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Abstract

. A joint design of source and channel coding is
considered for digital transmission over a #-
nary symmetric channel (BSC).

Three major techniques are used: For a bi-
nary source, channel optimized coder design
(COCD) is proposed. This method has non-
binary decoding values and minimizes the MSE
distortion measure. It can be understood as a
channel coder specifically designed to be ro-
bust under transmission errors. Then, this
tool is applied to the transmission of a uni-
form source. This is done through a bitwise
decomposition structure in which the samples
of a uniform source are first expressed in bi-
nary representation and bits of same weight
are encoded together. Finally, a practical op-
timization algorithm is explained that delivers
the best set of coders, for a given raw error
probability (BER) of the chanmel.

1 Introduction

This paper addresses the transmission of dig-
ital data on noisy channels. The considered
sources are binary symmetric source (BSS) and
uniform source. The transmission is consid-
ered to be over a BSC. These choices of source
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and channel may seem overly simplistic, how-
ever they are studied in the first step, for a
better understanding of the problem, and pro-
vide later building blocks to be used in more
sophisticated systems. Actual communication
systems carry sources of various types, which
require different error protections. For thisrea-
son, we maodel the channel as a BSC, which
encompasses the physical channel as well as
the minimum required error protection for any
source that is transmitted. The additional pro-
tection is source-dependent, and can be merged
with the source coder. By adopting this policy,
joint source-channel coding can be performed,
without specializing the transmission system
to a given source,
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Figure 1: A simple transmission configuration.

A digital transmission configuration is pre-
sented in figure 1. The code rate is defined as
the number of coded bits divided by the num-
ber of source bits, B = %, We seek to min-
imize a properly defined distortion measure,
D = LE{||lu v]|?}, with the constraint that

the total transmission rate, R, is less than (or
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equal) the desired bit rate.

As aresult of Shannon’s joint source-channel
coding theorem, there was a great tendency
in the information theory society to do the
source and the channel coding separately be-
cause they can be treated separately with-
out any loss of performance for the overall
system [5]. However, such a tandem source-
channel coding necessitates very long blocks
and very complex coders. Despite its opti-
mality, Shannon’s separation theorem does not
necessarily result in the best economic solu-
tion.

2 Bitwise
compared to the bounds

decomposition,

Some bounds In this section, we obtain
the relation between the source rate-distortion
function and the optimum performance theo-
retically attainable (OPTA), R(D), on a BSC,
for a given BER, p. The OPTA function is the
expression of the smallest possible distortion as
a function of the bit rate, when transmitting a
given source on a given channel. According to
Shannon’s theory [5], the OPTA curve, R(D),
is given by:

- 1)

where R,( ) is the source rate-distortion func-
tion and €' is the channel capacity.

For our model, the BSC is parameterized
by the BER, p, on which the OPTA depends.
More precisely, C = 1< H,(p), where H is the
binary entropy function.

The Gaussian upper bound is expressed as
follows and drawn in figure 2, where we con-
sidered 0% = 5 as in a [©1 1] distributed
uniform source:

2
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The R(D) curve of any source is below this
bound.

R(D) < R%(D) =

Bitwise decomposition A memoryless
source with uniform probability density func-
tion (pdf) is considered in this section. We

Theorelical bounds
T
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Figure 2: Theoretical bound of rate-distortion
curve obtained from the Gaussian source
R9(D); Theoretical Shannon’s lower bound of
distortion, E*(D) and R(D) for a uniform
source obtained by Blahut’s algorithm, all for
p = 0.0L.

see that since different bits have different
contributions to the total error, it is rather
reasonable to send different bits with unequal
compression and/or protection rates. So, the
blocks of my most significant bits (msh) are
grouped together; the blocks of ns bits from
the next row, until ny least significant bits
(1sb) and each bit stream is a BSS [8].

It can be shown that the distortion intro-
duced by each row of bits i3 additive [8]:

N N
D= 4"E(wav;)’ =) wD; (3)
=1 =1

Lagrangian bound of distortion for a uni-
form source In [8] wehave obtained optimal
performance R;(D;) for each bit stream i:

1 @HZ( 1—\/12—4D,')
1 @Hz(p)

Ry D) = (4)
it remains to determine the optimal allocation
of bit rates R; that minimizes the total dis-
tortion D, as developed in 3, for a given rate
budget R = ¥, R;. This gives the best perfor-
mance obtainable for our structure of figure 3.
We solve this problem by the Lagrangian mul-
tiplier method.
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Figure 3: Bitwise decomposition structure: each row of bits {msb, ..., Ish) is coded separately.

