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Abstract—While most useful information theoretic inequalities
can be deduced from the basic properties of entropy or mutual in-
formation, up to now Shannon’s entropy power inequality (EPI)
is an exception: Existing information theoretic proofs of the EPI
hinge on representations of differential entropy using either Fisher
information or minimum mean-square error (MMSE), which are
derived from de Bruijn’s identity. In this paper, we first present an
unified view of these proofs, showing that they share two essential
ingredients: 1) a data processing argument applied to a covariance-
preserving linear transformation; 2) an integration over a path of
a continuous Gaussian perturbation. Using these ingredients, we
develop a new and brief proof of the EPI through a mutual infor-
mation inequality, which replaces Stam and Blachman’s Fisher in-
formation inequality (FII) and an inequality for MMSE by Guo,
Shamai, and Verdu used in earlier proofs. The result has the advan-
tage of being very simple in that it relies only on the basic proper-
ties of mutual information. These ideas are then generalized to var-
ious extended versions of the EPI: Zamir and Feder’s generalized
EPI for linear transformations of the random variables, Takano
and Johnson’s EPI for dependent variables, Liu and Viswanath’s
covariance-constrained EPI, and Costa’s concavity inequality for
the entropy power.

Index Terms—Data processing inequality, de Bruijn’s identity,
differential entropy, divergence, entropy power inequality (EPI),
Fisher information, Fisher information inequality (FII), minimum
mean-square error (MMSE), mutual information, relative entropy.

I. INTRODUCTION

N his 1948 historical paper, Shannon proposed the entropy
I power inequality (EPI) [1, Thm. 15], which asserts that the
entropy power of the sum of independent random vectors is at
least the sum of their entropy powers; equality holds iff! the
random vectors are Gaussian with proportional covariances. The
EPI is one of the deepest inequalities in information theory,
and has a long history. Shannon gave a variational argument [1,
App. 6] to show that the entropy of the sum of two independent
random vectors of given entropies has a stationary point where
the two random vectors are Gaussian with proportional covari-
ance matrices, but this does not exclude the possibility that the
stationary point is not a global minimum. Stam [2] credits de
Bruijn with a first rigorous proof of the EPI in the case where
at most one of the random vectors is not Gaussian, using a re-
lationship between differential entropy and Fisher information
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lif and only if.

now known as de Bruijn’s identity. A general proof of the EPI
is given by Stam [2] (see also Blachman [3]), based on a related
Fisher information inequality (FII). Stam’s proof is simplified in
[4] and [5]. Meanwhile, Lieb [6] proved the EPI via a strength-
ened Young’s inequality from functional analysis. While Lieb’s
proof does not use information theoretic arguments, Dembo,
Cover, and Thomas [4] showed that it can be recast in a unified
proof of the EPI and the Brunn-Minkowski inequality in geom-
etry (see also [7] and [8]), which was included in the textbook by
Cover and Thomas [9, Sec. 17.8]. Recently, Guo, Shamai, and
Verdi [10] found an integral representation of differential en-
tropy using minimum mean-square error (MMSE), which yields
another proof of the EPI [11], [12]. A similar, continuous-time
proof via causal MMSE was also proposed by Binia [13]. The
original information theoretic proofs (by Stam and Blachman,
and by Verdd, Guo, and Shamai) were first given for scalar
random variables, and then generalized to the vector case ei-
ther by induction on the dimension [2], [3] or by extending the
required tools [4], [11].

The EPI is used to bound capacity or rate-distortion regions
for certain types of channel or source coding schemes, espe-
cially to prove converses of coding theorems in the case where
optimality cannot be resolved by Fano’s inequality alone.
Shannon used the EPI as early as his 1948 paper [1] to bound
the capacity of non-Gaussian additive noise channels. Other ex-
amples include Bergmans’ solution [14] to the scalar Gaussian
broadcast channel problem, generalized to the multiple-input
multiple-output (MIMO) case in [15] and [16]; Leung-Yan
Cheong and Hellman’s determination of the secrecy capacity
of the Gaussian wire-tap channel [17], extended to the multiple
access case in [18] and [19]; Costa’s solution to the scalar
Gaussian interference channel problem [20]; Ozarow’s solution
to the scalar Gaussian source two-description problem [21],
extended to multiple descriptions at high resolution in [22]; and
Oohama’s determination of the rate-distortion regions for var-
ious multiterminal Gaussian source coding schemes [23]-[26].
It is interesting to note that in all the above applications, the
EPI is used only in the case where all but one of the random
vectors in the sum are Gaussian. The EPI for general indepen-
dent random variables, as well as the corresponding FII, also
find application in blind source separation and deconvolution
in the context of independent component analysis (see, e.g.,
[27]-[29]), and is instrumental in proving a strong version of
the central limit theorem with convergence in relative entropy
(51, [301-[35].

It appears that the EPI is perhaps the only useful information
theoretic inequality that is not proved through basic properties
of entropy or mutual information. In this paper, we fill the gap
by providing a new proof, with the following nice features:
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* it hinges solely on the elementary properties of Shannon’s
mutual information, sidestepping both Fisher’s informa-
tion and MMSE. Thus, it relies only on the most basic prin-
ciples of information theory;

* it does not require scalar or vector identities such as de
Bruijn’s identity, nor integral representations of differential
entropy;

* the vector case is handled just as easily as the scalar case,
along the same lines of reasoning; and

* it goes with a mutual information inequality (MII), which
has its own interest.

Before turning to this proof, we make a detailed analysis of the
existing information theoretic proofs2 of the EPI. The reasons
for this presentation are as follows:

* it gives some idea of the level of difficulty that is required to
understand conventional proofs. The new proof presented
in this paper is comparatively simpler and shorter;

* it focuses on the essential ingredients common to all in-
formation theoretic proofs of the EPI, namely data pro-
cessing inequalities and integration over a path of con-
tinuous Gaussian perturbation. This serves as a insightful
guide to understand the new proof which uses the same in-
gredients, though in an more expedient fashion;

* it simplifies some of the conventional argumentation and
provides intuitive interpretations for the Fisher information
and de Bruijn’s identity, which have their own interests
and applications. In particular, a new, simple proof of a
(generalized) de Bruijn’s identity, based on a well-known
estimation theoretic relationship between relative entropy
and Fisher information, is provided,;

* it offers a unified view of the apparently unrelated existing
proofs of the EPI. They do not only share essentials, but
can also be seen as variants of the same proof; and

* it derives the theoretical tools that are necessary to further
discuss the relationship between the various approaches,
especially for extended versions of the EPI.

The EPI has been generalized in various ways. Costa [36] (see
also [37]) strengthened the EPI for two random vectors in the
case where one of these vectors is Gaussian, by showing that
the entropy power is a concave function of the power of the
added Gaussian noise. Zamir and Feder [38]-[40] generalized
the scalar EPI by considering the entropy power of an arbi-
trary linear transformation of the random variables. Takano [41]
and Johnson [42] provided conditions under which the original
EPI still holds for two dependent variables. Recently, Liu and
Viswanath [43], [44] generalized the EPI by considering a co-
variance-constrained optimization problem motived by multi-
terminal coding problems. The ideas in the new proof of the
EPI presented in this paper are readily extended to all these situ-
ations. Again, in contrast to existing proofs, the obtained proofs
rely only on the basic properties of entropy and mutual infor-
mation. In some cases, further generalizations of the EPI are
provided.

The remainder of this paper is organized as follows. We begin
with some notations and preliminaries. Section II surveys ear-
lier information theoretic proofs of the EPI and presents a uni-
fied view of the proofs. Section III gives the new proof of the

2Lieb’s excepted, since it belongs to mathematical analysis and cannot be
qualified as an “information theoretic” proof.
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EPI, along with some discussions and perspectives. The reader
may wish to skip directly to the proof in this section, which does
not use the tools presented earlier. Section IV extends the new
proof to Zamir and Feder’s generalized EPI for arbitrary linear
transformations of independent variables. Section V adapts the
new proof to the case of dependent random vectors, general-
izing the results of Takano and Johnson. Section VI generalizes
the new proof to an explicit formulation of Liu and Viswanath’s
EPI under a covariance constraint, based on the corresponding
MII. Section VII gives a proof of the concavity of the entropy
power (Costa’s EPI) based on the MII, which relies only on the
properties of mutual information. Section VIII concludes this
paper with some open questions about a recent generalization of
the EPI to arbitrary subsets of independent variables [45]-[48]
and a collection of convexity inequalities for linear “gas mix-
tures.”

A. Notations

In this paper, to avoid log e factors in the derivations, informa-
tion quantities are measured in nats—we shall use only natural
logarithms and exponentials. Random variables or vectors are
denoted by upper case letters, and their values denoted by lower
case letters. The expectation E( - ) is taken over the joint distri-
bution of the random variables within the parentheses. The co-
variance matrix of a random (column) n-vector X is Cov(X) =
E((X —E(X))(X —E(X))"), and its variance is the trace of the
covariance matrix: Var(X) = tr(Cov(X)) = E(||X —E(X)|?).
We also use the notation 0% = 1Var(X) for the variance per
component. We say that X is white if its covariance matrix is
proportional to the identity matrix, and standard if it has unit
covariance matrix Cov(X) = L

With the exception of the conditional mean E(X |Y),
which is a function of Y, all quantities in the form f(X |Y)
used in this paper imply expectation over Y, following the
usual convention for conditional information quantities.
Thus the conditional covariance matrix is Cov(X |Y) =
E(X —E(X|Y))(X — E(X|Y))"), and the conditional vari-
ance is Var(X |Y) = tr(Cov(X |Y)) = E(||X — E(X |Y)]]?),
that is, the MMSE in estimating X given tpe observation Y,
achieved by the conditional mean estimator X (Y') = E(X |Y').

The diagonal matrix with entries a; is denoted by diag(a;);.
We shall use the partial ordering between real symmetric
matrices where A < B means that the difference is positive
semidefinite, that is, for any real vector z, Az < z'Buz.
Clearly A < B implies CAC < CBC for any symmetric
matrix C, and B-1 < A~! if A and B are invertible and A is
positive semidefinite.

Given a function f(z) 97 denotes the gradient, a (column)

’ Oz S

vector of partial derivatives (%)i, and gz{f denotes the Hes-

sian, a matrix of second partial derivatives (%)i, ;- We shall
1O

use Landau’s notations o(f) (a function which is negligible

compared to f in the neighborhood of some limit value of x)

and O(f) (a function which is dominated by f in that neighbor-

hood).

B. Definition of the Differential Entropy

Let X be any random n-vector having probability density
p(z) (with respect to the Lebesgue measure). Its (differential)
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entropy is defined by
1
hX:Elo—:—/p:L’lopxdx )
(X) = Elog = () log p()

provided that this integral exists in the generalized sense—that
is, the positive and negative parts of this integral are not both in-
finite. Thus we may have h(X) = +oo if Elog™ ﬁ = +00
and Elog™ rﬁ() < +o0; and h(X) = —oo if Elog™ p(X) <
+oo and Elog™ ﬁ = 400, where we have noted z+ =
max(z,0) and = = max(—z,0).

The differential entropy is not always well defined. Take, for
example, p(z) = 5,5z for0 <@ < 1/eande < z < +o0,
and p(z) = 0 otherwise. In this case it is easy to check that both
positive and negative parts of the integral | p(z) log p(x) dz are
infinite. In spite of that differential entropy is frequently en-
countered in the literature, the author was unable to find simple,
general conditions under which it is well defined. An excep-
tion is [49] which gives the sufficient condition that p®(z) is
Lebesgue-integrable for any « in the range «p < o < 2 where
0 < ag < 1. The following result may be more useful for prac-
tical considerations.

Proposition 1 (Well-Defined Entropy): If E(log(1+1|X]|)) is
finite, in particular if X has finite first or second moments, then
h(X) is well defined and is such that —oo < h(X) < +o0.

Proof: 1t is sufficient to prove that the positive part
ht(X) = Elog™ Tﬁf) of (1) is finite. Let ¢(x) be the Cauchy
density defined by

| =t 1
q(z) = (nfl) e (2)
T (14 [2]?) 2

Since ulogu > —1/e for all u > 0, we have

ht(X) = —/ p(z)log p(x)dx (3a)
0<p(z)<1
= —/ p(x)loggq(z)dz
O<p(17)<1
p(z), a(x)
c )i i (3b)
o 17T % 305)
n+41
T2 n +
<log —— 0~ + E(log(1 + [IX]1*))
INEE 2
+ l (z)dx (3¢)
€ Jp(w)<1
e
< log gy + (n+ 1E(log (1 + X))
(4
(3d)
which is finite by assumption. O

It is easy to adapt the proof in the particular case where
E(J|X||) or E(||X||?) is finite by letting g(x) be an exponential
Laplacian or normal Gaussian distribution, respectively. The
proof can also be shorten slightly by applying the theorem
of Gel’fand- Yaglom Perez [50, ch. 2] to the relative entropy

D(pllq) = [p(z)log p(m; dx, which is finite because X is
absolutely continuous with respect to the measure defined by
density ¢(z).
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In the situation of Proposition 1 it is sometimes convenient
to extend the definition by setting h(X) = —oo when X does
not admit a density with respect to the Lebesgue measure—in
particular, when the distribution of X has a probability mass
assigned to one or more singletons in R (see, e.g., [36] and [51,
p. 6]). This convention can be justified by a limiting argument
in several cases. Another justification appears in Lemma 1.

