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Motivation & State-of-the Art \
Take home message!

B As the threat of side-channel attacks is well known,

countermeasures are used for protection B \What is the optimal generic distinguisher?

B For example: Weakening the link between the measured B By applying the maximum likelihood principle, we
leakage X and the sensitive variable y derive the optimal generic distinguisher

B Generic distinguisher cope with this scenario B \When the leakage has been quantified and
- Mutual Information Analysis (MIA) [1] probabilities are estimated from histograms, the

optimal distinguisher’s expression turns out to

- Kolmogorov-Smirnov distance (KSA) [2
: ( ) 1] coincide with the mutual information analysis

- [3]....
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Universal Maximum Likelihood Equivalent to MIA

Notations & Assumptions

B From the Maximum Likelihood it is known that maximizing the success rate

®m \alues are quantized (discrete leakage) amounts to select the key guess L that maximizes
. .
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22i=1 Lyi=y P(y) m |n practice if no profiling is possible the conditional distribution is unknown
m Therefore, we need a universal version (computed from the available data
Z Lo, =2,y,=y without prior information)
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P(x) = — Z [P m Universal Maximum Likelihood is equivalent to mutual information analysis
m 1=1
m Empirical Mutual Information k = arg ml?X I[(x,y)
0 IP)(.CIZ‘, y) : : :
> P(z,y)logy —— MIA is the optimal tool for key recovery when the model is unknown.
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Proof sketch Empirical Future Work

Denoting ., =S 1. _. . _ =mP _ . . .
9 ng,y Z i=eyi=y = M P(z,y) B Experiments showing empirically the optimality of Mutual

Information
X‘Y H P $z|yz) — H P(m\y)n‘”y B Especially, in comparison to Linear Regression Analysis [4]
reX,yey

Paxly) = J[ Blafy)™ ) =27

reX,yey

1
where H (x|y) = Z P(x,y log2
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