The problem is to minimize R =
SN R(D;) subject to D = TN wD,.
This problem has been addressed in [8] and
the result is:

1 14 14D,

of the LBG algorithm for noisy channels. We
summarize below, the main features of the al-
gorithm and the results that we use in our fur-
ther simulations.

We aim at minimizing the average distortion
between « and v, with respect to MSE criterion

ViodD, ]082(1 @m) = Awi{14H2(p)) as defined in the following equation:

(5)
With any positive value of A, this condition
gives the optimal values of the D;’s. The D,;’s
were computed from A by inverting the com-
plicated function (5) numerically. The result
is, for any positive A, a bit rate R = 3, R; and
a value of total distortion D = 37, w; D; which
gives a solution to the problem. This result is
drawn in figure 5. It is clearly seen that the
best attainable performance of our structure is
close to the OPTA curve.

3 Channel Optimized Coder
Design for binary sources

Here, we study the case of binary source.
The practical algorithms used to design coders
for binary input, real-valzed cutputs are ex-
plained. These coders are desirable in our
approach since we need to minimize the Eu-
clidean distance of output and input (and not
the error probability, as is usually the case).
In our proposition, we aim at minimizing the
distortion measure, I?, which includes channel
noise effect, directly by derivating the expres-
sion of D, once with respect to the encoder
parameters and once with respect to the de-
" coder parameters. The approach is quite simi-
lar to that of Farvardin and Vaishampayan [4]
where they propose Channel Optimized Vec-
tor Quantization (COVQ), as a generalization

D= —B{duv)} = LE{jusvi} ()

Equation (7) is obtained for a BSC and is
known as generalized disiortion measure [1]:

; 2l
D= oy Y- Eylluevy|’p(u) (7)
u=0
2m—1 2m—1

- LSS S e ptrie) st ()

x=0 ucly y=0

where x is the encoded word to be trans-
mitted on the channel and Cyx is the region
encoded to x. In a BSC, the factor p(y|x) =
p*E X1 2p)*~9e(¥%) i5 the conditional prob-
ability of observed y, channel output, given x
as channel input; where dp denotes Hamming
distance. The dependency of distortion to in-
dex assignment is due to the dy(y,x) factor.

Analogously to LBG, COCD is also an itera-
tive algorithm which makes use of the two fol-
lowing operations: centroid update and bound-
ary update. These two steps are carried out
iteratively until a stability in the distortion is
observed. :

Centroid update Supposing that the en-
coder is fixed (the boundaries of the regions),
the decoder is updated. As we consider the
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channel effect in these expressions, the result-
ing expression for centroids is called generalized
centroid. Derivating the expression for distor-
tion, D in respect to vy, we have:

P |

3 3 2Auevy) plylx) pn) =0 (9)
x=0 ucl,

vy = 232:;61 ucCyx p(y|X) u p(u) (10)

Zin:?)l Zuecx p(yIx} p(u)

This expression says that all input possibil-
ities, u € C affect all centroids, vy and that
this effect is weighted by the p(y|x) factor.

Boundary update Supposing a given de-
coder (a set of centroids), the encoder is up-
dated. In other words, the boundaries of the
regions are updated in order to minimize the
distortion. This condition is obtained directly
by derivating the expression for distortion, D,
and we call it the principle of generalized near-
est neighbor.

uecly <
271

X = Argminx Z t]u @’VyHZ p(yEX)
y=0

Again we observe the effect of channel noise
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Figure 4: R(D) and the coders used in the
practical experiments.

- Calculate distortion Dy; of Dy, < Dp_1 < €,
then stop, otherwise repeat (1I).

We observe that the sequence of Dy is a de-
creasing sequence and we can terminate the al-
gorithm when it stabilizes. In our experiments,
we observed also that the number of necessary
iterations before reaching any local minimum
is usnally very low (mostly less than five iter-
ations), and that many local minima can be
found, according to different initializations.

in this expression. Presence of the factor Practical comnsiderations In  practice,
p(y|x) makes the encoding dependent to the there are some problems which limit the
channel. In other words, in a highly noisy application of COCD. The major problem is
channel, the encoded information word does its complexity. In fact finding a good optimum
not necessarily represent the nearest centroid for the values of m and n greater than, say
to the input word, but its generalized nearest roughly 15, confronts to practical limitaticns.

neighbor.
We can summarize the whole algorithm as
follows:

I. Initialization:

- Consider an inilial state for the encoder:
).

