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Abstract
Whether Fitts’ law, a well-known model of human pointing movement, is a logarithmic
law or a power law has remained unclear so far. In two widely cited papers, Meyer et
al. have claimed that the power model they derived from their celebrated stochastic
optimized-submovement theory encompasses the logarithmic model as a limiting
case. We show that Meyer et al.’s theory implies in fact a quasi-logarithmic, rather
than quasi-power model, the two models being not equivalent.
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1 Introduction
Fitts’ law [1,2] is a well-known empirical regularity which predicts the average
time T it takes people, under time pressure, to reach with some pointer a target
of width W located at distance D (Fig. 1). The law states that movement
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Fig. 1. One-dimensional single-shot movement paradigm settled by Fitts [2]. Starting
at origin o, one moves towards the center c of the target as fast as possible.

time T = a + b · ID is linearly dependent (with adjustable constants a and
b > 0) on an index of difficulty [1] ID = f(D/W ), which in turn is a strictly
increasing function f of relative distance D/W . Many different formulations
have been proposed for f in the literature, none of which have been empirically
disproved. Perhaps the most favorably received are:
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Meyer et al. (1988)[6] (1c)
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Meyer et al. (1990)[7] 2 (1d)

In particular, whether Fitts’ law is a logarithmic (1a)–(1b) or a power law (1c)–
(1d) has remained unclear so far. One plausible explanation is that the
practical range of relative distances D/W that can be actually investigated in
the laboratory is rather narrow [4]:

3 � D
W

� 33. (2)

For D/W � 3 experimenters have a floor effect on T (speed saturation) while
for D/W � 33 the error rate tends to explode (accuracy saturation). Within
the range (3, 33), the curves (1a)–(1d) are indeed similar (see Fig. 2), making
it difficult to decide empirically between the logarithmic and the power model.
A Fitts’ law formula being a conceptual model, not just a tool for the numerical
2 Here n is an integer representing the maximum ‘number of submovements’, and (1c)
corresponds to n = 2.

O. Rioul, Y. Guiard / Electronic Notes in Discrete Mathematics 42 (2013) 65–7266



0 5 10 15 20 25 30 35

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

D/W

M
o

v
e

m
e

n
t 

T
im

e
 T

Fitts

McKenzie

Meyer et al n=2

Meyer et al. n=3

Fig. 2. Movement time T vs. D/W for the four formulations of (1) in the range (2).
Eq. (1c) yields a square-root law while Eq. (1d) is plotted with n = 3 (cube-root
law).

simulation of empirical data, such an irresolution about the exact mathematical
form of Fitts’ law is problematic.

In two widely cited papers [6,7], Meyer et al. argued that a+ b · (D/W )1/n

tends to a′ + b′ · log(D/W ) as the maximum number n of submovements tends
to infinity. This suggests that there is no real logarithmic vs. power issue about
Fitts’ law: the power model they derived from their celebrated stochastic
optimized-submovement theory would encompass the logarithmic model as a
limiting case. We show, however, that Meyer et al.’s theory does not predict a
genuine power law but rather some quasi-logarithmic law, the two classes of
candidate mathematical descriptions of Fitts’ law being not equivalent.

2 A Disproof

2.1 Meyer et al.’s [6] Stochastic Optimized-Submovement (SOSM) Theory

This theory assumes a sequence of n submovements toward the target, and a
random spread of submovement endpoints. The authors follow Woodworth’s
1899 suggestion [10] that the movement involves n = 2 successive phases: There
is an initial ‘ballistic’ submovement whose endpoint spread is proportional to
velocity, and whose duration is given by Ti = D/W−1/2

s
where s is some spread

parameter 3. The resulting distance Δ to target center is modeled by a random
variable (following, e.g., a Gaussian distribution), whose standard deviation
is proportional to s. Next, if the target is not reached yet (|Δ| > W/2), a

3 Following [8], a term 1/2 is introduced so that T = 0 when the origin already lies in the
target.
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secondary submovement occurs. The total average time (within a constant
multiplicative factor) is the sum:

T = min
s

{
D/W − 1/2

s
+ E|Δ|>W/2

( |Δ|
W

)}
(3)

where the expectation E is with respect to Δ’s distribution over the region
|Δ| > W/2. The optimization takes the form of a minimization over s, the
only free variable left [6, Appendix]. Meyer et al. found a closed-form solution
that can be closely approximated by a square-root law of the form (1c).

2.2 Meyer et al.’s Claim [6,7] for Multiple Submovements

Meyer et al. stated that for n submovements, their model yields a solution that
can likewise be approximated by a nth root law of the form (1d). The claim is
now as follows (see Fig. 3): “Mathematically, log2(D/W ) is equivalent to the
limiting case of a power function (D/W )x of D/W whose positive exponent x
tends to zero” [6, Footnote 13].

� � �� �� �� �� �� ��

��

�

�

�

�

�

�

	


��



�

�
�

�
�

�
��

�
��

�
��

���

���

���

����������

Fig. 3. A remake of Meyer et al.’s original Fig. 6.13 [7] giving their hypothetical
T vs. D/W . They claim that as n grows large, their power relation “approaches a
logarithmic function, paralleling Fitts’ Law”[7].

