
4, respectively. Then a simple calculation yields ‖H̃‖2 +

〈H̃ | H̃ ′〉 = 122−3 + δ22−4 − 2 · 2−3 + δ22−4 = (−1 + δ2)/8
which is negative. This disproves our conjecture regarding the
sign of

∫
(f ∗ p− g ∗ p) log(f ∗ p).

B. A SHORT PROOF OF THE EXTENDED THEOREM 2 IN [8]

Theorem 1. Let HP
k (x) = 1√

k!
Hk

(
x/
√
P
)
, k ∈ N, be the

Hermite orthonormal basis of L2(gP ) as defined in [8]. Then

(HP
k ·gP )∗(HQ

l ·gQ) =

√(
k + l

k

)
P kQl

(P +Q)k+l
·HP+Q

k+l ·gP+Q.

(17)

Proof: By the definition of the Hermite polynomial,
the kth order derivative of gP is given by g

(k)
P =

(−1)k
( √

k!
Pk/2

)
HP

k · gP where the constant term is due to the
normalization in the definition of HP

k . Using this definition
and the well-known relation gP ∗ gQ = gP+Q, we obtain

HP
k ·gP ∗H

Q
l ·gQ = (−1)k+lP

k/2Ql/2

√
k!l!

g
(k)
P ∗ g(l)

Q

= (−1)k+lP
k/2Ql/2

√
k!l!

g
(k+l)
P+Q

=
P k/2Ql/2

√
k!l!

√
(k + l)!

(P +Q)(k+l)/2
HP+Q

k+l gP+Q
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