C. EPI
The entropy power N (X ) of a random n-vector X with (dif-
ferential) entropy h(X) is [1]
emh(X)
N =S @

In the following, we assume that entropies are well defined, pos-
sibly with value A(X) = —oo or N(X) = 0. The scaling prop-
erties

=a’N(X) (5)

where a € R, follow from the definitions by a change of variable
argument.

Suppose X has finite covariances. The non-Gaussianness of
X is the relative entropy (divergence) with respect to a Gaussian
random vector X* with identical second moments

") = h(X) (©)

where h(X*) = 1 log((2me)"|Cov(X)|). With the convention
of the preceding section, one has D(X || X*) = 400 if h(X) =
—o0. Since (6) is nonnegative and vanishes iff X is Gaussian,
the entropy power (4) satisfies

D(X||X*) = h(X

N(X) < [Cov(X)['/" < 0% @)

with equality in the first inequality iff X is Gaussian, and in the
second iff X is white. In particular, N(X) is the power of a
white Gaussian random vector having the same entropy as X.

From these observations, it is easily found that Shannon’s EPI
can be given several equivalent forms.

Proposition 2 (Equivalent EPIs): The following inequalities,
each stated for finitely many independent random vectors (X;);
with finite differential entropies, and real-valued coefficients
(a;)i, are equivalent.

N( Z a; X;) > Z a?N(X;) (8a)
h(ZaiXi) Z h(ZaLXl) (Sb)
h(ZaiX) > Za?h(X (Za? = 1) (8¢)

i

where the (f( ;)i are independent Gaussian random vectors with
proportional covariances (e.g., white) and corresponding en-
tropies h(X;) = h(X;).

We have presented weighted forms of the inequalities to stress
the similarity between (8a)—(8c). Note that by (5), the normal-
ization ), a% = 1 is unnecessary for (8a) and (8b). The proof
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is given in [4] and is also partly included in [11] in the scalar
case. For completeness we include a short proof3.

Proof: That (8a), (8b) are equivalent follows from the
equalities Y, a7 N(X;) Yia2N(X) = N(X,aiXs).
To prove that (80) is equivalent to (8a) we may assume that
>, a? = 1. Taking logarithms of both sides of (8a), inequality
(8c) follows from the concavity of the logarithm. Conversely,
taking exponentials of both sides of (8c), inequality (8a) fol-
lows provided that the (X;); have equal entropies. But the
latter condition is unnecessary because if (8a) is satisfied for
the random vectors (N (X;) */2X;); of equal entropies, then
upon modification of the coefficients it is also satisfied for the
(X)i- ]

Inequality (8a) is equivalent to the classical formulation of
the EPI [1] by virtue of the scaling property (5). Inequality (8b)
is implicit in [1, App. 6], where Shannon’s line of thought is to
show that the entropy of the sum of independent random vectors
of given entropies has a minimum where the random vectors are
Gaussian with proportional covariance matrices. It was made
explicit by Costa and Cover [7]. Inequality (8c) is due to Lieb
[6] and is especially interesting since all available proofs of the
EPI are in fact proofs of this inequality. It can be interpreted
as a concavity property of entropy [4] under the covariance-
preserving transformation

(Xi)i— Y =) a:X; 9)

(Za?:l).

Interestingly, (8c) is most relevant in several applications
of the EPI. Although the preferred form for use in coding
applications [14]-[26] is N(X + Z) > N(X) + N(Z), where
7 1is Gaussian independent of X, Liu and Viswanath [43],
[44] suggest that the EPI’s main contribution to multiterminal
coding problems is for solving optimization problems of the
form maxx h(X) — ph(X + Z), whose solution is easily
determined from the convexity inequality (8c) as shown in
Section VI. Also, (8c) is especially important for solving blind
source separation and deconvolution problems, because it
implies that negentropy ¢ = —h satisfies the requirements for
a “contrast function”

(3 )

which serves as an objective function to be maximized in such
problems [27]-[29]. Finally, the importance of the EPI for
proving strong versions of the central limit theorem is through
(8c) interpreted as a monotonicity property of entropy for
standardized sums of independent variables [30], [34].

) < maxc(X) (Za? =1)

i

(10)

II. EARLIER PROOFS REVISITED

A. Fisher Information Inequalities (FII)

Conventional information theoretic proofs of the EPI use
an alternative quantity, the Fisher information (or a disguised
version of it), for which the statements corresponding to (8)

3This proof corrects a small error in [4], namely, that the first statement in
the proof of Theorem 7 in [4] is false when the Gaussian random vectors do not
have identical covariances.
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are easier to prove. The Fisher information matrix J(X) of a
random n-vector X with density p(z) is [4], [9]
J(X) = Cov(S(X)) (11)

where the zero-mean random variable (log-derivative of the den-
sity)

S(X) = Vlogp(X) = (12)

is known as the score. The Fisher information J(X) is the trace
of (11)

1902
p(X)?
In this and the following subsections, we assume that proba-

bility densities are sufficiently smooth with sufficient decay at
infinity so that Fisher informations exist, possibly with the value

J(X) = Var(S(X)) = E (13)

J(X) = 4o0. The scaling properties
S(aX)=a"1S(X)
J(aX)=a"?J(X) (14)

follow from the definitions by a change of variable argument.
Note that if X has independent entries, then J(X) is the diag-
onal matrix J(X) = diag(J(X;)),.

It is easily seen that the score S(X) is a linear function of X
iff X is Gaussian. Therefore, a measure of non-Gaussianness
of X is the mean-square error of the score with respect to the
(linear) score S* of a Gaussian random vector X * with identical
second moments:

E(IS(X) = $*(X)|I?) = J(X
where J(X*) = tr(Cov(X)™1). Since (15) is nonnegative and

vanishes iff X is Gaussian, the Fisher information (13) satisfies
the inequalities

) = J(X7) (15)

J(X) > tr(Cov(X) 1) > (16)

n
%’
The first inequality (an instance of the Cramér-Rao inequality)
holds with equality iff X is Gaussian, while the second in-
equality (a particular case of the Cauchy-Schwarz inequality on
the eigenvalues of Cov(X)) holds with equality iff X is white.
In particular, n.J ~!(X) is the power of a white Gaussian random
vector having the same Fisher information as X.

Proposition 3 (Equivalent FIIs): The following inequalities,
each stated for finitely many independent random vectors ( X;);
with finite Fisher informations, and real-valued coefficients
(a;)q, are equivalent:

ZaX >Za2J_1
ZaX <J Za,
Zai Za2J

(17a)

(17b)

(17¢)
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where the (X), are independent Gaussian random vectors with
proportional covariances (e.g., white) and corresponding Fisher
informations J(X;) = J(X;).

There is a striking similarity with Proposition 2. The proof
is the same, with the appropriate changes—the convexity of the
hyperbolic 1/z is used in place of the concavity of the loga-
rithm—and is omitted. Inequality (17c¢) is due by Stam and its
equivalence with (17a) was pointed out to him by de Bruijn
[2]. It can be shown [52], [53] that the above inequalities also
hold for positive semidefinite symmetric matrices, where Fisher
informations (13) are replaced by Fisher information matrices
(11).

Similarly as for (8c), inequality (17c) can be interpreted as a
convexity property of Fisher information [4] under the covari-
ance-preserving transformation (9), or as a monotonicity prop-
erty for standardized sums of independent variables [30], [35].
It implies that the Fisher information C' = J satisfies (10), and
therefore, can be used as a contrast function in deconvolution
problems [27]. The FII has also been used to prove a strong ver-
sion of the central limit theorem [5], [30]-[35] and a character-
ization of the Gaussian distribution by rotation [52], [54].

B. Data Processing Inequalities for Least Squares Estimation*

Before turning to the proof the FII, it is convenient and useful
to make some preliminaries about data processing inequalities
for Fisher information and MMSE. In estimation theory, the im-
portance of the Fisher information follows from the Cramér-Rao
bound (CRB) [9] on the mean-squared error of an estimator of
a parameter f € R™ from a measurement X € R™. In this con-
text, X is a random n-vector whose density py(z) depends on
6, and the (parametric) Fisher information matrix is defined by
[91, [53]

Jy(X) = Cov(Sy(X)) (18)
where Sy (X)) is the (parametric) score function
19}
Se(X) = %logpe(X) (19)

In some references, the parametric Fisher information is defined
as the trace of (18)

T(X) = Var(Sy(X)). (20)

In the special case where § € R™ is a translation parameter:
po(z) = p(x + 0), we recover the earlier definitions (11)—-(13):
S(X)=8p(X=-0),J(X)=Jg(X —0),and J(X) = Jo(X —
6). More generally, it is easily checked that for any @ € R

Sp(X — ab) = aS(X)
Jo(X — ab) = a®J(X).

(21a)
21b)

The optimal unbiased estimator of 6 given the observation
X, if it exists, is such that the mean-square error meets the CRB
(reciprocal of the Fisher information) [9]. Such an optimal es-
timator is easily seen to be a linear function of the score (19).
Thus it may be said that the score function Sy(X) represents

4We use the term “least squares estimation” for any estimation procedure
based on the mean-squared error criterion.
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the optimal least squares estimator of §. When the estimated
quantity f is a random variable (i.e., not a parameter), the op-
timal estimator is the conditional mean estimator E(¢ | X') and
the corresponding minimum mean-square error (MMSE) is the
conditional variance Var(f | X).

In both cases, there is a data processing theorem [53] relative
to a transformation X — Y in a Markov chain§ — X — Y,
that is, for which Y given X is independent of #. The empha-
size the similarity between these data processing theorems and
the corresponding quantities of Fisher information and MMSE,
we first prove the following “chain rule,” which states that the
optimal estimation given Y of # results from the optimal esti-
mation given Y of the optimal estimation given X of 6.

Proposition 4 (Data Processing Theorem for Estimators): If
# — X — Y form a Markov chain, then

E(#]Y) =E(E(0]|X)|Y)
Se(Y) = Eg(Se(X)|Y).

(22a)

(22b)
Proof: In the nonparametric case the Markov chain
condition can written as p(f|z,y) = p(f|z). Multi-
plying by 0p(z|y) gives Op(0,z|y) = Op(0|z)p(z]|y),
which integrating over ¢ and z yields (22a). In the para-
metric case the Markov chain condition can be written as
po(z,y) = pe(x)p(y|z) where the distribution p(y|z) is
independent of . Differentiating with respect to 6 gives
% (2,y) = %22(x)p(y|): dividing by pe(y) and applying
Bayes® rule yields 22¢ (x,y),/po(y) = 222 ()/pa() po(x | y).
which integrating over z yields (22b). O

From Proposition 4 we obtain a unified proof of the corre-
sponding data processing inequalities for least squares estima-
tion, which assert that the transformation X — Y reduces in-
formation about #, or in other words, that no clever transforma-
tion can improve the inferences made on the data measurements:
compared to X, the observation Y yields a worse estimation
of 6.

Proposition 5 (Estimation Theoretic Data Processing In-
equalities): If § — X — Y form a Markov chain, then

Cov(f|Y) > Cov(f | X) (23a)
Jo(Y) < Jo(X). (23b)
In particular

Var(6|Y) > Var(f | X) (24a)
Jo(Y) < Jp(X). (24b)

Equality holds iff
E(0|X)=E@|Y) ae., (25a)
SQ(X) = SQ(Y) a.e. (25b)

respectively.
Proof: The following identity (“total law of covariance”)
is well known and easy to check:

Cov(U) = Cov(U | V) + Cov(E(U | V)). (26)
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ForU = E(f|X) or U = Sp(X
Proposition 4

),and V =Y, we obtain, by

Cov(f| X)=Cov(d|Y) —
JQ(X) = JQ(Y) + COV(SQ(X

Cov(E(9| X)|Y)
)Y)

(27a)
(27b)

where in deriving (27a) we have also used (26) for U = 6. Since
covariance matrices are positive semidefinite, this proves (23a),
(23b), and (24a), (24b) follow by taking the trace. Equality holds
in (23a), (24a), or in (23b), (24b) iff £ (0| X) or Sg(X) is a de-
terministic function of Y, which by Proposition 4 is equivalent
to (25a) or (25b), respectively. O

Stam [2] mentioned that (24b) is included in the original work
of Fisher, in the case where Y is a deterministic function of X.
A different proof of (23b) is provided by Zamir [53]. The above
proof also gives, via (27a), (27b) or the corresponding identities
for the variance, explicit expressions for the information “loss”
due to processing. The equality conditions correspond to the
case where the optimal estimators given X or Y are the same.
In particular, it is easily checked that (25b) is equivalent to the
fact that § — Y — X (in this order) also form a Markov chain,
that is, Y is a “sufficient statistic” relative to X [9].

As a consequence of Proposition 5, we obtain a simple
proof of the following relation between Fisher information and
MMSE in the case where estimation is made in Gaussian noise.

Proposition 6 (Complementary Relation between Fisher In-
formation and MMSE): 1f Z is Gaussian independent of X, then

J(X + Z)Cov(Z) + Cov(Z)'Cov(X | X + Z) =T1. (28)
In particular, if Z is white Gaussian

02 J(X +Z)+0,>Var(X | X + Z) = n. (29)

Proof: Apply (27b) to the Markov chain § —

(X,Z—-0) - X+ Z—0,where X and Z are independent of ¢
and of each other. Since Sy (X, Z —0) = Sp(X)+Sy(Z —0) =

S(Z) = —Cov(Z)~Y(Z — E(Z)), we have Jy(X,Z — ) =
J(Z) = Cov(Z)~!'. Therefore, (27b) reads Cov(Z)~! =
J(X + Z)+ Cov(Z)™ x Cov(Z| X + Z)Cov(Z)~". Noting
that Z — E(Z|X + Z) = E(X|X + Z) — X, one has

Cov(Z|X + Z) = Cov(X |X + Z) and (28) follows upon
multiplication by Cov(Z). For white Gaussian Z, (29) follows
by taking the trace. O

As noted by Madiman and Barron [47], (29) is known in
Bayesian estimation (average risk optimality): see [55, Th.
4.3.5] in the general situation where X + Z is replaced any
variable Y such that p(y | #) belongs to an exponential family
parameterized by z. It was rediscovered independently by
Budianu and Tong [56], and by Guo, Shamai, and Verdd [10],
[57]. Relation (28) was also rederived by Palomar and Verdu
[58] as a consequence of a generalized de Bruijn’s identity
(Corollary 1). Other existing proofs are by direct calculation.
The above proof is simpler and offers an intuitive alternative
based on the data processing theorem.

