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Fitts’ Law

A model of human pointing movement in HCI

One-dimensional single-shot movement paradigm

T time required to rapidly move to a target interval
D distance to the target
W size of the target

•
o c

D
W
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Fitts’ Law

•
o c

D
W

Mathematical formulation

• T is linearly dependent on an index of difficulty ID :

T = a + b · ID

• ID is a strictly increasing function of D
W :

ID =






log2
2D
W Fitts (1954)

log2
D
W Crossman (1956)

log2
(
1 + D

W
)

McKenzie (1992)√
D
W Meyer et al. (1988)

( D
W

)1/n Meyer et al. (1990)3/22
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Practical range of relative distances is narrow (Guiard et al., in press) :

(speed saturation) 3 ! D
W

! 33 (accuracy saturation)

ID =






log2
D
W

log2
(
1 + D

W
)

√
D
W( D

W
)1/n
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“A failure to agree for 50 years is public advertisement of
a failure to disprove” Platt (1964, Strong inference, p. 351)
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Mathematical Derivation of Fitts’ Law

Assuming a sequence of n submovements toward the target

Deterministic Iterative-Corrections Model
Crossman & Goodeve (1963)

• each submovement requires a constant time ∆T
• and moves a constant proportion λ < 1 of the remaining

distance
T = n ∆T s.t. λnD = W/2

so T = a + b log2
D
W .
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Mathematical Derivation of Fitts’ Law

Stochastic Optimized-Submovement Model

Meyer et al. (1988,1990)

• random submovement endpoint ∆ (Gaussian r.v.)
• n = 2 (Woodworth, 1899)
• initial ballistic submovement Ti = D

W·s
where dispersion parameter s ∝ σ∆

• if |∆| > W/2, secondary submovement, averaged over ∆

T = min
s

{
Ti + E|∆|>W/2(

|∆|
W )

}

• Result (approx.) :

T ∝
2θ
√

D/W−
√

W/D
θ
√

θ −W/D
where θ ∝ exp

1
2(θD/W− 1)

T = a + b
√

D
W
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Meyer et al.’s Claim

for n = 2 :

T = a + b
√

D
W

for any n :

T = an + bn
n

√
D
W

let n → +∞ :

T = a′ + b′ ln
( D

W
)

Conclusion : The power law encompasses the logarithmic law.
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Meyer et al.’s Claim is False

Proof
As n → +∞ (Guiard et al., 2001)

n

√
D
W

= exp
ln D

W
n

→ 1

So if there exists sequences (an, bn) s.t.

T = an + bn
n

√
D
W
→ a′ + b′ ln

( D
W

)

then b′ = 0 (contradiction) Q.E.D.

Question

Validity of the power law T = an + bn
n
√

D
W ?
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Detailed Calculation

Let T = fn(D/W) after n submovements. Then by the stochastic
optimized-submovement model, for any n > 1 :

fn(D/W) = min
s

{ D/W−1/2
s︸ ︷︷ ︸

Ti

+E|∆|>W/2
(
fn−1(

|∆|
W )

)}

To simplify, let ∆ be uniformly distributed in (−Ws
2 , Ws

2 ) (Smith,
1988)

fn(y) = min
s

{ y−1/2
s +

2
s

∫ s/2

1/2
fn−1(x)dx

}

By induction fn vanishes at y = 1/2 and is strictly increasing and
regular for y > 1/2.
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Detailed Calculation (cont’d)

Making the first derivative vanish, when s = s(y) is optimal :

0 = − y−1/2
s2 − 2

s2

∫ s/2

1/2
fn−1(x) +

1
s

fn−1( s
2 ) ⇐⇒ fn(y) = fn−1( s

2 )

so letting y = gn(t) denote the inverse function of t = fn(y) :

fn(y) = y−1/2
s +

2
s

∫ s/2

1/2
fn−1(x)dx

t = gn(t)−1/2
s +

2
s

∫ gn−1(t)

gn−1(0)
fn−1(x)dx

t = gn(t)−1/2
s +

2
s
( s

2
· t−

∫ t

0
gn−1(u)du

)

t

x

0

1/2

s/2

u

by the inverse function integration theorem.
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Detailed Calculation (cont’d and ending)

One obtains the relative distance y = D
W = gn(t) as a function of

time t :

gn(t) =
1
2

+ 2
∫ t

0
gn−1(u)du

=
1
2

+
1
2
(2t) +

1
2

(2t)2

2
+ · · · + 1

2
(2t)n

n!
by induction

Therefore, T is the root of the nth order equation
D
W

=
1
2

en(2T)

where en(x) = 1 + x +
x2

2!
+ · · · + xn

n!
is the nth order truncated

exponential. That is,

T =
1
2

ln
(
2

D
W

)

where ln = e−1
n is the inverse function of en.
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Examples (closed form expressions)

n = 2 quasi square root law (Meyer et al., 1988)

l2(x) =
√

2x− 1− 1 T =
√

D
W
− 1

4
− 1

2
n = 3 quasi cube root law

l3(x) =
3
√

3x +
√

9x2 − 6x + 2− 1− 1
3
√

3x +
√

9x2 − 6x + 2− 1
− 1.

T =
1
2

3

√

6
D
W

+
√

36(
D
W

)2 − 12
D
W

+ 2− 1− 1

2 3

√
6 D

W +
√

36( D
W )2 − 12 D

W + 2− 1
− 1

2
.

n = 4
l4(x) =

1

2

√√√√√√√√√√√√√

16(2x−1)
3
√

192x+32
√

32x3−12x2+12x−3−32
− 3

√
192x + 32

√
32x3 − 12x2 + 12x− 3− 32

− 16√√√√√−
32x− 3

√
(192x+32

√
32x3−12x2+12x−3−32)2+4

3
√

192x+32
√

32x3−12x2+12x−3−32−16
3
√

192x+32
√

32x3−12x2+12x−3−32

− 8

+
1

2

√√√√√−
32x− 3

√
(192x+32

√
32x3−12x2+12x−3−32)2+4

3
√

192x+32
√

32x3−12x2+12x−3−32−16
3
√

192x+32
√

32x3−12x2+12x−3−32

− 1
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A Power Law ?

Meyer et al. would argue that when D
W is large (when T is large),

D
W

=
1
2

en(2T) ≈ 1
2

(2T)n

n!

so that we obtain a nth root (power) law :

T =
1
2

n

√
n!

D
W

However, this is not a genuine power model since as n → +∞,

n√n! ∼ n
e
→ +∞!
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A Power Law ?
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A Quasi Exponential Law

Rather, as n → +∞,

D
W

=
1
2

en(2T) → 1
2

exp(2T)

and we end up with a logarithmic law :

T =
1
2

ln
(
2

D
W

)
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A Quasi Exponential Law
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Open Issues

• robustness to endpoint ∆’s distribution (uniform vs.
Gaussian)

• sensitivity to the number n of submovements
• a submovement theory that is well adapted to information

theoretic principles (channels with feedback)
• an experimental method to determine which fits best (non

linear regression)
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Thank you

Comments & Questions
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