I1. Iterations:

For the k-th ileration:

- Update all centroids (decoder g(.),), given en-
coder (£(.),_4)-

- Update all boundaries (encoder £(.),), given
decoder (g(.),,).

III. Termination:

We used the classical coders, as proposed in
[2], with n = 15, for the initialization of the
encoder, f(.), and obtained the local optimum
coders. Figure 4, shows the performances of
the coders that we have obtained. The fig-
ure shows how much these new coders act bet-
ter than their classical counterparts (Hamming
and Repetition codes) and even better than
the specifically designed coders proposed in [2]
with n = 15 (v(m, n)).

To complete our set of coders, we added
two Hamming coders of slightly longer lengths,
Hez 7, 31,26,

The algorithm presented here, works inde-
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pendent of the fact that m < n or m > n. For
m = n, the best coding is to do nothing at
all! For the m > n case, we observed that the
best minima obtained by the algorithm were
the trivial coders. In a trivial coder, n bits are
transmitted and m <n other bits are not trans-
mitted at all. In the receiver, in place of these
m <n bits, their mean value (0.5, for a binary
source) is introduced. The performance of a
trivial coder can be simply obtained as a linear
weighting of D(,—1j = p&p® and D(,=q) = 0.25,
as follows:

n x (p<p®) + (m &n) x 0.25

(11)
In our practical experiments, we consider all
trivial coders with the form

n
Dtrivial( E) =

#100,n) n=1,2,...,99. (12)

4 VUniform source

For the uniform source, we considered the same
coders obtained for the binary source and ex-
plained in last section. For the general struc-
ture, we consider the structure in figure 3. We
search the optimum R;, D; pair for each row,
i, in order to minimize the overall distortion,
D, as in equation (3), with the constraint that
R =3%,R; < Ry, for a given p.

The optimization was done with the use of
the bit allocation algorithm as proposed by
Shoham and Gershe [6]. This method fits a
polyline on the R/D plane. The numerical re-
sult is shown in figure 5. For a highly con-
densed cloud, Shoham’s algorithm can deliver
the envelope of the permitted region.

Figure 5 shows the result of optimization and
compare it to the Lagrangian bound as well as
the no-coding bound for p = 1072, The re-
sult of a Channel Optimized Scalar Quantiza-
tion (COSQ) are also shown for comparison.
1t is clear that with COSQ, only integer values
of bit rate can be obtained. Also we see that
the proposed algorithm overperforms COSQ in
this experiment.

Figure 6 illustrates the result of optimiza-
tion for p = 1072 and for Ry = 4 also it com-
pares this result with a system without any

Lagrangian bound
Optimization
‘—+- Optim (Hamming-Rep}]
Without Cading
*  COSQ {Farvardin)
N

!

t (bits)

Figure 5: Lagrangian bound, optimization re-
sults for the coders used in this simulation
(COCD) and those in [7] (Hamming and rep-
etition codes), for p = 1072, Also is shown a
curve when no coding is applied and also the
results in COSQ.

special coding where all 4 bits are transmitted
directly on the channel. One can observe that

there is a tendency to equalize the distortion -

due to each row, w;.d;, in figure 6-a comparing
to figure 6-b. In fact, the space of used coders
is quite sparse, otherwise, one could expect a
much more equalized error contribution of all
lines. Roughly speaking, the distribution of bit
rate to each row, R, is inversely proportional
to the line number . So: R; > R; <=1 < 4.

5 Conclusion

Using our new method, COCD, we had signif-

icantly improved the performance of a bitwise
decomposition system. _

It must be indicated however that using
more powerful codes might lead more effective
optimization. In fact, our experiment can be
improved, using a more complete set of coders.

Further work will be dedicated to apply-
ing this technique on the generalized Gaussian
sources, and then to the set of sources encoded
by a transform coder.
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Figure 6: a) The optimum system of coders; b} A system without coding, for p = 1672 and
R4 = 4. The pair of numbers in parenthesis are (R;, w;.d;), the bit rate and the contribution
to distortion due to each row.
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