To illustrate (28), consider the case where X and Z are zero-
mean Gaussian. In this case, the conditional mean estimator
E(X | X+ Z) is linear of the form A (X + Z), where A is given
by the Wiener-Hopf equations ACov(X + Z) = E(X(X +
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Z)") = Cov(X). Therefore, E(X | X +Z) = Cov(X)Cov(X +
Z)UX +27) = X+ Z — Cov(Z)Cov(X + Z) 1(X +
Z). This gives, after some calculations, Cov(X | X + Z)
Cov(Z) — Cov(Z)Cov(X + Z)~Cov(Z). But this expression
is also an immediate consequence of (28) since one has simply
J(X +Z)=Cov(X +2Z)7!

For standard Gaussian Z, (29) reduces to the identity J(X +
Z)+Var(X | X + Z) = n, which constitutes a simple comple-
mentary relation between Fisher information and MMSE. The
estimation of X from the noisy version X + Z is all the more
better as the MMSE is lower, that is, as X + Z has higher Fisher
information. Thus Fisher information can be interpreted a mea-
sure of least squares (nonparametric) estimation’s efficiency,
when estimation is made in additive Gaussian noise.

C. Proofs of the FII via Data Processing Inequalities

Three distinct proofs of the FII (17¢) are available in the lit-
erature. In this section, we show that these are in fact variations
on the same theme: thanks to the presentation of Section II-B,
each proof can be easily interpreted as an application of the data
processing theorem to the (linear) deterministic transformation
(X;)i — Y given by (9), or in parametric form

Y—H:Zai(Xi—alﬂ) (Za?:l)

% %

(30)

1) Proof via the Data Processing Inequality for Fisher In-
formation: This is essentially Stam’s proof [2] (see also Zamir
[53] for a direct proof of (17a) by this method). Simply apply
(24b) to the transformation (30)

=2 X

To (D aiX; —0) < Jp((X

i

_al _az

(31)
From (21b), the FII (17¢) follows.

2) Proofvia Conditional Mean Representations of the Score:
This proof is due to Blachman [3] in the scalar case (n = 1).
His original derivation is rather technical, since it involves a di-
rect calculation of the convolution of the densities of indepen-
dent random variables U and V to establish that S(U + V) =
EASU)+ (1 -X)SV)|U +V)forany 0 < A < 1, fol-
lowed by an application of the Cauchy-Schwarz inequality. The
following derivation is simpler and relies on the data processing
theorem: By Proposition 4 applied to (30)

i) | Z a; X; —0)

Se 2“7 X; —0) = E(Sp((X
Y0,

£(3 Sl
which from (21a) gives the following conditional mean repre-
sentation of the score:

) | Z aiX

S(ZaiXi) = E(ZaiS(X

This representation includes Blachman’s as a special case
(for two variables U a1X1 and V = asX5). The rest
of Blachman’s argument parallels the above proof of the
data processing inequality for Fisher information (Proposi-
tion 5): His application of the Cauchy-Schwarz inequality
[3] is simply a consequence of the law of total variance

(32)
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Var(U) = Var(U|V) + Var(E(U|V)). Indeed, taking
U = 3Y,a65X;), V = Y ,a;X;, and using (32), the in-
equality Var(U) > Var(E(U |V)) reduces to the FII (17¢).
Thus we see that, despite appearances, the above two proofs of
Stam and Blachman are completely equivalent.

3) Proofvia the Data Processing Inequality for MMSE: This
proof is due to Verdd and Guo [11], which use MMSE in lieu of
Fisher’s information. Apply (24a) to the transformation (9), in
which each X is replaced by X; + Z;, where the (Z;); are i.i.d.
white Gaussian of variance o2. Noting Z = > ; i Z;, this gives

Var( Z a,iXi | Z G,X,—FZ) ZVQI’(Z a,iXi | (XZ+ZL)L)

= Z a?Var(X; | X;+7;) (33)

where Z is also white Gaussian of variance 2. By the comple-
mentary relation (29) (Proposition 6), this inequality is equiva-
lentto the FIIJ(}, a; X; + Z) < Y, a?J(X,;+ Z;) and letting
0% — 0 gives (17c)5. Again this proof is equivalent to the pre-
ceding ones, by virtue of the complementary relation between
Fisher information and MMSE.

4) Conditions for Equality in the FII: The case of equality
in (17c) was settled by Stam [2] and Blachman [3]. In Stam’s
approach, by Proposition 5, (25b), equality holds in (31) iff
> 80(Xi —aif) = Se(>,; a; X; — 0), that is, using (21a)

This equality condition is likewise readily obtained in
Blachman’s approach above. Obviously, it is satisfied only
if all scores for which a; # O are linear functions, which
means that equality holds in the FII only if the corresponding
random vectors are Gaussian. In addition, replacing the scores
by their expressions for Gaussian random n-vectors in (34), it
follows easily by identification that these random vectors have
identical covariance matrices. Thus equality holds in (17c) iff
all random vectors X; such that a; # 0 are Gaussian with
identical covariances.

Verdd and Guo do not derive the case of equality in [11].
From the preceding remarks, however, it follows that equality
holds in (33) only if the (X; + Z;); for which a; # 0 are
Gaussian—and, therefore, the corresponding (X;); are them-
selves Gaussian. This result is not evident from estimation-the-
oretic properties alone in view of the equality condition (25a) in
the data processing inequality for the MMSE.

(34)

D. De Bruijn’s Identity

1) Background: De Bruijn’s identity is the fundamental re-
lation between differential entropy and Fisher information, and
as such, is used to prove the EPI (8c) from the corresponding
FII (17c). This identity can be stated in the form [4]

d

1
X+ ViZ)| = 57(X)

t=0

(35)

where Z is standard Gaussian, independent of the random
n-vector X. It is proved in the scalar case in [2], generalized
to the vector case by Costa and Cover [7] and to nonstandard

5This continuity argument is justified in [59].
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Gaussian Z by Johnson and Suhov [33], [42]. The conven-
tional, technical proof of de Bruijn’s identity relies on a
diffusion equation satisfied by the Gaussian distribution and is
obtained by integrating by parts in the scalar case and invoking
Green’s identity in the vector case. We shall give a simpler and
more intuitive proof of a generalized identity for arbitrary (not
necessarily Gaussian) Z.

Proposition 7 (De Bruijn’s Identity): For any two indepen-
dent random n-vectors X and Z such that J(X) exists and Z
has finite covariances

d 1
—h(X +VtZ)| = =tr(IJ(X)Cov(Z2)). (36a)
dt o 2
In particular, if Z is white or X has i.i.d. entries
d 1
—hWX+VtZ)| =-0%J(X). (36b)
dt i—o 2

2) A Simple Proof of De Bruijn’s Identity: The proof is based
on the following observation. Setting § = /¢, (36a) can be
rewritten as a first-order Taylor expansion in 2

h(X +67) — h(X)
= T (7 - E@)3(X)(Z - E2) +o#). G

Now, there is a well known, similar expansion of relative en-
tropy (divergence)

po(X)
Do (X)

in terms of parametric Fisher information (18), for a parameter-
ized family of densities pg(x), 8§ € R™. Indeed, since the diver-
gence is nonnegative and vanishes for 8’ = 6, its second-order
Taylor expansion takes the form [60]

Dx (pes|lper) = Eg log (38)

Dx(po | por) = % (0" = 0)" To(X)(0' = 0) +o([|6" - 6]°)
(39)

where Jy(X) is the positive semidefinite Hessian matrix of
the divergence, that is, Jg(X) = Bae%DX(ngpg,)b/:g =
Eg% log po;X’ which is easily seen to coincide with defini-
tion (18)°. In view of the similarity between (37) and (39), the
following proof of de Bruijn’s identity is almost immediate.

Proof of Proposition 7: LetY = X + 607 and write mutual
information I(X + 0 Z;Z) = h(X + 0 Z) — h(X) as a condi-
tional divergence: (Y, Z) = D(p(y | 2)||p(y)) = E(D(px(y—
67)||py (v)). Making the change of variable u = y — 62z gives
(X +07;7) = Ez(D(qollgs)), where go(u) = pxtoz(u +
6z) is the parameterized family of densities of a random vari-
able U, and qo(u) = px (u). Therefore, by (39) for scalar

92
I(X +02;2) = S Ex(Jo(U)) + o(6?) (40)
where Jo(U) is the parametric Fisher information of U about
6 = 0, which is easily determined as follows.

®Even though the divergence is not symmetric in (6,6"), it is locally
symmetric in the sense that (39) is also the second-order Taylor expansion for
Dx(por||po)-
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Expanding p(y| 2) px(y — 0z) about ¢ 0 gives
plylz) = px(y) — 02'Vpx(y) + o(f), and, therefore,
p(y) = E(p(y | %)) = px(y) — 0 E(2)'Vpx(y) + o(6), where
the limit for # — 0 and the expectation have been exchanged,
due to Lebesgue’s convergence theorem and the fact that Z has
finite covariances. It follows that gg(u) = py (u+6z) = go(u)+
0 (z—E(Z))"Vpx (u)+o(8) so that the (parametric) score of U

ford = 0is So(01) = & owan (1)l = (=~ E(2)) S22

where p. is the (nonparametric) score of X. Therefore,
Jo(U) = Var(S(U)) = (2 — E(2))'J(X)(z — E(Z)).
Plugging this expression into (40) gives (37) as required. [

In exploiting the parallelism between (37) and (39), this proof
explains the presence of the 1/2 factor in de Bruijn’s identity:
this is merely a second-order Taylor expansion factor due to
the definition of Fisher information as the second derivative of
divergence. Besides, it is mentioned in [4] that (35) holds for any
random vector Z whose first four moments coincide with those
of the standard Gaussian; here we see that it is sufficient that this
condition hold for the second centered moments (Cov(Z) = I).
Also note that it is not required that Z have a density. Thus, (36)
also holds for a discrete valued perturbation Z.

3) The Gaussian Case: When Z is Gaussian, de Bruijn’s
identity (36) is readily extended to positive values of ¢. Simply
substitute X +v/# Z' for X, where Z' is independent of Z with
the same distribution. By the stability property of the Gaussian
distribution under convolution, X + V#' Z' + VtZ and X +
V't +t' Z are identically distributed, and, therefore

%h(X +VtZ) = %tr(J(X +VtZ)Cov(Z)). (4la)
For white Z, this reduces to
1
%h(X +Vt7) = 50% J(X +Vt7). (41b)

Such a generalization cannot be established for non-Gaussian Z,
because the Gaussian distribution is the only stable distribution
with finite covariances. Using the complementary relation (28)
of Proposition 6 and making the change of variable ¢’ = 1/t, it
is a simple matter of algebra to show that (41a) is equivalent to

%h(\/iXJrZ) = % tr(Cov(Z) ™! Cov(X |Vt X+2Z)). (42a)

Since Cov(Z)~! = J(Z), this alternative identity also general-
izes (36a) (with X and Z interchanged). For white 7, it reduces
to

1
ih(\/iXJrZ) = — Var(X |Vt X + Z). (42b)
dt 207,

The latter two identities were thoroughly investigated by Guo,
Shamai, and Verdu [10]. The above proof, via de Bruijn’s iden-
tity and Kullback’s expansion (39), is shorter than the proofs
given in [10], and also has an intuitive interpretation, as shown
next.

4) Intuitive Interpretations: Expansions (37) and (39) can
be given similar interpretations. In (39), Dx (ps||pe-) has local
parabolic behavior at vertex § = ¢’ with curvature = Jy(X),
which means that for a given (small) value of divergence, 6 is
known all the more precisely as Fisher information Jp(X) is
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Dx (po|lper)

(a)

: : o
(4

Fig. 1. Kullback-Leibler divergence drawn as a function of the estimated pa-

rameter for (a) low and (b) high value of Fisher information.

(X +67;2)

Fig. 2. Mutual information between a noisy variable and the noise, drawn as
a function of noise amplitude 8 for (a) low and (b) high value of the variable’s
Fisher information.

large (see Fig. 1). This confirms that .J4(X) is a quantity of “in-
formation” about 6. Similarly, (37) shows that the mutual infor-
mation I(X + 0Z; Z) between the noisy version X + 0 Z of X
and the noise Z, seen as a function of the noise amplitude, is lo-
cally parabolic about # = 0 with curvature = J(X). Hence for
a given (small) value of noise amplitude 6, the noisy variable
is all the more dependent on the noise as .J(X) is higher (see
Fig. 2). Therefore, de Bruijn’s identity merely states that Fisher
information measures the sensitivity to an arbitrary additive in-
dependent noise, in the sense that a highly “sensitive” variable,
perturbed by a small additive noise, becomes rapidly noise-de-
pendent as the amplitude of the noise increases. This measure of
sensitivity of X depends the noise covariances but is indepen-
dent of the shape of the noise distribution otherwise, due to the
fact that de Bruijn’s identity remains true for non-Gaussian Z.
Also, by the Cramér-Rao inequality (16), a Gaussian variable
X* has lowest sensitivity to an arbitrary additive noise Z. Thus
the saddlepoint property of mutual information I(X + Z; Z) >
I(X*+ Z; Z), classically established for Gaussian Z [9], [61],
[62] (see also Proposition 8), is seen to hold to the first order of
o2, for an arbitrary additive noise Z.

