Chapter 8

Fast Algorithms for Wavelet
Transform Computation

Olivier Rioul, Pierre Duhamel

8.1. INTRODUCTION

Wavelet transforms have a wide range of applications, from signal analysis to image
or data compression. Compared to the classical Fourier-based transformations, it
can play either the role of the short time Fourier transform—or the Gabor trans-
form—or that of a discrete Fourier transform, or even that of a discrete cosine
transform. Therefore, it is not astonishing that the tool referred to as “‘wavelet
transform” can take very different forms, depending on the application.
The continuous wavelet transform is best suited to signal analysis [1-3, 5-7].
Its semi-discrete version (wavelet series) and its fully discrete one (discrete wavelet
transform) have been used for signal coding applications, including image
compression [4-6] and various tasks in computer vision [8,9]. Wavelet transforms
. also find applications in many other fields, too numerous to be listed here (see e.g., [5]).

8.1.1 Classification of Wavelet Transforms

In a general sense, a wavelet transformation of a time-varying signal x() con-
sists of computing coefficients that are inner products of x(f) against a family of
“wavelets.” These wavelets yr, ,() are labeled by scale and time location parameters
a and b. In a continuous wavelet transform, the wavelet corresponding to scale ¢ and
time location b is

1 _
ast = =92 1)

£l

where (1) is the wavelet “prototype,” which can be thought of as a bandpass

211

%



212

Wavelets, Wavelet Packets, and Maiching Pursuits with Biomedical Applications Part 11
function (the factor lal!/* is there to ensure energy preservation [2,5]). There are
various ways of discretizing time-scale parameters, each one yielding a different type
of wavelet transform. We adopt the following terminology, which parallels the one
commonly used for Fourier transforms.

The continuous wavelet transform (CWT) was originally introduced by
Goupillaud, Grossmann, and Morlet [2], and is given by

CWT{x(); a, b} = / x(Enr, y0dt (8-2)

where the asterisk stands for complex conjugation. Time ¢ and the time-scale para-
meters (b, @) vary continuously,

Wavelet series (WS) coefficients are sampled CWT coefficients. Time remains
continuous but time-scale parameters are sampled on a “dyadic” grid in the time-
scale plane (b, @) {4,5,8-12]. A usual definition is

Cix = CWT(t); a=2, b=k} for jkeZ (8-3)
The wavelets are, in this case,
Yty = 2772927 1 — k) (8-4)
and the original signal can be recovered through the following formula:
0= Cutix) (8-5)
JeZ kez

where wavelets @j‘k(t) are also of the form (8-4).

Wavelet series have been popularized under the form of a signal decomposition
onte “orthogonal wavelets” by Meyer, Mallat, Daubechies, and other authors [5,8-
11,13]. In the orthogonal case, the functions v, (¢} and 1,7{,-';((1) are equal, and form an
orthogonal basis. If, more generally, (8-3) and (8-5) hold exactly for v {#) and
¥, (1) not necessarily equal, we are in the so-called “biorthogonal” case: the two
sets of wavelet functions form two “mutually orthogonal” bases [4,12,14].

The discrete-time wavelet transform (DTWT) corresponds to the (continuous)
Wavelet Transform of a sampled sequence x, = x(r7"). Assuming sampling period T
to be unity leads us to consider only integer time shifts in the analysis, resuiting in

DTWT{x,; a,m} = Z X, (1) (8-6)

H

The discrete wavelet transform (DWT) (see e.g., [12,13,15]) applies to discrete-lime
signals-—both time and time-scale parameters are discrete. A DWT output on J
“octaves’ consists of “wavelet coefficients” ¢y computed for j = 1,...,J:

DWT{x(n); 2, k) = ¢jy = Y xhif(n = 2'k) (8-7)
n

and “residual coefficients™ at octave J given by

rrp= Y Xugrln—27k) (8-8)
n




Chap. 8

Fast Algorithms for Wavelet Transform Computation 213

The g,(n — 27k) are the analysis scaling sequences: They are used to bring the input
signal from the initial scale to scale 27, The hin— k) are the analysis wavelets, the
discrete equivalent to the 2792427t — 21}, The connection between both versions
{discrete and continuous) is clarified later.