Meyer et al.’s widely cited papers [6,7] have convinced the Fitts’ law research
community that their power law encompasses the logarithmic law as an extreme
case n =∞: see e.g. [9, Eq. (18)] for a recent account. It turns out, however,
that the above claim is mathematically questionable. When the exponent
x = 1/n tends to zero, n

√
D/W = (D/W )1/n = exp

(
1
n

loge(D/W )
)

has first
order approximation 1 + 1

n
loge(D/W ) but tends to exp 0 = 1 as n → +∞.

Hence the limit is a ‘constant law’, which is not even a strictly increasing
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function of D/W and is, therefore, inadequate as a model for Fitts’ law, as
noticed by one of us [3, Section 4 (footnote)].

Since we took (1d) for granted, our disproof raises the question of the actual
validity of the power law. Also, since a square-root or cube-root function is
certainly not constant, it makes the dependence on n questionable. In the next
section, we attempt to solve these problems.

3 Detailed Analysis for n Submovements

We now review the submovement theory of Meyer et al. for multiple submove-
ments [7,8] to explain analytically why the nth-root model model fails.

3.1 Derivation

Let T = fn(D/W ) be the average movement time required to reach the target
after n submovements. After the initial ‘ballistic’ submovement, there remain
n− 1 submovements to reach the target located at random distance |Δ|. The
SOSM model (3) then predicts:

fn

(
D

W

)
= min

s

{
D/W − 1/2

s
+ E|Δ|>W/2fn−1

( |Δ|
W

)}
(4)

for any n > 1. To simplify the notation let δ denote any value of D/W and
let t denote any time value. To simplify the calculations we follow Smith’s [8]
assumption that Δ’s distribution is uniform in the interval (−Ws/2,Ws/2) 4 :

fn(δ) = min
s

{
δ − 1/2
s

+ 2
s

∫ s/2
1/2
fn−1(δ)dδ

}
(5)

Note that the factor 2 accounts for undershoots as well as overshoots. It is
easily seen by induction that fn is well defined, regular (indefinitely continously
differentiable) and strictly increasing in the range δ > 1/2. We can, therefore,
define its inverse function δ = gn(t). It turns out [8] that the determination of
relative distance vs. time (that is, of gn) is easier than the direct determination
of fn, that is, of time vs. relative distance as in the classical formulation of
Fitts’ law.

We now derive a simple proof leading to Smith’s solution to (5). Making
the first derivative of (5) vanish, the optimal s = s(δ) satisfies − δ−1/2

s2 −
4 Calculations run similarly for other distributions (e.g., Gaussian), with just more intricate
results.
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2
s2
∫ s/2

1/2 fn−1(δ) dδ + 1
s
fn−1( s2) = 0, which boils down to the condition

fn(δ) = fn−1(s/2). (6)

Now, by inverting arguments according to δ = gn(t), (5) can be rewritten as

t = gn(t)− 1/2
s

+ 2
s

∫ gn−1(t)

gn−1(0)
fn−1(δ)dδ (7)

t = gn(t)− 1/2
s

+ 2
s

(s
2 · t−

∫ t
0
gn−1(τ)dτ

)
(8)

where we have used (6) in the form gn−1(t) = s/2 in (7) and the inverse function
integration theorem in (8). After subtracting t on both sides of (8) we end up
with a simple recursion relation which is easily solved by induction. One finds:

gn(t) = 1
2 + 2

∫ t
0
gn−1(τ)dτ = En(2t)2 , (9)

where
En(t) = 1 + t+ t

2

2! + · · ·+ t
n

n! (10)

denotes the nth partial sum of the Taylor series of the exponential exp(t).
Letting Ln = E−1

n its inverse function, one arrives at the following law:

T = 1
2Ln
(
2D
W

)
. (11)

3.2 Quasi-Power vs. Quasi-Exponential Laws

In our derivation, the case |Δ| < W/2 (target is reached) implies a total number
of submovements strictly less than n. Therefore, n appears as the maximum
number of permitted submovements and it would be desirable to let n→ +∞
to obtain a general formulation of Fitts’ law accounting for any number of
multiple submovements.

Similarly to the case n = 2 [6], one could argue that when D/W is
large (hence T is large) (10) can be approximated by its highest-degree term:
D
W

= 1
2En(2T ) ≈ 1

2
(2T )n
n! so that (11) is indeed approximated by an nth root

law:
T = 1

2
n

√
n!D
W
. (12)

However, this is not a genuine power model since as n→ +∞, the multiplying
slope factor explodes: n

√
n! ∼ n/e → +∞ (see Fig. 4 (a)). In contrast, as

Smith noticed [8], for any value of D/W (including small ones), the partial
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sum (10) rapidly converges to the exponential as n→ +∞: D
W

= 1
2En(2T ) −→

1
2 exp(2T ), and so the final result is logarithmic (see Fig. 4 (b)):

T = 1
2 loge

(
2D
W

)
. (13)
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Fig. 4. (a) Approximated nth-root laws (12) for increasing values of n. (b) Exact
laws (11) rapidly converging to the logarithmic law (13) as n→∞.

4 Conclusion

Not only does the power model fail to encompass the logarithmic model
for multiple submovements, but the SOSM theory yields a quasi-logarithmic
law (11) which rapidly converges, not on a genuine power law of the form (1d),
but rather on a logarithmic law of the form (1a) or (13)—reminiscent of
Fitts’ original formulation. Meyer et al.’s SOSM theory [6,7] being admittedly
the best explanation of Fitts’ law to date, and the two classes of candidate
mathematical descriptions of Fitts’ law being not equivalent, we believe our
finding may usefully stimulate experimental research on the subject.
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