A dual interpretation is obtained by exchanging the roles of
X and Z in (36a) or (37) to obtain an asymptotic formula for
the input-output mutual information I(X; v/t X 4+ Z) in a (non-
Gaussian) additive noise channel X — ¢ X + Z for small
signal-to-noise ratio (SNR). In particular, for i.i.d. input entries
or if the channel is memoryless, either Cov(X) or J(7) is pro-
portional to the identity matrix and, therefore

I(X;VtX +2) = %J(Z) o3t + olt). (43)
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I(X:VEX + 2)

(a)

t
0

Fig. 3. Input-output mutual information over an additive noise channel, drawn
as a function of SNR for small SNR and standard Z. (a) Gaussian channel
J(Z) = 1. (b) Laplacian channel J(Z) = 2.

Thus, as has been observed in, e.g., [10], [63], and [64], the
rate of increase of mutual information per unit SNR is equal
to %J (Z) in the vicinity of zero SNR, regardless of the shape of
the input distribution (see Fig. 3). In the case of a memoryless
channel, it is also insensitive to input memory, since in this case
(43) still holds for correlated inputs. Again by the Cramér-Rao
inequality (16), the Gaussian channel exhibits a minimal rate of
increase of mutual information, which complies with the well-
known fact that non-Gaussian additive noise channels cannot
have smaller capacity than that of the Gaussian channel.

5) Applications: Apart from its role in proving the EPI, de
Bruijn’s identity (Proposition 7) has found many applications in
the literature, although they were not always recognized as such.
The Taylor expansion for non-Gaussianness corresponding to
(37) in the scalar case (n = 1) is mentioned, albeit in a dis-
guised form, by Linnik [65] who used it to prove the central
limit theorem. Itoh [66] used Linnik’s expansion to characterize
the Gaussian distribution by rotation. Similar expansions have
been derived by Prelov and others (see, e.g., [59], [67]-[78]) to
investigate the behavior of the capacity or mutual information in
additive Gaussian or non-Gaussian noise channels under various
asymptotic scenarios. In particular, (43) was apparently first
stated explicitly by Pinsker, Prelov and van der Meulen [59]. A
similar result was previously published by Verdu [79] (see also
[80]) who used Kullback’s expansion (39) to lower bound the
capacity per unit SNR for non-Gaussian memoryless additive
noise channels, a result which is also an easy consequence of
(43). Motivated by the blind source separation problem, Pham
[81] (see also [82] and [83]) investigated the first- and second-
order expansions in # of entropy for non-Gaussian perturbation
Z (not necessarily independent of X') and recovers de Bruijn’s
identity as a special case. Similar first- and second-order ex-
pansions for mutual information in non-Gaussian additive noise
channels were derived by Guo, Shamai, and Verdu [64], yielding
(43) as a special case.

6) Generalized De Bruijn’s Identity: Palomar and Verdu [58]
proposed a matrix version of de Bruijn’s identity by consid-
ering the gradient of h(X + Z) with respect to the noise co-
variance matrix Cov(Z) for Gaussian Z. We call attention that
this is a simple consequence of (36a); the generalization to non-
Gaussian Z is as follows.

Corollary 1:

4 yxt+z)| = %J(X)

e . (44)

where we have noted K = Cov(Z7).
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Proof’: By (36a), we have the following expansion:
1
MX+27)= 3 tr(J(X) K) + o(||IK]||)

where ||K|| denotes the Frobenius norm of K = K?. But this is
of the form of a first-order Taylor expansion of a function with
respect to a matrix8:

) = 7(0) + tr (e (©) K ) 4 o)

and (44) follows by identifying the gradient matrix. O

7) Relationship Between the Cramér-Rao Inequality and a
Saddlepoint Property of Mutual Information: The following
saddle point property of mutual information, which was proved
in [84] using a result of Pinsker [85], states that the worst
possible noise distribution in a additive noise channel is the
Gaussian distribution.

Proposition 8: Let X be any random vector, and let X* be

a Gaussian random vector with identical second moments. For
any Gaussian random vector Z independent of X and X*
IX+Z,2)>I( X"+ Z;Z). (45)

Proof (Following [62]): Noting that Y* = X* + Z has
identical second moments as Y = X + Z, we have I(X +
7 7)1 X*+7Z;7Z)=h(Y) = h(X) = K(Y*) + h(X*) =
D(X||X*) — D(Y||[Y™*). The result follows by the data pro-
cessing inequality for divergence, applied to the transformation
X—->Y=X+7. O

This proof, in contrast with that given in [9] and [61] for scalar
variables, does not require the EPI, and is through a much less
involved argument.

Interestingly, by virtue of de Bruijn’s identity, it can be shown
that (45) is equivalent to the famous Cramér-Rao inequality®

J(X)>J(X*) = Cov(X)™". (46)
To see this, divide both sides of (45) by the entries of
Cov(Z) and let Cov(Z) — 0. By Corollary 1, this gives
%J (X) > 3J(X*). Conversely, integrating the relation
2tr(J(X + Z)Cov(Z)) > 3tr(J(X* + Z)Cov(Z)) using de
Bruijn’s identity (41) readily gives (45).

E. Earlier Proofs of the EPI

All available information theoretic proofs of the EPI use de
Bruijn’s identity to integrate the FII (or the corresponding in-
equality for MMSE) over the path of a continuous Gaussian per-
turbation. To simplify the presentation, we first consider a path
of the form { X + v/ Z}1¢ (0,400 Where Z is assumed standard
Gaussian. The derivations in this section are readily extended to
the case where Z is arbitrary Gaussian, by means of the corre-
sponding generalized FII and de Bruijn’s identity.

"The 1 /2 factor is absent in [58], due to the fact that complex gradients are
considered.

8Putting the matrix entries into a column vector k it is easily found that
tr(<L(0) - K*) = k* 4 (0).

9This follows from the relation J(X) —J(X*) = Cov(S(X)—S*(X)) >
0, where S*(X) is defined as in (15).
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1) Basic Proof: The following is a simplified version of
Stam’s proof [2]. Apply the FII (17c) to the random vectors
(X; + V't Z;);, where the (Z;); are independent and standard
Gaussian. This gives J(}_; a; X; + VtZ) — Y, a?J(X; +
VtZ;) <0, where Z = >, @i Z; is also standard Gaussian. By
de Bruijn’s identity (41b), it follows that f(¢) = A}, a; X; +
VtZ) =3, a?h(X; + /'t Z;) is a nonincreasing function of ¢.
But f(t) = h(t712Y ), a; X; + Z) = 3, a?h(t7 Y2 X, + Z;)
tends to h(Z) — 3", a?h(Z;) = 0 ast — oo (see Lemma 3
below). Therefore, f(0) > f(co) = 0, which is the EPI (8c).

Note that the case of equality in (8c) is easily determined by
this approach, since it reduces to the case of equality in the corre-
sponding FII (see Section II-C—4). Namely, equality holds in the
EPI (8c¢) iff all random vectors X; for which a; # 0 are Gaussian
with identical covariances. It follows that equality holds in the
classical form of the EPI (8a) iff all random vectors X; for which
a; # 0 are Gaussian with proportional covariances.

2) Integral Representations of Differential Entropy: In the
above proof, de Bruijn’s identity can be rewritten as an inte-
gral representation of entropy. To see this, introduce an auxil-
iary Gaussian random vector X*, and rewrite de Bruijn iden-
tity (41b) in the form!0 &L (h(X* + V1 Z) — h(X + V1 Z)) =
—HJ(X +VtZ)— J(X* +/tZ)).Since h(X* + Vt Z) —
h(X +VtZ) — 0 ast — oo, we may integrate from ¢ = 0 to
400 to obtain h(X) — h(X*) as the integral of J(X 4/t Z) —
J(X*+ VtZ ). If, for example, Z* is chosen standard, one ob-
tains the integral representation [46]

h(X) — g log(2me)

1 [ n
2/0 J(X+\/£Z)—1—+tdt. (47a)

In view of this identity, the EPI (8c) immediately follows from
the corresponding FII (17c).

3) Other Paths of Integration: Several variants of the above
proof were published, either in differential or integral form.
Dembo, Cover, and Thomas [4] and Carlen and Soffer [5] use a
path connecting Z to X of the form {v/t X + /T — t Z}1e(0;1).-
The argument leading to the EPI is the same up to an appropriate
change of variable. The corresponding integral representation

hX) = glog(%re)
1 [t dt
—5/ J(\/ZX—i—\/l—tZ)—nT (47b)
Jo 2

was first used by Barron [30] to prove a strong version of
the central limit theorem. Verdd and Guo [11] used the path
{VtX + Z}ie(+00] and replaced Fisher information by
MMSE. They used (42b) to integrate inequality (33) over this
path. Their proof is completely equivalent to Stam’s proof
above, by means of the complementary relation (29) of Propo-
sition 6 and the change of variable ¢’ = 1/t. The corresponding
integral representation becomes [10]-[12]

h(X) = glog(27re)
—- | —— = Var(X|VtX + Z)dt.

1/°°
2o 1+t

10When X * is chosen such that Cov(X*) = Cov(X), the identity relates
nonnegative “non-Gaussiannesses” (6) and (15).

i (47¢)
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Yet another possibility is to take the path {v1—¢tX +
Vit Z}ie(0;1) connecting X to Z, leading to the following
integral representation:

W(X) = glog(27re)

1 [ 1
/ n—¥Var(X|\/1—tX+\/EZ)% (47d)
0

2

All the above representations for entropy are equivalent through
appropriate changes of variable inside the integrals.

III. A NEW PROOF OF SHANNON’S EPI

A. A Mutual Information Inequality (MII)

From the analysis made in Section II, it is clear that earlier
information theoretic proofs of the EPI can be seen as variants
of the same proof, with the following common ingredients:

1) adata processing inequality applied to the linear transfor-

mation (9).

2) an integration over a path of a continuous Gaussian per-

turbation.
While step 1) uses the data processing theorem in terms of ei-
ther parametric Fisher information or MMSE, step 2) uses de
Bruijn’s identity, which relates Fisher information or MMSE to
entropy or mutual information. This suggests that it should be
possible to prove the EPI via a data processing argument made
directly on the mutual information. The interest is twofold: First,
compared to the data processing theorem for Fisher information,
the corresponding theorem for Shannon’s mutual information is
presumably more familiar to the readers of this journal. Second,
this approach sidesteps both Fisher information and MMSE and
avoids the use of de Bruijn’s identity (41b) or (42b).

We shall prove a stronger statement than the EPI, namely, that
the difference between both sides of (8c) decreases as indepen-
dent Gaussian noise Z is added. Since h(X + Z) — h(X) =
I(X + Z; Z) for any X independent of Z (see Lemma 1), we
write this statement in terms of mutual information as follows.

Theorem 1 (Mutual Information Inequality (MII)): For
finitely many independent random n-vectors (X;); with finite
covariances, any real-valued coefficients (a;); normalized such

that ), a? = 1, and any Gaussian n-vector Z independent of
(Xi)i

IO aiXi+ 2:2) <> ail(Xi+ Z;: 7). (48)

Furthermore, this inequality implies the EPI (8c).

The MII (48) can be interpreted as a convexity property of
mutual information under the covariance-preserving transfor-
mation (9). As we shall see, the crucial step in the proof of The-
orem 1 is the data processing inequality for mutual information
[9]. We also need the following technical lemmas. In order to be
mathematically correct throughout we first establish some basic
properties of mutual information and entropy.

Lemma 1: Let X be any random n-vector and Z be any
Gaussian n-vector independent of X. Then X + Z has a den-
sity, h(X + Z) exists and is finite. In addition, if A(X) exists,
the identity I(X + Z;Z) = h(X + Z) — h(X) always holds.
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Proof: Let ¢x(u) = E(exp(ju - X)) be the characteristic
function of X; thatof Y = X + Z is ¢y (u) = ¢dx(u)dz(u)
where ¢z (u) = exp(ju - E(Z) — 3u'Cov(Z)u). Since charac-
teristic functions are bounded contlnuous and ¢z (u) has rapid
decay (faster than any inverse of a polynomial) at infinity, it fol-
lows that ¢y (u) is integrable. Therefore, Y admits a bounded
density!! p(y), such that p(y) < ¢ where ¢ is some positive con-
stant. The negative part of the integral — [ p(y)log p(y)dy is
h=(Y) = fp(y)>1 p(y) log p(y)dy < log c, which is bounded.
Hence h(X + Z) = h(Y') exists and is finite.

If h(X) exists, then either X admits a density px(z) or it
does not. In the former case (Y, Z) = (X + Z,Z) also ad-
mits a density p(y,2) = px(y — 2z)pz(z) and the identity
I(X+Z;Z) = h(X 4+ Z) — h(X) is well known. In the latter
case we have put h(X) = —oo (see Section I-B). Since X is
not absolutely continuous with respect to the Lebesgue measure,
there exists a set A of zero measure such that P(X € A) > 0
Then B = {(y,z)|y — z € A} has zero Lebesgue mea-
sure and P(X 4+ Z,Z) € B) = P(X € A) > 0. Since
B is also of zero measure with respect to the product proba-
bility measure with density py (y)pz(z), it follows that (Y, Z)
is not absolutely continuous with respect to this product mea-
sure. Therefore, by the theorem of Gel’fand- Yaglom-Perez [50,
ch.2],onehas [(X + Z;Z) = I(Y; Z) = +co and the identity
I(X 4+ 7Z;7Z) = h(X + Z) — h(X) still holds. O

In the same way one can prove that the identity I(X +
VtZ;7) = (X +t Z) — h(X) always holds for any ¢ > 0.