The reconstruction formula by which the inverse DWT reconstructs the signal
{rom its coefficients is given by

[e=]
Xum= Y el = 2H) + Yy ufan —27k) (8-9)

Jj=1 keZ keZ

This formula is to be compared with (8-5). The mam difference, apart from dis-
cretfization, is the additional {low-pass) term: it is there to ensure perfect recon-
struction, due to the finite iteration on the scale (j==1,.--,J in place of j € Z).
“Scaling functions” similar to the g,(n —2'k) can be defined for wavelet series
{5,8-12,14~16] as shown in section 8.2.1.

8.1.2 Note on the Choice of the Wavelet

Orthogonality and biorthogonality properties, as defined earlier in the WS case,
hold also for the DTWT and DWT, using appropriate (continuous or discrete)
definitions of the inner product. The choice of particular orthogonal or bierthogenal
wavelets Is sometimes of importance in particular applications.

Here we focus on implementation issues, not on wavelet design. Therefore, even
though design constraints on the shape of wavelets can sometimes be used to reduce
the computational load, we do not take advantage of them so as to be as general as
possible. Note, however, that orthogonality can bring slight computational gains, at
the cost of a more involved implementation {17], and linear phase wavelets (possible
only in the biorthogonal case) can be used to cut the number of multiplications by 2
in the straightforward implementation of the DWT described in section 8.4, by a
simple use of symmetry in impulse responses.

We shall also restrict our focus to the (most {requent) case of wavelets with finite
support. The issue of designing a wavelet with finite support is somewhat similar to a
situation found in classical spectral analysis: when analyzing time-varying signals
with Fourier-based tools, one cannot use the continuous Fourier transform directly,
since it involves the whole signal of infinite support. Hence, the signal is restricted to
a short segment around the instant of analysis by applying some window, and this
windowed segment is then analyzed by a Fourier transform. Here, the design of a
wavelet with finite support includes that of the window. This explains why one often
chooses the wavelet in some library, just like the window for the short-time Fourier
transform. The problem of designing some wavelet transform with specific properties
is not addressed here. Note, however, that the spline implementation of wavelet
transform offers much flexibility for this purpose [27, 28].



214 Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part I1
8.2. MULTIRESOLUTION AND TWO-SCALE EQUATIONS

If we stay with our previous definitions of wavelet transforms, the problem of
choosing a wavelet is almost totally unconstrained, and full flexibility is possible—
particularly in the case of the CWT. However, one of the main concepts of wavelet
theory is the interpretation of wavelet transforms in terms of multiresolution decom-
position. Of course, wavelets can exist without the multiresolution interpretation.
However, this concept is so enlightening that we shall briefly outline its underlying
concepts. As shown in the following sections, this is especially useful for fast wavelet
algorithms and for the initial approximations that usually have to be performed on
the signal and wavelets.

8.2.1 Multiresolution Spaces

A multiresolution analysis of L*(R) is a sequence {V;} (j € Z) of subspaces of
L*(R), having the properties listed here (see [11] for mathematical details). The V;’s
model spaces of signals having resolution at most 27/,

e Every signal lies in some ¥}, and no signal—except the null signal-—belongs
to all V.

e V; contains V.
V; is closed under time shifts 1 — ¢ — k27, and x(1) € V, is equivalent to
x271) e V.

e There exists a function ¢(¢) € ¥, such that the set {¢(t — k), k € Z} forms a
basis of V.

The function ¢(7) is the scaling function. It is easily seen that the set of functions,
defined in a “dyadic wavelet style” as

¢i(t) = 2729271 — k) (8-10)

forms a basis of ;. Hence, all elements of V; can be defined as linear combinations
of ¢; (7).

Wavelet spaces W; are orthogonal complements to V; in ¥;_;. They contain the
necessary information to go from resolution 27 to 27V~ By construction, the
subspaces {W;} are mutually orthogonal, and their direct sum spans the whole signal
space Lz(R).

