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Fitts” Law

A model of human pointing movement in HCI

One-dimensional single-shot movement paradigm

T time required to rapidly move to a target interval
D distance to the target
W size of the target

[ Yo
"ﬁ

2/22

Fitts” Law
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Mathematical formulation
¢ T is linearly dependent on an index of difficulty ID :
T=a+b-ID

e ID is a strictly increasing function of VQ\/ :

(log, 2D Fitts (1954)
log, % Crossman (1956)
ID = {log,(1+ &) McKenzie (1992)
\/g Meyer et al. (1988)
3/22 \ (%)1/” Meyer et al. (1990)
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Practical range of relative distances is narrow (Guiard et al., in press) : v
Fitts’ Law
O. Rioul &
D Y. Guiard
i < — < I
(speed saturation) 3 S W 33 (accuracy saturation) .

log, a0
log, (1+ &) e

D 3.0:
W J

B

ID =

“A failure to agree for 50 years is public advertisement of
a failure to disprove” Platt (1964, Strong inference, p. 351)
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Assuming a sequence of n submovements toward the target

Deterministic Iterative-Corrections Model Submovements

Crossman & Goodeve (1963)
e each submovement requires a constant time AT

e and moves a constant proportion A < 1 of the remaining
distance
T =nAT s.t. AMD =W/2

soT =a+blog, %.
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Mathematical Derivation of Fitts” Law TELECOM

e i)
Power vs.
Stochastic Optimized-Submovement Model Logartmi
Mevyer et al. (1988,1990) Y Guera
e random submovement endpoint A (Gaussian r.v.)
e n = 2 (Woodworth, 1899) S
e initial ballistic submovement T; = %
where dispersion parameter s o oy
e if |A| > W/2, secondary submovement, averaged over A
: A
T= mSm{Ti + Emy>wm(%)}
e Result (approx.) :
T 2 AT where 0 o ex !
0v/0 —W/D Po@D/w—1)
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Meyer et al.’s Claim TELECON
e il
forn=2: — Fie Law
O. Rioul &
D 5 Y. Guiard
T — by/— g
a—+ W §
forany n: § False claim
D 3
= but/— N
an + bp W g
letn — 4o0: )

D o
T — a/ + b, ln ( R ) FIG. 6.13. Hypothetical average total movement durations (7) versus the

target distance-width ratio, D/W. (The solid curves show predictions made
by the optimized multiple-subrmovement model as a function of the max-
imum submovement number, n. In each case for which n has a finite value,
the predicted relation is a quasi power function whose exponent equals
1/n. As n grows larger, this relation approaches a logarithmic function,
paralleling Fitts” Law.)

Conclusion : The power law encompasses the logarithmic law.
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Meyer et al.’s Claim is False
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Proof Fi?ts’ Law
O. Rioul &
Asn — +oo (Guiard et al., 2001) Y- Guiard
7| D In I/%
W - eXp n - 1 False claim
So if there exists sequences (ay, b,) s.t.
—an—l—b\/ —a' 4+ V' In( )
then b’ = 0 (contradiction) Q.E.D
Question
Validity of the power law T =a, + b
10/22
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Let T = f,(D/W) after n submovements. Then by the stochastic ¥ Guiara
optimized-submovement model, for any n > 1

fo(D/W) = min{ PVZV2 gy (o (1))
T;

Details

_ Ws

To simplify, let A be uniformly distributed in (—%°, %¥¢) (Smith,
1988)

fp) =min{22 + 2 [V fw)a)

By induction f, vanishes at y = 1/2 and is strictly increasing and
regular fory > 1/2.
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Detailed Calculation (cont’d)

Making the first derivative vanish, when s = s(y) is optimal :

y-1/2 2 [*
s2 J1/2

0=

/2

so letting y = g,(t) denote the inverse function of t = f,,(y) :

) =22 2 [ e

S

_ 2

f— gn(t)s 1/2 4+
s

_ 2

;— gn(t)s 1/2 4 °
S

S 1/2 X

/gn—l(t)f ( )d s/2
n—1(x)dx
8n—1 (O) !

(; .t—/otgn_l(u)du) )

172

ft @)+ S (3) = fult) =foa(3)

0 t

by the inverse function integration theorem.
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Detailed Calculation (cont’d and ending)

One obtains the relative distance y = % = ¢n(t) as a function of

time t:

1 t
gnlt) = 5+2 | gu1()du

1 1

=42+ 5+ +

2 2

1 (2t)?

1 . :
) 5 by induction

D 1
Therefore, T is the root of the nth order equation W = 5¢n (2T)

2 n
where e, (x) =1+ x+ % “Feocsds % is the nth order truncated
exponential. That is,
1 D

where |, = ¢,
14/22

is the inverse function of e;,.
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Examples (closed form expressions)
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m A
n = 2 quasi square root law (Meyer et al., 1988) o
Fitts’ Law
D 1 1 0. Rioul
h()=vax—1-1 T=4/m-7-3 Y Guard
n = 3 quasi cube root law
1
lg(x):€/3x+\/9x2—6x+2—1— 5 -1
V3x+ Vo2 —6x+2—1 .
1 D D D 1 1
T=_{ 6+\/36()2—12—|—2—1—
2V W W 4% 3w 5 =
268 +/36(R)2—128 +2-1
n=4
lg(x) L
. 1o(2x—1) Yo+ 2v323 122 11232
V192x+321/32:3 ~ 122 +12x—3-32
2 o -8
32— %/(192x+32\/ 32x3 —12x2 +12x—3-32)2 +4 %/192x+32\/32x3—12x2 +12x—3-32-16
Y 1920432v/323 122 4120332
+ ! ~1
5 |32 ?\’/(192x+32\/32x3712x2 +12x—3-32)2+4 %/192x+32\/32x3712x2 +12x—3-32-16
15/22 %/192x+32\/ 32x3 —12x2 +12x—3-32
A Power Law ? Lo
e i
Power vs.
Logarithmic
Fitts’ Law
D . . .
Meyer et al. would argue that when (3 is large (when T is large), i
D _ 1 om LD
— = —p ~ —
w2 2 n!

so that we obtain a nth root (power) law :

1./ D
T=-{n"
2Vt w

However, this is not a genuine power model since as n — +oo,

n
V! ~ — — +oo!
e

Details
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A Power Law ?
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A Quasi Exponential Law

Rather, as n — +oo,

D 1 1
W = ien(ZT) — E eXp(ZT)

and we end up with a logarithmic law :

1 D
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A Quasi Exponential Law

Quasi Exponential laws
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n=2
— n=3
— n=4

n=5
— n=6
n=infinite
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Open Issues
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e robustness to endpoint A’s distribution (uniform vs.

Gaussian)

e sensitivity to the number n of submovements

Open Issues

¢ a submovement theory that is well adapted to information
theoretic principles (channels with feedback)

¢ an experimental method to determine which fits best (non
linear regression)
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Open Issues

Comments & Questions
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