The following inequality (49) was proved for two variables by
Sato [86] who used it to derive an outer bound to the capacity
region of broadcast channels. A similar inequality appears in
[87, Th. 4.2.1] and in [88, Th 1.9].

Lemma 2 (Sato’s Inequality): If the random vectors (X); are
independent of Z and of each other, then
I(X; + Z);

7)< I(Xi+ 7 7). (49)

Proof: LetY; = X; 4+ Z for all ¢. By the chain rule for
mutual information [50, ch. 3], one has

I((Yi)i; Z)

=Y " I(YiZ|Y1,....Yi0) (50a)

<N IV Z|Ya, . Yi) + 1Y Y, Vi)
(50b)
= I(Yi;Z,Y1,....Yi1) (50¢)
=3 (Y Z) + 1(YisYa, ..., Y1 | Z) (50d)
=> 1(Yi; Z). (50e)
Z O

I This density is in fact indefinitely differentiable and strictly positive, and
all its derivatives are bounded and tend to zero at infinity.
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An alternative proof in the case where Y = (Y;); admits a
density, is as follows. Define the multi-information between the
components of Y by the divergence

=3 I(YisYi,....Y;

>1

H(Y; )}—Elog »Yie1)-

(D

From the definitions it is obvious that I((Y;);;Z) —
1Y Z) = I{(Y)):lZ} — I{(Y;):}. The result fol-
lows since T{(Y;);} > 0and I{(Y;); | Z} = I{(X;):} = 0.

Lemma 3: If X and Z are independent random n-vectors with
finite covariances and differential entropies, then

1i%1+ I(X +VtZ;Z)=0. (52)
t—

If, in addition, I(X + VtZ:Z ) is differentiable at ¢ = 0, then
for any real constant a

I(X + aVtZ; Z) = o®I(X + V1Z; Z) + o(t) (53)
where o(t) is a function defined for all ¢ > 0 such that o(¢)/t —
Oast — OF.

Proof: To prove (52), let X, = X + v/t Z. Taking char-
acteristic functions, ¢x, (u) = ¢x(u)pz(Viu) — dx(u) as
t — 07, Therefore X; — X in distribution. Let X* and Z* be
Gaussian n-vectors have identical covariances as X and Z, re-
spectively. Likewise X; = X* + v/tZ* — X* in distribution.
By the lower semicontinuity of divergence (see [50, Sec. 2.4]
and [89, Th. 1]), we have

D(X||X*) < liminf D(X,]|X7). (54)
t—0
The following quantities are all finite.
D(X4[|X7) — D(X||X7)
= h(X]) = h(Xy) — h(X*) 4+ h(X™) (55a)
= h(X* +VtZ*) = h(X*) = I(X + VtZ; Z).(55b)

An easy calculation for Gaussian vectors gives lim;_, g+ h(X*+
VtZ*) = h(X*). Therefore (54) reduces to

limsup (X + VtZ; Z) <hm1nfh(X*+\/_Z )

t—0+ t—0+

“h(X*)=0. (56)
This combined with nonnegativity of mutual information proves
(52).

Now suppose I(X + /1Z;7) is differentiable at t = 0.
Since limy_,g+ I(X + VtZ;Z) = 0,forany a € R, I[(X +
a/tZ; Z)]a*t and [( X +/tZ; Z)/t tend toward the same limit
as t — 0. This reduces to (53). O

Note that neither Lemma 2 nor Lemma 3 requires Z to be
Gaussian. The following lemma gives an important situation
where the differentiability assumption of Lemma 3 is met.
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Lemma 4: Let X be any random n-vector with finite covari-
ances and differential entropy, and let Z, Z’ be identically dis-
tributed Gaussian n-vectors such that X, 7, Z’ are independent.
The quantity (X + v/#Z; Z) is differentiable at any ¢ > 0. In
addition, if X’ = X + \/u Z’ where u > 0, then

I(X' +VtZ;2) = (X +Vu+1t7Z;7)
~I(X+VuZ;Z) (57)
is also differentiable at t = 0.

Proof: Following Stam [2], Barron [30] proved that A( X +
VtZ) is differentiable in t > 0 for any square-integrable X . The
proof involves exchanges of differentiation and expectation jus-
tified by the dominated convergence theorem and is not repeated
here. From Lemma 1 is follows that I(X 4 v/1Z; Z) is likewise
differentiable at any ¢ > 0. Now the following quantities are all
finite.

I(X'+VtZ,2)

=I(X+VuZ +VtZ;Z) (58a)
=h(X+VuZ +VtZ)—h(X +uZ') (58b)
=X +VuZ +VtZ) - h(X)
+h(X) = h(X +VuZ) (58¢c)
=I(X+VuZ +VtZ;\JuZ' +Vt7)
—I(X+VuZ';\/uZ) (58d)
=I(X+Vu+tZ;2) - (X +uZ;Z). (58)
The Ilast equality follows from the stability property
of the Gaussian distribution under convolution, since

VuZ' 4+ \/tZ is identically distributed as \/u + ¢ Z. Since
I(X + Vu+tZ; 7) is differentiable at ¢ = 0 for any u > 0,

IX'+\Vt2;2) = (X +Vu+12;Z) = (X +VuZ; Z)
is likewise differentiable at t = 0. O

Proof of Theorem 1: We may always assume that a; # 0
for all ;—otherwise simply delete the X; for which a; = 0. To
prove (48), we may also assume that all the X; have finite dif-
ferential entropies, since otherwise the right-hand side (RHS)
of (48) is = 400 by Lemma 1. Then all the X; admit densi-
ties, and ) , 0;X; likewise admits a density and has finite co-
variances. From Proposition 1 it follows that A(} . a; X;) <
+00, and since conditioning reduces entropy, —oco < h(X;) <
h(3, a; X;). Therefore, ), a; X; also has finite differential en-
tropy. From this and Lemma 1 it follows that all subsequent mu-
tual informations will be finite.

We can write the following string of inequalities:

ZaX +7; Z)—I(Zm(X +a;Z);Z) (59)

< (X + a1 2)i: 2)
< ZI Xi+a;Z; 7)

(59b)
(59¢)

where (59a) holds since ZZ a? = 1, (59b) follows from the
data processing theorem applied to the linear transformation (9),
(59c¢) follows from Sato’s inequality (Lemma 2). Note that sub-
stituting v/#Z for Z in (59¢) and assuming that Z and the X;
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satisfy the differentiability assumption of Lemma 3 for all 7, one
obtains

(0> aiX; +Vt7:2) <0l I(Xi + VEZ; Z) + o(t).

(60)

We now use the assumption that Z is Gaussian to eliminate the
o(t) term in (60).

Let X! = X; + u Z! for all i and v > 0, where the Z/
are Gaussian, identically distributed as Z but independent of
all other random vectors. Then Z' = . a;Z! is identically
distributed as Z, and applying (59¢) to the X/ and to v/# Z, one
obtains

(Y aXi+ VuZ +ViZ;Z)

<Y I(X{+a:iZ; 2) (61a)
=> @ I(Xi+VuZ+VtZ; Z) + o(t) (61b)

where the last equality follows from the fact that by Lemma 4,
the X! = X, + /u Z! satisfy the differentiability assumption
of Lemma 3. Now define

t)=I( Z a; X; +VtZ2; Z) — Z all(X; + VtZ; 7).

Using (57), inequality (61) is easily rewritten as

ZalX +Vu+tZ;Z) ZaX +VuZ;Z)
Szai (I(X; +Vu+tZ;7) -

thatis f(u+1t) < f(u)+ o(t) for any v > 0. Since f(u) is dif-
ferentiable at any v > 0 by Lemma 4, it easily follows that f(u)
is non-increasing in u > 0. Also, by Lemma 3, lim;_,o f(¢) =
f(0) = 0. Therefore, f(1) < f(0) = 0, which is the required
MII (48).

Finally, we show that the MII implies the EPI (8c). Since
Siai=landI(X+Z;Z)=h(X+Z)—h(X)=I1(X; X+
Z) +h(Z )—h(X) for X independent of Z, (48) can be rewritten

as
WD aiXi)= > alh(X;)
> 1(Y aiXiy aiX;+Z)

=Y @l I(Xi Xi+ 7).

I(Xi +VuZ; Z)) + ole)

(62)

Now replace Z by v/t Z and let t — oo. The terms in the RHS
of the above inequality are of the form I(X; X + /t Z)
I(X; % X + Z), which tends to zero as ¢ — oo by Lemma
3. This completes the proof. O

B. Insights and Discussions

1) Relationship to Earlier Proofs: Of course, Theorem 1
could also be proved using the conventional techniques of
Section II. In fact, it follows easily from either one of the
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integral representations (47). Also Lemma 3 is an easy con-
sequence of de Bruijn’s identity, since by (37), both sides of
(53) are equal to tr(Cov(aZ)J(X)) = %ttr(Cov(Z)I(X)).
The originality here lies in the above proof of Theorem 1 and
the EPI, which in contrast to existing proofs, requires neither
de Bruijn’s identity nor the notions of Fisher information or
MMSE.

The new proof shares common ingredients with earlier proofs
of the EPI, namely items 1) and 2) listed at the beginning of this
section. The difference is that they are used directly in terms of
mutual information. As in Section II-E-3, other paths of con-
tinuous Gaussian perturbation could very well be used, through
suitable changes of variable.

One may wonder if mutual informations in the form
I(X;Vt X + Z) rather than I(X + \/t Z; Z) could be used in
the above derivation of Theorem 1, particularly in inequalities
(59). This would offer a dual proof, in the same way as Verdd
and Guo’s proof is dual to Stam and Blachman’s original proof
of the EPI, as explained in Section II. But a closer look at
the above proof reveals that the dual approach would amount
to prove (62), whose natural proof using the data processing
inequality is through (59). Thus, it turns out that the two
approaches amount to the same.

Also note that by application of de Bruijn’s identity, in-
equality (60) reduces to the FII (17c). Thus the MII (48)
implies both the EPI (8c) and the FII (17c).

2) The Equality Case: Our method does not easily settle the
case of equality in the MII. By the preceding remark, however,
equality in (60) implies equality in the FII (17c), which was
determined in Section II-C—4. It follows that equality holds in
the MII (48) if and only if all random vectors X; such thata; # 0
are Gaussian with identical covariances. This result implies the
corresponding necessity condition of equality in the EPI, but is
not evident from the properties of mutual information alone.

3) On the Gaussianness of Z: 1t is interesting to note that
from (60), the MII holds up to first order of the noise variance,
regardless of whether Z is Gaussian or not. However, the sta-
bility property of the Gaussian distribution under convolution
was crucial in the next step of the proof, because the Gaussian
perturbation Z can be made to affect the random vectors inde-
pendently. In fact, the MII can be easily rewritten as

> h Z a; X!) — Z a?h(X]) (63)

where X! = X; + Z; for all 4, the (Z;); being independent
copies of Z. This does not hold in general for non-Gaussian
random vectors (Z;);. To see this, choose (X;); themselves
Gaussian with identical covariances. Then the left-hand side
(LHS) of (63) is zero, and by the necessity of the condition
for equality in the EPI, the RHS is positive, as soon as Z; is
non-Gaussian for some 7 such that a; # 0. Therefore, in this
case, the opposite inequality is obtained. In other words, adding
non-Gaussian noise may increase the difference between both
sides of the EPI (8c), in accordance with the fact that this dif-
ference is zero for Gaussian random vectors.

4) On the Finite Second-Order Moment Assumption: To
prove Theorem 1 we have assumed for simplicity that the X;
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have finite covariances so that differential entropies are well
defined and the lower semicontinuity argument in Lemma 3
applies. However, it would be possible to weaken this condition
to first-order finite moment or even to the condition of Propo-
sition 1 by considering divergences with respect to probability
distributions other than Gaussian, e.g., exponential or Cauchy
distributions as in the proof of Proposition 1. The details are
left to the reader.

5) On the Use of Sato’s Inequality: Sato used (49) and the
data processing inequality to derive his cooperative outer bound
to the capacity region of two-user broadcast channels [86]. This
bound was used to determine the capacity of a two-user MIMO
Gaussian broadcast channel [90]. Sato’s bound was later re-
placed by the EPI to generalize Bergmans’ solution to an arbi-
trary multiuser MIMO Gaussian broadcast channel using the no-
tion of an “enhanced” channel [15]. In the present paper, the EPI
itself is proved using Sato’s inequality and the data processing
inequality. This suggests that for proving converse coding the-
orems, a direct use of the EPI may be avoided by suitable in-
equalities for mutual information. A similar remark goes for the
generalization of Ozarow’s solution to vector Gaussian multiple
descriptions [91].