One of the main results of the multiresolution theory is the existence of a
function ¥(f)—the “mother wavelet”—constructed from the scaling function, and
such that the set ¥/( — k) is an orthonormal basis of Wj. Hence it follows from the
definition of the W;’s that

W= 1x() =) _ 2P Q71-k), e L(Z?) (8-11)
keZ




Chap. 8 Fast Algorithms for Wavelet Transform Computation 215

and the set 2°*y(277 ¢ — k) forms an orthonormal basis of L*(R). This corresponds
exactly to the definition of an orthonormal wavelet series: the coefficients of the WS
at scale j are the coordinates of the signal in space W,

The biorthogonal case is slightly more comphcatcd Tt involves two sequences of
multiresolution spaces, one (V) for the analysis, and the other (V) for the synthesis.

8.2.2 Examples

Classical examples of multiresolution related with the topic of fast algorithms
are

s IHaar wavelet: the scaling function ¢(r) is a rectangle of value 1 on the interval
[0, 1), and VY is the space of the functions of L*(R), which are constant by
parts.

e The dual situation in frequency: scaling functions ¢(r) have a compact sup-

port spectrum e.g., on {—.5, .5]. A natural candidate for ¢(/} is the sinc func-
tion, and a corresponding wavelet (/) can be obtained as a linear
combination of sinc functions.
This leads to an interpretation of Shannon’s theorem in terms of multireso-
lution: Sampling corresponds to the projection into a multiresolution space,
while the signal with the next coarser resolution has a spectrum twice as
small. This will lead to an interesting interpretation of the initial approxima-
tion of a fast DWT algorithm as being similar to the half-band prefiltering
made prior to sampling.

e Spaces of spline functions, built by parts, using polynomials with degree
lower or equal to d. ¥, can be obtained through the use of the B-spline
function °(f) of order d, the dth iterative convolution of the unit rectangular
pulse. These functions naturally lead to multiresolution spaces, since they are
imbricated:

B2 =Y sl - (8-12)
keZ
These functions play an important role in many respects. The obtained spline
wavelets have many useful properties, among them the possibility of conver-
gence toward Gabor functions, which have an optimal mapping of the time-
frequency plane. Second, they can easily be used to approximate a wavelet of -
any (time domain) shape, while building a multiresolution analysis, hence
allowing the use of fast algorithms.

8.2.3 Two-Scale Equations

By censtruction, ¢(t/2) € V; C ¥y, and ¥(¢1/2) € V; C V. These functions can
therefore be expressed as linear combinations of {¢(1 — k)), the basis functions of V.
We obtain twe-scale difference equations:




216

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part i

—}iqs(z/z) =Y ad-h= g (8-13)
-:j—iw(t/Z) - ;:&m(r —k)=h*d (8-14)

1t is known in multiresolution theory that the scaling function and the wavelet
are fully characterized by the set of cocfficients g and fy,. These coefficients are, in
fact, impulse responses of filters used in the implementation of a DWT. They corre-
spond, in our notation, to scaling sequences g,(n — k) and wavelets y(n — k). It is
therefore natural to consider the DWT as a natural implementation of WS, as
explained in the next section.

8.3. THE INITIAL SIGNAL APPROXIMATION

Assume that an approximation of a CWT [defined as in (8-2)] has to be computed,
and consider the following analogy with Fourier transforms. When implementing
the short time Fourier transform of some continuous signal, one first samples the
continuous signal. Information is not lost under the assumption that the signal has a
finite spectrum, by Shannon’s sampling theorem. This finite spectrum property is
ensured by some prefiltering to avoid spectrum aliasing. It is well known that this
corresponds 1o a projection of the initial signal onto the space of finite spectrum
signals, which minimizes the mean square error of the frequency estimates.

This section is concerned with the same problem in the wavelet case [18]: Given
some wavelet, which continuous signals can be represented by wavelet series without
loss of information? Intuitively, this class of signals will be the only ones for which
there will be no possibility of misinterpretation when exploiting the wavelet coeffi-
cients (think of the Fourier analogy: spectrum aliasing). Also, which procedure has
to be applied in order to minimize the reconstruction error (formally equivalent to
prefiltering in the Fourier case)?