6) Relationship Between Various Data Processing Theorems:
Proposition 5 enlightens the connection between two estimation
theoretic data processing inequalities: parametric (Fisher infor-
mation) and nonparametric (MMSE). While these were applied
in earlier proofs of the EPI, the new proof uses the same data
processing argument in terms of mutual information: any trans-
formation X — Y in a Markov chain § — X — Y reduces
information about 6. This can also be given a parametric form
using divergence (38). Thus, if # — X — Y form a Markov
chain, then

16,Y)
Dy (pol|per)

106, X)
Dx (pollper)-

(64a)

<
< (64b)

As in Proposition 5, the first data processing inequality
involves a random variable 6, while the second considers
6 as a parameter. The proof is immediate from the chain

rules 1(6;Y) + I(6; X|Y) = I(0;X,Y) = I(6;X)
and Dy (pollper) + Dx|v(pellper) = Dx,y(pollper) =
Dx (pg|lper) where by the Markov chain condition,

I(6;Y | X) = 0and Dy | x(ps||per) = O, respectively.

Comparing the various proofs of the EPI presented above, it
is clear that, as already suggested in Zamir’s presentation [53],
estimation theoretic and information theoretic data processing
inequalities are strongly related. Also note that in view of (39),
the lesser known data processing inequality for Fisher informa-
tion (23b) is an immediate consequence of the corresponding
inequality for divergence (64b). Indeed, dividing both sides of
(64b) by ||# — #'||? and letting ' — 6 gives (23b). It would
be interesting to see if the various data processing inequalities
(for mutual information, divergence, MMSE, and Fisher infor-
mation) can be further unified and given a common viewpoint,
leading to new insights and applications.

7) On the EPI for Discrete Variables: The above proof of
the MII does not require the (X;); to be random vectors with
densities. Therefore, it also holds when the random vectors are
discrete (finitely or countably) valued. In fact, Verdd and Guo
[11] used [10, Lemma 6, App. VII] to show that the EPI (8c)
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also holds in this case, where differential entropies are replaced
by entropies. We call attention that this is in fact a immediate
consequence of the stronger inequality

H(Y aiX) > max H(X)

i

for any independent discrete random vectors (X;); and any
real-valued coefficients (a;);, which is easily obtained by
l’lOtiIlg that H(Zl aZXZ) Z H(Zz aiXi | (XJ)J;,gZ) = H(XL)
for all 7. Note, however, that the classical EPI in the form
exp2H(Y., X;) > >, exp 2H(X;) does not hold in gen-
eral for discrete random vectors—a simple counterexample is
obtained by taking deterministic X; for all 7.

There also exist may discrete analogs to the entropy power
inequality, either in the form (8a) or (8c). A first set of results
[92]-[95] were derived for binary random vectors where addi-
tion is replaced by modulo-2 addition. The corresponding in-
equalities are quite different from (8) and apparently unrelated
to the contributions of this paper.

More recent results involve random variables taking integer
values. In this case, the role of the Gaussian distribution and
it stability property under convolution is played by the Poisson
distribution. An analog of the FII (17) was proposed by Kagan
[96] and a similar, alhtough different, version of discrete Fisher
information was used in [97] in connection with the conver-
gence of the (usual) sum of independent binary random vari-
ables toward the Poisson distribution. A discrete analog to (8a)
was proved for binomial distributions [98], and a discrete analog
to (8c) was recently established by Yu and Johnson [99] for pos-
itive random variables having ultra-log-concave distributions.
It would be desirable to unify the different approaches for in-
teger-valued random variables to see whether the method of this
paper contributes to what is known in this case.

IV. ZAMIR AND FEDER’S EPI FOR LINEAR TRANSFORMATIONS

A. Background

Zamir and Feder [38]-[40] generalized the scalar EPI by ex-
tending the linear combination ) ; 0;X; of random variables to
an arbitrary linear transformation A X, where X is the random
vector of independent entries (X;); and A = (a; ;); ; is arect-
angular matrix. They showed that the resulting inequality cannot
be derived by a straightforward application of the vector EPI of
Proposition 2. They also noted that it becomes trivial if A is
row-rank deficient. Therefore, in the following, we assume that
A has full row rank.

Zamir and Feder’s generalized EPI (ZF-EPI) has been used to
derive results on closeness to normality after linear transforma-
tion of a white random vector in the context of minimum entropy
deconvolution [38] and analyze the rate-distortion performance
of an entropy-coded dithered quantization scheme [100]. It was
also used as a guide to extend the Brunn-Minkowski inequality
in geometry [101], [102], which can be applied to the calcula-
tion of lattice quantization bit rates under spectral constraints.

The equivalent forms of the ZF-EPI corresponding to those
given in Proposition 2 are the following.

Proposition 9 (Equivalent ZF-EPIs): The following inequal-
ities, each stated for any random (column) vector X of inde-
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pendent entries (X ;); with densities and real-valued rectangular
full row rank matrix A, are equivalent.

N(AX) > |Adiag(N(X;)); A|M" (65a)
h(AX) > h(AX) (65b)
(65¢)

h(AX) > af ;h(X;) (AA'=T)
¥

where 7 is the number of rows in A, and the components of X =

(X,); are independent Gaussian random variables of entropies
}L(Xj) = }L(Xj).

The proof of Proposition 9 1is a direct extension
of that of Proposition 2. That (65a), (65b) are
equivalent follows immediately from the equalities

A diag(N(X;); A" = |Adiag(N(X;)); A"/
|ACov(X)A!Y/" = |Cov(AX)|/" = N(AX). The impli-
cation (65c) = (65a) is proved in [40], and the equivalence
(65b) < (65c) is proved in detail in [12].

Similarly as for (8c), inequality (65c) can be interpreted as a
concavity property of entropy under the variance-preserving!2
transformation

X - AX (AA'=1) (66)
and is the golden door in the route of proving the ZF-EPI. The
conventional techniques presented in Section II generalize to
the present situation. One has the following Fisher information

matrix inequalities analogous to (65):

JHAX) > AT L(X)A! (67a)
J(AX) < J(AX) (67b)
JAX) < AJ(X)A! (AA'=T) (67¢)

where the components of X = (X ;)5 are independent Gaussian
variables with Fisher informations J(X;) = J(X;) for all j.
The first inequality (67a) was derived by Papathanasiou [52]
and independently by Zamir and Feder [38], [40], who used a
generalization of the conditional mean representation of score
(see Section II-C-2); their proof is simplified in [103] and [104].
Later, Zamir [53] provided an insightful proof of (67) by gen-
eralizing Stam’s approach (see Section II-C-1) and also deter-
mined the case of equality [103], [105]. Taking the trace in both
sides of (67c) gives

J(AX) <Y aZ;J(X;)  (AA'=T) (68)
]

which was used by Zamir and Feder [40], [53] to prove the
ZF-EPI (65¢) by integration over the path {\/tX + /1 —tZ}
(see Section II-E). Finally, Guo, Shamai, and Verdu [12] gener-
alized their approach (see Section II-C-3) to obtain

Var(AX |AX + Z) > Y a? Var(X; | X, + Z;)

.3

(69)

where Z and the (Z;); are standard Gaussian independent of
X, and used it to prove the ZF-EPI (65c) by integration over
the path {\/tX + Z} (see Section II-E). Again the approaches

12If the (X ;); have equal variances, then so have the components of A X,
since Cov(X) = ¢TI implies Cov(AX) = ACov(X)A? = c2AA* =
o?1.
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corresponding to (68) and (69) are equivalent by virtue of the
complementary relation (29), as explained in Section II-C-3.

B. A New Proof of the ZF-EPI

The same ideas as in the proof of Theorem 1 are easily gen-
eralized to prove the ZF-EPI.

Theorem 2 (Mutual Information Inequality for Linear Trans-
formations): For any random vector X with independent entries
(X;); having finite variances, any real-valued rectangular ma-
trix A with 7 orthonormal rows (AA? = I), and any standard
Gaussian random r-vector Z and variable Z independent of X

IAX +Z:2) <Y a0} ; I(X; + Z; Z).

%5

(70)

Furthermore, this inequality imply the ZF-EPI.

Proof: Noting Z' = A'Z, a Gaussian random vector with
the same dimension as X, we can write the following string of
inequalities:

IAX+Z;Z2) = 1(A(X + Z'); Z") (71a)
<I(X+27.7) (71b)
< (71¢)

S IXj+ 725 7))
i

where (71a) holds since AA? = I, (71b) follows from the data
processing theorem applied to the linear transformation (66),
and (71c) follows from Sato’s inequality (Lemma 2). Now apply
the resulting inequality to X = X + /u Z, where v > 0 and Z
is a standard Gaussian random vector independent of all other
random variables, and replace Z by VtZ, where t > 0. This
gives

I(AX +VuAZ +\tZ;Z)
< CIX, + VuZp + V25 7).
J

The Gaussian perturbation Z ensures that densities of the
(X, + VuZ;); are smooth, so that (52) of Lemma 3 applies
to the RHS. Noting that Cov(Z’) = A'A and therefore,
> a ; for all j, we obtain

I(AX +VuAZ +\tZ;Z)

< Za?,jI(Xj + \/EZA] + \/ZZ; Z) + O(t)

4,3

where AZ is identically distributed as Z (since AA" = T),
and Z is a standard Gaussian variable, independent of all other
random variables. By the stability property of the Gaussian dis-
tribution under convolution, \/u AZ +VtZis identically dis-
tributed as v/u + £ Z, and the (v/u Z; + \/t Z); are identically
distributed as \/u + t Z. Therefore, applylng (58) gives

I(AX +Vu+tZ;Z) — I(AX +VuZ;Z)
<> a2 (I(Xj+VuttZ; Z)-1(X;+Vu+tZ; Z)) +olt)
irj
which shows that

fO) =IAX +VIZ;Z) - o} ; I(X; + V1 Z; Z)

(¥

UZ/
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is nonincreasing in ¢ > 0. Also, by Lemma 3, lim;_,o f(t) =
f(0) = 0. Therefore, f(1) < f(0) = 0, which proves the
required MII (70).

Finally, we show that (70) implies the ZF-EPI (65c). By the
identity (X +Z;Z) = I(X; X +Z)+h(Z)— h(X) for any X
independent of Z, the MII in the form f(¢) < 0 can be rewritten

as
- > ai h(X;)
2,7

> I(AX;AX +V1Z)
=3 el I(X; X +VEZ) + A

%]

where A = h(VIZ) — Y, ai ;h(VtZ) = rh(VtZ) —
rh(v/t Z) = 0. The other terms in the RHS of this inequality
are of the form I(X + t Z;7) = I(X; %X + Z), which
letting ¢ — oo tends to zero by Lemma 3. This completes the
proof. O

Notice that the approach presented here for proving the
ZF-EPI is the same as for proving the original EPI, namely,
that the difference between both sides of the ZF-EPI (65¢) is
decreased as independent white Gaussian noise is added

Za”hX

where X’ = X + Z and 7 is white Gaussian independent of X .

Zamir and Feder derived their results for random vari-
ables X ;. However, our approach can be readily extended to
random n-vectors. For this purpose, consider the random vector
X = (Xj),; whose components X; are themselves n-vectors,
and adopt the convention that the components of ¥ = AX
are m-vectors given by the relations Y; = . a; ;X;, which
amounts to saying that A is a block matrix with submatrix
entries (a; ;I); j. The generalization of Theorem 2 is straight-
forward and we omit the details. The corresponding general
ZF-EPI is still given by (65), with the above convention in the
notations.

h(AX) = al ;h(X;) > h(AX')

.3

(72)

V. TAKANO AND JOHNSON’S EPI FOR DEPENDENT VARIABLES

A. Background

Takano [41] and Johnson [42] provided conditions under
which the EPI, in the form N(X; + X5) > N(X;) + N(X2),
would still hold for dependent variables. These conditions are
expressed in terms of appropriately perturbed variables

X =X+ i) Z;, (i=1,2) (73)
where Zi,Z» are standard Gaussian, independent of
X = (X1,X>5)" and of each other, and fi(t) and fo(#)

are positive functions which tend to infinity as ¢ — oco. They
involve individual scores S(X1,:), S(X2,+) and Fisher informa-
tions J(X1 ¢), J(X2,¢), as well as the entries of the joint score

S(X:) = (51(X+), S2(X;))! and the Fisher information matrix
J1,1(Xy) J1_2(Xt)>
J(X;) = ) ;
(%2) <J1;2(Xt) J2,2(Xt)
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where X; = (X714, X2+)". Takano’s condition is [41]

E(S(X1.4)S(X2,4))
J(X14)J(Xoy4)

S1(Xy) = S(X1)  Sa(Xy) = S(Xa4))?
2E<{ I T I })(74)

for all £ > 0. Johnson’s improvement is given by the following
weaker condition [42]:

E(S(X+)S(X24))
J(Xl,t)J(Xz,t) -
E ({ (J2,2(X0) = J12(X0) S1(Xo)+ (J11(Xo) = J12(X4)) Sa(Xe)
Jia(Xe)Jao(Xy) = JEo(X0)

S(X1e) S(X20))?
h J(X1,) B J(X2,0) }

2

(75)

for all ¢ > 0. These conditions were found by generalizing
the conventional approach presented in Section II, in particular
Blachman’s representation of the score (Section II-C-2). They
are simplified below. The EPI for dependent variables finds its
application in entropy-based blind source separation of depen-
dent components (see, e.g., [106]).

B. A Generalized EPI for Dependent Random Vectors

In this section, we extend Theorem 1 to provide a simple con-
dition on dependent random n-vectors (X;); under which not
only the original EPI N (3, X;) > 3. N(X;) holds, but also
the EPI (8) for any choice of coefficients (a;);. Such stronger
form should be more relevant in applications such as blind sep-
aration of dependent components, for it ensures that negentropy
—h still satisfies the requirements (10) for a contrast objective
function, for any type of linear mixture. Define

Xie=Xi+Vt Z; (76)
corresponding to (73) with f;(¢t) = ¢ for all . Our condition
will be expressed in terms of symmetric mutual information
I{(X; )i} > 0 defined by (51), which serves as a measure of
dependence between the components of a random vector.

Theorem 3: Let X = (X;); be any finite set of (dependent)
random n-vectors, let X; = (X, ;); be defined by (76), and
let Z be a white Gaussian random n-vector independent of all
other random vectors. If, for any ¢ > 0 and any real-valued
coefficients (a;);, adding a small perturbation a;Z to the X ;
makes them “more dependent” in the sense that

H{(Xiy+a:Z)i} > H(Xig)i} +0(0%) (D
then the MII (48) and the EPI (8) hold for these random vectors
(X5)i-

Proof: The only place where the independence of the (X;);
is used in the proof of Theorem 1 is Sato’s inequality (59c¢),
which is used to the first order of 0% and applied to random
vectors of the form (76) for all £ > 0. Therefore, it is sufficient

that

I(Xig+a:i2)i;2) <> 1(Xix+ ai%; Z) + o(0)
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holds for all ¢ > 0 and any choice of (a;); to prove the MII and
hence the EPI. Now from the proof of Lemma 2, the difference
between both sides of this inequality is

I(Xi+0i2)i:2) = > _I(Xi + a; Z; Z)
LS X0 - (X + i)},

The result follows at once. O

Note that it is possible to check (77) for a fixed choice of
the coefficients (a;); to ensure that the EPI (8c) holds for these
coefficients. Of course, (77) is obviously always satisfied for
independent random vectors (X;);. In order to relate condition
(77) to Takano and Johnson’s (74), (75), we rewrite the former
in terms of Fisher information as follows.

Corollary 2: For random variables (X;); (n = 1), (77) is
equivalent to

diag(J(Xi))i > J(Xe) (78)

for all ¢ > 0, where X; = (X, ,);. Therefore, if this condition
is satisfied then the MII (48) and the EPI (8) hold.

Proof: Let Z be a standard Gaussian random variable in-
dependent of X;, and define a = (a;); and Y; = X; + /e aZ,
where aZ = (a;Z);. The perturbations (76) ensure that the den-
sity of X is smooth, so that the function I(e) = I{(Y; )} is
differentiable for all ¢ > 0. Now (77) is equivalent to I(g) >
1(0) + o(e), that is, I'(0) > 0. By (51)

H(Yi)i} =Y h(Yie) = B(Y)
so I’(0) > 0 can be rewritten as

d
Ezi:ho(i,t‘F\/gaiZ)—h(Xt—l—\/EaZ) > 0.

e=0

By de Bruijn’s identity (36), this is equivalent to

> a7 J(Xiy) > tr(I(Xy)Cov(aZ))

where Cov(aZ) = aVar(Z)a? = aal, that is

a’ - diag(J(Xit))i-a > a’ - J(Xy) - a (79)

for any vector @ and ¢ > 0. This shows that (77) is equivalent to
the matrix inequality (78) as required. O

We now recover Takano and Johnson’s conditions (74), (75)
from (78).

Lemma 5: In the case of two random variables X1, X, (74)
and (75) are equivalent to

AL diag(J(Xie))i - A > AT J(X,) - A

M - diag(J(Xia)): - CJ(X)

5

(80)
(81)
respectively, where A and p minimize the quadratic forms a® -

diag(J(X;.t)):-a and a'-J(X;)-a, respectively, over all vectors
a of the forma = (o, 1 — )}, 0 < a < 1.
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Proof: Given a positive definite symmetric matrix J, the
general solution a* to

mina’ -J-a
a

(ai ZO,Zaizl)

is easily found by the Lagrangian multiplier method. One
finds a} = 3, JZ_I/Z” J;jl for all 4 and a*' - J - a* =
(> Jifjl)_l, where Jijjl are the entries of the inverse
matrix J~!. Particularizing this gives A1 oc J7H(X1.),
A2 J_l(XZ,t) and py o< Jop(Xy) — Ji2(Xy),
pe o J11(Xy) — J12(X:) up to appropriate proportion-
ality factors, and (80), (81) are rewritten as

TN X10) + T (Xoy)

Ji1(Xy)  Jea(Xy) J12(Xy)
2 P(Xry) T P00 T (X &
(SN Xa) + T (X)) ™! )
J11(Xe)J2,2(Xe) — J7 5 (Xe) 3)

T T (X)) 4 Jaa(Xy) — 201 2( X))

Meanwhile, expanding the RHSs in (74), (75) using Stein’s
identity [42] gives

2 +v2) = I N (X1) = T (Xa)
> Vi1 (Xy) + vaJao(Xe) + 2v1ved 2(Xy)

where (v1,1v2) = (J7'(X1,4),J7'(X2,)) for Takano’s con-
dition and (1/171/2) = (J272(Xt) — leg(Xt), J171(Xt) —
J1,2(X4))/(J1,1(X4) J2,2(Xe) — J75(Xy)) for Johnson’s con-
dition. Replacing yields (82) and (83), respectively. This proves
the lemma. O

Corollary 3: In the case of two random variables X7, X5,
(78) implies both Takano and Johnson’s conditions (74), (75).

Proof: Condition (78) implies (79) for any a of the form

a = (a,1— ), 0 < «a < 1. Setting a = A yields Takano’s

condition (80). Replacing the RHS of the resulting inequality

by the minimum over a (achieved by a = p) gives Johnson’s

condition (81). O

Thus, our condition (78) is stronger than Takano’s or
Johnson’s. This is not surprising since it yields a stronger form
of the EPI (8), valid for any choice of coefficients (a;);.

VI. L1U AND VISWANATH’S COVARIANCE-CONSTRAINED EPI

As aforementioned in the Introduction, all known
applications of the EPI to source and channel coding
problems [14]-[26] involve an inequality of the form
N(X+2Z) > N(X)+N(Z), where Z is Gaussian independent
of X. In this and the next section, we study generalizations of
this inequality. We begin with Liu and Viswanath’s generalized
EPI for constrained covariance matrices.

A. Background

Recently, Liu and Viswanath [43], [44] have suggested that
the EPI’s main contribution to multiterminal coding problems
is for solving optimization problems of the form

maxh(X) — ph(X +Z) (p>1)

84)
p(z) (
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where Z is Gaussian and the maximization is over all random
n-vectors X independent of Z. The solution is easily deter-
mined from the EPI in the form (8c) applied to the random vec-
tors X1 = p*/?X and X, = (1 — p~ )" V2Z

WX +2Z)> ! (h(X) + glog u)
+ (= (= )727).

Since equality holds iff X; and X are Gaussian with identical
covariances, it follows that the optimal solution X to (84) is
Gaussian with covariance matrix Cov(X) = (u—1)"1Cov(Z2).

Clearly, the existence of a Gaussian solution to (84) is equiv-
alent to the EPI for two independent random vectors X and Z.
Liu and Viswanath [43], [44] have found an implicit general-
ization of the EPI by showing that (84) still admits a Gaussian
solution under the covariance constraint Cov(X) < C, where
C is any positive definite matrix. The gave a “direct proof,”
motivated by the vector Gaussian broadcast channel problem,
using the classical EPI, the saddlepoint property of mutual in-
formation (45) and the “enhancement” technique for Gaussian
random vectors introduced by Weingarten, Steinberg, and
Shamai [15]. They also gave a “perturbation proof” using a
generalization of the conventional techniques presented in
Section II, namely, an integration over a path of the form
{VT—tX + VtZ} of a generalized FII (17¢c) with matrix
coefficients, using de Bruijn’s identity and the Cramér-Rao
inequality!3. This and similar results for various optimization
problems involving several Gaussian random vectors find appli-
cations in vector Gaussian broadcast channels and distributed
vector Gaussian source coding [44].

B. An Explicit Covariance-Constrained MII

We first give explicit forms of covariance-constrained MII
and EPI, which will be used to solve Liu and Viswanath’s op-
timization problem. Again, the same ideas as in the proof of
Theorem 1 are easily generalized to prove the following covari-
ance-constrained MII and EPI, using only basic properties of
mutual information.

Theorem 4: Let X1, X, be independent random n-vectors
with positive definite covariance matrices, and let Z1, Z> be
Gaussian random n-vectors independent of X, X and of each
other, with covariances proportional to those of X; and Xo,
respectively: Cov(Z;) = aCov(X;), Cov(Z2) = aCov(Xs),
where a > 0. Assume that X5 is Gaussian and X1, X» are sub-
ject to the covariance constraint

Cov(X;) < Cov(X3). (85)

Then for any real-valued coefficients a1, as normalized such
that a? 4+ a3 = 1

I(a1 X1 4+ aaXo + Z; Z) < d?I(X1 + Z1; 7))

+a31(Xs + Z23Z2)  (86)

13As explained in Section II-D-7, the Cramér-Rao inequality (46) is equiva-
lent to the saddlepoint property (45) used in their “direct proof.”
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where we have noted Z = a1Z41 + asZ>. Furthermore, this
inequality implies the following generalized EPI:

h(a1 X1 + as X2) > afh(X1) + a3h(Xs) + A (87)
where

A =h(Z) = aih(Z1) — a3h(Z2) > (88)

Note that for the particular case Cov(X;) = Cov(X7), we

have Cov(Z;) = Cov(Z3), the random vectors Z;, Zs and Z
are identically distributed, A = 0 and Theorem 4 reduces to
Theorem 1 for two random vectors.

Proof of Theorem 4. First define

Z! = Cov(Z;)Cov(Z2)*Z (i=1,2)

with covariance matrices Cov(Z)) Cov(Z;)Cov
(Z)~'Cov(Z;). From (85) one successively has Cov(Z;) <
Cov(Z3), Cov(Z1) < a2Cov(Z1) + a3Cov(Zy) = Cov(Z),
Cov(Z)™t < Cov_l(Zl), and upon left and right multiplica-
tion by Cov(Z1), Cov(Z}) = Cov(Z1)Cov(Z)™*Cov(Z1) <
Cov(Zy). Similarly, Cov(Z}) > Cov(Z3). Therefore, we can
write

Zv=Zi+ 7

Zh = Zo+ Zs (89)

where Zl and Zl are Gaussian and independent of Z] and Zo,
respectively. We can now write the following string of inequal-

ities:

I(a1X1 + QQXQ + Z, Z)

=I(a1(X1+a17}) + ax(Xo +a27%); Z)  (90a)
<I(Xy+a1Z1, X0+ a2 2y Z) (90b)

I(X1+a17y;77) + I(Xo + a2 Z%; Z4)  (90c)
=1(X1 +a1Z1;Z1) + I(X2 + a2Z2; Z5)

— I(X1 + a1(Z5 + Z1); Z1)

+ I(Xa + as(Z + Z2); o) (90d)

where (90a) holds since a? 7] +a3 75 = Cov(Z)Cov(Z)~'Z =
7, (90b) follows from the data processing theorem applied to the
linear transformation (9), (90c) follows from Sato’s inequality
(Lemma 2), and (90d) follows by applying the identity (58) to
the random vectors defined by (89). By Proposition 8, I(X; +
al(Z{ + Zl), Zl) Z I(Xf + al(Zi + Zl), Z1>, where XT is
Gaussian with covariance matrix Cov(X7) = Cov(X7).

We now use the assumption that Cov(7;) aCov(Xy),
Cov(Z3) = aCov(X2) and let « — 0 in the well-known ex-
pressions for mutual informations of Gaussian random vectors

I(X7 + a1(Z] + 21)

—log | T+ aa?Cov(Z1)Cov(Z1) ™| + o(w)

1)

(Z

I(X2+(12(Z2+Z2) 75)
- 10g | T+ a3 Cov(

2)C0V(Z2)_1 | + 0(0()
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where Cov(Z1) = Cov(Z;) — Cov(Z]) = Cov(Z) —
Cov(Z1)Cov(Z) 1Cov(Z;) and Cov(Z,) = Cov(Z}) —
Cov(Z3) = Cov(Z2)Cov(Z)~1Cov(Zs) — Cov(Z) Sinc
Cov(Z) = aiCov(Zy) + a 2Co (ZQ) and a? + a3 = 1,
have a3Cov(Z1)Cov(Z1)™! = a3(I - Cov(Zl)Cov(Z) )
a3(Cov(Z2)Cov(Z)~1 — I) = a3Cov(Z,)Cov(Z,)~", and
therefore

I(Xl + al(Zi + Zl) Zl)
> I(Xl +a1(Z1 +Z1) Z )

= [(X2 4 as(Za + Z2); Z2) + o(«).
It follows from (90d) that

I(a1X1 + a2X2 + Z, Z)
<I(Xi 4 a1Z4;21) + I(Xo + a2Z2; Z5)
+ o(). (92)
The rest of the proof is entirely similar to that of Theorem 1.
Here is a sketch. Write (92) for X1 X1+ \/_Zl and X2 =
Xy + /1t Zg, where Z is identically distributed as Z; and in-
dependent of all other random vectors, for ¢ = 1,2. Applying
Lemma 3 to the RHS of the resulting inequality, this gives

Ia1 X1 + as Xo + V2 + \JeZ; Z)
< a2I(Xy +VtZy + e Z1; Zy)
+ a31(Xs + V't Zo + e Za; Zs) + o(e)

where 7 is identically distributed as Z. By virtue of (58), this
can be written in the form f(t 4+ €) < f(¢) + o(e), where

F(t) = I(a1 X1 + as Xo + V1t Z; Z)

—a2I(Xy + V't Z1; Z1) — a2I(Xo + V1t Zo; Zs).