Note that this problem can be stated in the context of a generalized sampling
theory, in which the sampler no longer takes its ideal form x,, = x(nT) (see [19]). But
a direct use of such a generalized sampling theorem would require the knowledge (or
worse, the design) of some precise sampling device. However, one usually knows
only the samples of the signal, which are assumed to be sampled according to
Shanmon’s theorem. Therefore, we follow here the approach of Abry and
Flandrin [18], which is closely related to practical applications.

Assuming the continuous time is normalized such that T == |, the continuous
signal is related to its samples x,; by

Xty =) x,sinc(t ~ n) (8-15)

n

x, = f x(£)sine(t — n)dt (8-16)




Chap. 8 Fast Algorithms for Wavelet Transform Computation 217

However, the initial signal, in a discrete implementation of a multiresolution proce-
dure such as DWT or WS, is assumed to belong to V. Hence, the initialization
should consist of projecting the signal x(¢) into 1, as follows,

£k=j}amommm (8-17)
=§:xh[mwawnmumsz

= Zx,, f sinc(u)g(u — k + mdu
= Zx,lfkm,,, with. f;, = (sinc, ¢(. — &) (8-18)

This initialization takes the {orm of a digital prefiltering, which has to be applied
before any computation involving multiresolution. When this computation is possi-
ble, it will ensure the estimation of the wavelet coefficients with the least distortion,
However, these coefficients f, are obtained through an integral involving the
(continuous) wavelet, which may be computationally intensive if several wavelets
are to be used on the signal. In this case, a cheap approximation has been proposed
in [18], which we now summarize.

Quite often, no approximation is made prior to the wavelet computation, i.e.,
one uses the implicit choice £, = x,,. It is then possible to show that the errors made
on the approximations at the various scales and on the additional “details” come
from the distance of the scale function ¢ to an ideal low-pass filter. This makes sense,
since if the initial projection were an ideal sampler, the initial projection would be
this ideal low-pass filter. The idea, explained in [18], is to make use of the funda-
mental low-pass character of ¢. Since most of its energy lies in the frequency range
[~0.5, 0.5], the result of its convolution by the sinc function will not change much of
its spectrum, Hence, a recasonable approximation is

Ji 7 d(—k) (8-19)
Zy=) %l k) (8-20)

Abry and Flandrin [18]} provide convincing examples showing the necessity of the
initialization, Note, however, that the initialization is not compulsory in the special
case where the scaling function has [—1, 1} as time support {e.g., Haar wavelet,
splines of order 0 or 1), or when the input data are largely oversampled.

8.3.1 Hemarks on Initialization and Sampling

Sampling a continucus signal consists of representing the whole information
carried by this signal by means of a discrete sequence of numbers %,,. In the case of
Shannon sampling, there is the additional requirement that these numbers
X, = x(nT). Tt is well known that this operation is feasible if the input signal is
ensured to have a finite spectrum by some prefiliering. This prefiltering is a projec-
tion of the original signal into the subspace of L*(R) of the finite spectrum functions.




218

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part IT

This space can be generated by a linear combination of translated sinc functions (the
interpolation formula: from the samples to the continuous function), thus forming a
multiresolution, whose scale function generates an orthogonal basis.

If, however, one does not constrain the “samples” %, to be values taken by the
signal at regularly spaced instants, the projection of x(f) into any multiresolution
space V, takes the general form (8-18), which is also some kind of sampling proce-
dure. In what follows, the prefiltering will be assumed to have been applied prior to
the fast algorithm computation

8.4. THE DISCRETE WAVELET TRANSFORM (DWT)

Most fast algorithms for WT computation use the DWT as a basic building block
[5,8-14,16]), hence its importance. As a transform of its own, the DWT mainly finds
application in image compression [4-6,8,9] (in a two-dimensional form), but is also
another description of octave-band filter banks that were used for some time in one-
dimensional coding schemes [17,20].