Therefore, f(¢) is nonincreasing, and f(1) < f(0), which is the
required MII (86). This in turn can be rewritten in the form

h(ale + CLQXQ) - alh(Xl) - azh(Xz) > A + A/

where A is defined by (88) and A’ = I(a1 X1 + a2 Xo;a1 X1 +
as X9 + Z) - all(XlaXl + Z1> - GZI(XQ,XQ + ZQ) tends
to zero as & — oo by Lemma 3. This proves (87) and the the-
orem. (|

It is now easy to recover Liu and Viswanath’s formulation.

Corollary 4 (Liu and Viswanath [43] and [44]): The max-
imization problem (84), subject to the covariance constraint
Cov(X) < C, admits a Gaussian optimal solution X *.

Proof: Let X* be the optimal solution to the maximiza-
tion problem obtained by restricting the solution space within
Gaussian distributions. Thus Cov(X™*) > 0 maximizes
%10g((27re)"|Cov(X)|) - %log((27re)"|Cov(X) + Cov(2)|)
over all covariance matrices Cov(X ) < C. As stated in [44] and
shown in [15], Cov(X™*) must satisfy the Karush-Kuhn-Tucker
condition

1

5Cov(X )™ = £(Cov(X*) + Cov(2)) ™' + M

l\Dl’;
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where M > 0 is a Lagrange multiplier corresponding to
the contsraint Cov(X) < C. It follows that Cov(X*)~! >
p(Cov(X™) + Cov(Z))~1, that is, uCov(X*) < Cov(X*) +
Cov(Z), or Cov(p'/2X*) < Cov((1 — p~1)"Y22).

Now let X be any random vector independent of Z, such that
Cov(X) = Cov(X*). Define ay = pu=/2, ay = (1 — p=1)/2,
X, =u"?X, Xo=(1—-p~Y"Y2Z and Z; = p'/?X*, and
let Z5 be a Gaussian random vector identically distributed as
X, and independent of Z;. Since a? + a3 = 1 and Cov(X;) =
Cov(Z1) < Cov(X3) = Cov(Z3), we may apply Theorem 4.
By (87), we obtain

h(a1X1 + a2X2) — a%h(Xl) Z h(a1Z1 + GQZQ) — a%h(Zl)
that is, replacing and rearranging
MX)—ph(X +Z) < h(X™) — ph(X* + Z2).

Therefore, the Gaussian random vector X* is an optimal solu-
tion to (84) subject to the constraint Cov(X) < C. This com-
pletes the proof. O

VII. CoSTA’S EPI: CONCAVITY OF ENTROPY POWER

A. Background

Costa [36] has strengthened the EPI for two random vectors
X, Z in the case where / is white Gaussian. While it can be
easily shown [4], [36] that Shannon’s EPI for X, Z is equivalent
to

iN(X +VtZ)>1
dt
Costa’s EPI is the convexity inequality which expresses that the
entropy power is a concave function of the power of the added
Gaussian noise

d2

V(X + Vi Z) <0.
Alternatively, the concavity of the entropy power is equivalent
to saying that the slope 6(¢) = (N(X + VtZ) — N(X))/t
drawn from the origin is nonincreasing, while the corresponding
Shannon’s EPI is weaker, being simply equivalent to the in-
equality 6(1) > 6(o0) = N(Z).

The original proof of Costa through an explicit calculation
of the second derivative in (93) is quite involved [36]. His cal-
culations are simplified in [107]. Dembo gave an elegant proof
using the FIT over the path { X ++/tZ} [4], [37]. Recently, Guo,
Shamai, and Verdi provided a clever proof using the MMSE
over the path {\/tX + Z} [12].

Costa’s EPI has been used to determine the capacity region
of the Gaussian interference channel [20]. It was also used as
a continuity argument about entropy that was required for the
analysis of the capacity of flat-fading channels in [108].

93)

B. A New Proof of the Concavity of the Entropy Power

In his original presentation [36], Costa proposed the con-
cavity property N(X + VtZ) > (1 — t)N(X) + tN(X +
Z) in the segment (0, 1) for white Gaussian Z, in which case
he showed its equivalence to (93). He also established this in-
equality in the dual case where X is Gaussian and Z is arbi-
trary. In the latter case, however, this inequality is not sufficient
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to prove that N (X + v/t Z) is a concave function of ¢ > 0.
In this section, we prove a slight generalization of Costa’s EPI,
showing concavity in both cases, for an arbitrary (not neces-
sarily white) Gaussian random vector. Again the proposed proof
relies only on the basic properties of mutual information.

Theorem 5 (Concavity of Entropy Power): Let X and Z be
any two independent random n-vectors. If either X or Z is
Gaussian, then N (X + /1 Z) is a concave function of #.

Proof: To simplify the notation, let Z; = Vt Z. First, it is
sufficient to prove concavity in the case where Z is Gaussian,
because, as it is easily checked, the functions n(t) = N(X+Z;)
andt-n(1/t) = N(X;+ Z) are always simultaneously concave.
Next define

) = A

2

Our aim is to prove (93), that is, f%(¢) < 0. Consider the MII
(48) in the form

I(Xa+Y1-2+ 21 2) < M(X+Z0; Z)+ (1= NI(Y +Z4; Z)

where Y is independent of X, Z and 0 < A < 1. Replacing
X, Yy by XY gives the alternative form

I(X+Y +Zi;Z) < M(X + Z; Z)
F(1L=NIY + Za_xy: 2).

Choose Z’ and Z" such that Z, Z' and Z" are i.i.d. and inde-
pendent of X, and replace X by X + Z/ and Y by Z/. This
gives

X+ Zy + 2 + 26 7)
SAN(X+Z,+ Zx; Z)

+ (1= NI(Z) + Za_xy Z). (94)
We now turn this into a “mutual information power inequality”
similarly as the EPI (8a) is derived from (8c) in the proof
of Proposition 2. Define M;(X) as the power of a Gaussian
random vector X having covariances proportional to those of Z
and identical mutual information I(X + Z;; Z). By Shannon’s
capacity formula, I(X + Z; Z) = Flog(1 + to} /0% ), and
therefore

) _ tO’% _ tO’%

exp 2I(X + Zi;Z) =1 fx(t) -1

M,(X

Choose A € [0,1] such that I(X + Z] + Zx; Z) = 1(Z) +
Z(1-xt; Z) in (94). This is always possible, because the differ-
ence has opposite signs for A = 0 and A = 1. By applying the
function (exp(2-) — 1)~ to both sides of (94), we find

My(X + Z}, + Z})) > Mx(X + Z,,) + vo.

We now let t — 0 (so that A\t — 0). Since fxyz (t) =

Ix(t+u)/ fx(u), and similarly, fx iz 471 (t) = fx(t +u+

v)/fx(u + v), we obtain
fx(u+v)
fy(u+wv)

fx(u)
fx(u)

S

+ .
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Dividing by v and letting v — 0 gives
A fx(u) .
du fi(u) —

that is, carrying out the derivation, fx (u)f%(u)/f%(u)? < 0
or f%(u) < 0 as required.

It would be interesting to know whether this proof can be
adapted to the recent generalization of Costa’s EPI [109]-[111]
in which ¢ is replaced by an arbitrary positive semidefinite ma-
trix.

VIII. OPEN QUESTIONS

A. EPI, FII, and MII for Subsets of Independent Variables

Recently, Artstein, Ball, Barthe, and Naor [45] proved a new
entropy power inequality involving entropy powers of sums of
all independent variables excluding one, which solved a long-
standing conjecture about the monotonicity of entropy. This was
generalized to arbitrary collections of subsets of independent
variables (or vectors) by Madiman and Barron [46], [47]. The
generalization of the classical formulation of the EPI takes the
form

ZX

where the sum in the RHS is over arbitrary subsets S of indexes,
and k is the maximum number of subsets in which one index ap-
pears. Note that we may always assume that subsets S are “bal-
anced” [47], i.e., each index 7 appears in the RHS of (95) exactly
k times. This is because it is always possible to add singletons
to a given collection of subsets until the balancing condition is
met; since the EPI (95) would hold for the augmented collec-
tion, it a fortiori holds for the initial collection as well.

For balanced subsets, the inequalities generalizing (8c),
(17¢), (33), and (48) are the following.

ZN PIRY

i€S

95)

Proposition 10: Let (X;); be finitely many random n-vec-
tors, let Z be any Gaussian random n-vector independent of
(X;):, and let ( ;)i be any real-valued coefficients normalized
such that Y, a? = 1. Then, for any collection {S} of balanced
subsets of indexes

J() aiXi) <) atJ(Xs), (96a)
Var(lz a; X; | i a;X;+Z) > agVar(Xs|Xs + 2)
i i ’ (96b)
(D aiXi) 2> ag h(Xs) (96¢)
I( Z a; X; + Z;Sz) <> a3 I(Xs+ Z; 2) (96d)

S

where a% :.% > ies a7 (sothat Y- ¢ a% = 1) and X is given
by the covariance preserving transformation

Yies WiXi
Zies aiz

X =
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Available proofs of (96a)—(96¢) are generalizations of the con-
ventional techniques presented in Section II, where an addi-
tional tool (“variance drop lemma”) is needed to prove either
(96a) or (96b); see [45, Lemma 5], [48, Lemma 3], or [47,
Lemma 2]. Artsein, Ball, Barthe, and Naor’s proof of the EPI
(96¢), which is generalized and simplified by Madiman and
Barron, is through an integration of the FII (96a) over the path
{(VtX + V1 —=1tZ} (in [45, eq. (47b)]) or {X + V't Z} (in
[47, eq. (47a)]). Tulino and Verdud provided the corresponding
proof via MMSE [48], through an integration of the MMSE in-
equality (96b) over the path {/t X + Z} [see (47c)]. Again
the approaches corresponding to (96a) and (96b) are equivalent
by virtue of the complementary relation (29), as explained in
Section II-C-3.

That the MII (96d) holds is easily shown through (96a) or
(96b) and de Bruijn’s identity (41) or (42). However, the author
was not able to extend the ideas in the proof of Theorem 1 to
provide a direct proof of the MII (96d), which letting 0% — oo
would yield an easy proof of the generalized EPI (96c). Such
an extension perhaps involves a generalization of the data pro-
cessing inequality or Sato’s inequality in (59), which using the
relation ), a; X; = ik > g asXs would yield the inequality
IO, 0 Xi+ 2;72) <3 s I(Xs+ asZ; Z) + o(0%).

B. EPI, FII, and MII for Gas Mixtures

There is a striking resemblance between the original inequali-
ties (8c), (17¢), (33), and (48) for linear mixtures of independent
random vectors, and known inequalities concerning entropy and
Fisher information for linear “gas mixtures” of probability dis-
tributions.

Proposition 11: Let the random variable I have distribution
p(i) = a? where Y, a? = 1, let (X;); be finitely many random
n- vectors mdependent of 1, and let Z be white Gaussian, inde-
pendent of (X;); and I. Then

J(X7) < 3 aJ(X5)

Var(X7 | X1+ 2) > > aiVar(X; | X; + Z) (97b)

h(X1) > Y a2h(xX

<Y @ I(Xi+ Z; 7).

(97a)

97c¢)

(X1 +%;7) (97d)

Noting that X has distribution px, (z) = Y, p(i)p(x | i) =
> alpx, (), the “FII” (97a) can be proved directly as follows.
Let S(z) = Vpx,(z)/px, (x) and Si(x) = Vpx, (z)/px, (z)
be the score functions of X; and the (X;);, respectively,
and define \;(z) = a?px,(z)/px,(x) for all 4. Then
Yudi(z) = 1, S(z) = Y, Ai(x)Si(z) and since the
squared norm is convex, ||S(2)|> < Y, Ni(@)||Si(z)]]? =
Py (2) Y, a2px, (@) |Si(2)|[°. Averaging over px, (x) gives
(97a).

Once (97a) is established, the conventional techniques pre-
sented in Section II can be easily adapted to deduce the other
inequalities (97b)—(97d): Substituting (X; + Z;); for (X;); in
(97a), where the (Z;); are independent copies of Z, and noting
that X1 + Z1 has the same probability distribution as X7 + Z,
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we obtain the inequality J(X; + Z) < Y, a?J(X; + Z); ap-
plying the complementary relation (29) gives (97b); integrating
using de Bruijn’s identity (41) or (42) gives (97d), from which
(97c¢) follows as in the proof of Theorem 1.

In the present case, however, (97c) and (97d) are already
well known. In fact, since px, (z) = 3, a?px, () is a convex
combination of distributions, the “EPI” (97¢) is nothing but the
classical concavity property of entropy, seen as a functional of
the probability distribution [9], [87], [88]. This is easily es-
tablished by noting that since conditioning decreases entropy,
h(X1) > h(X7|1I) = >, p(3)h(X;). Also the “MII” (97d) is
just the classical convexity of mutual information I(Y, Z), seen
as a functional of the distribution p(y | z) for fixed p(z) [9, Thm.
2.7.4], [87, Thm. 4.4.3], [88, Thm. 1.7].

Accordingly, we may reverse the order of implication and de-
rive the corresponding convexity property of Fisher information
(97a) anew from the “MII” (97d). Indeed, (97d) can be rewritten
in the form

WXr+VEZ) = W(X1) <> af (WX + VEZ) - h(X5))

for any ¢ > 0. Dividing both sides by ¢ and letting ¢ — 0 gives
(97a) by virtue of de Bruijn’s identity. This derivation is much
shorter than earlier proofs of (97a), [4, Lemma 6], [112]. The
convexity property of Fisher information finds application in
channel estimation [56] and thermodynamics [113].
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