The DWT is very much like a WS but applies to discrete-time signals x,,, n € Z:
More than a simple discretization of the DTWT to the dyadic grid, we assume that it
achieves a multiresolution decomposition of x, on J octaves labeled by j =1,---, J.
It is precisely this requirement for a multiresolution—hence hierarchical—structure
that makes fast computation possible. The requirement for a multiresolution com-
putation can be stated as follows: Given some signal, at scale j, one decomposes it in
a sum of details, at scale j+ 1 (the true wavelet coefficients), plus some residual,
representing the signal at resolution j+ 1 (twice as coarse). A further analysis at
coarser scales involves only the residual (think of the imbrication of subspaces in
section 8.2). This requirement relies on the wavelet and on the signal: whether such a
computation corresponds exactly to a sampling of the DTWT or not depends on
properties of the wavelet (two-scale difference equation) and of the signal
(initialization).

The efficient DWT computational structure can be obtained by observing that,
due to the multiresolution requirement, wavelets and scaling sequences can be
deduced from one octave to the next by some two-scale difference equation.
Consider the analysis part (the treatment of synthesis “basis functions” is similar),
and proceed by analogy with the multiresolution defined on WS in section 8.2.
Consider two filter impulse responses g(n) (corresponding to some low-pass inter-
polating filter—the scaling function) and h(n) (corresponding to a high-pass filter—
the discrete wavelet). The wavelets and scaling sequences are obtained iteratively as

gi(n)=g(n)  h(n) = hn)
hi(n) = Y hi(k)g(n — 2k) (8-21)
k

gini(n) =Y _ gik)g(n —2k) (8-22)
k




”w

Chap. 8

Fast Algorithms for Wavelet Transform Computation 219

i.e., one goes from one octave j to the next (j+ 1) by applying the interpolation
operator

) = ) f)gn — 2k) (8-23)
k

which should be thought of as the discrete equivalent to the dilation
F6 = 2721(72).

Consider, for example, the computation of ¢; as given by (8-7). For fixed j, ¢; ;.
is the result of filtering the input signal by A;(n) and then decimating the output by
discarding one every 2th sample. Now the z- transform of filter A;(n) can be easily
deduced from (8-21), which reads H;,(z) = H, (z )G(z) in z-transform notation. We
obtain

Hj1(2) = GGG - -- GG HE) (8-24)
and, similarly for g;(n),
Gipi(2) = GG -+ G(Z) (8-25)

The computations of a DWT are now easily reorganized in the form of a binary tree,
as shown in Fig. 8-1.

It is thus easily recognized that the structure of computations in a DWT is
exactly an octave-band filter bank [8,12,13,15,17,20] as depicted in Fig. 8-1. The
DWT corresponds to the analysis filter bank with filters g(#) and h(n), whereas the
inverse DWT (IDWT) corresponds to the synthesis filter bank with filters g(n) and
h(n).

Note that this filter bank is critically sampled: given N input samples, the DWT
computes about N/2 + N/4+ -+ N2/ + N2™/ = N coefficients. In keeping with
the critical sampling, the octave parameter j is restricted to j > 1 so that the sampling
rate of wavelet coefficients is always less than that of the signal. Whenever the
inverse DWT is used in the following, we assume that the filters g(n), h(n), §(n),
and h(n) have been suitably designed so that (8-7) and (8-9) hold exactly. That is,
the filter bank of Fig. 8-1 allows perfect reconstruction (this corresponds to the
biorthogonal case). The reader is referred to [10,12,14,17,20] for more details on
the design.

8.5. THE DWT FOR WS COMPUTATION

8.5.1 WS Computation: Mallat and Shensa Algorithm

It is well known since Mallat [8,9] that orthogonal wavelet series can be imple-
mented using an orthogonal DWT, provided the discrete input is related to the
original signal x(f) by (8-17). The resulting algorithm, using filter banks, has been
popularized as the Mallat algorithm. It was first derived using particular orthonor-
mal wavelets.



220

Wavelets, Wavelet Packets, and Maiching Pursuits with Biomedical Applications

| H(z) ‘»@—-————-——
Y AR Gas Wavelet
%‘I-pabs coefficients
6(z2) ilter
Tow-pass
filter
DWT cell C
to next cell
(a)
i
g :: et Fi{ 2 -
Wavelet h h(- )
coefficients 97-pass
filter &z
low-pass
filter
DWT cell C
from previpus celt
(5) P
input X(z
input X(z) time b output
R (NSO VOO R [N AN N NS PPN N OO UUUE U N A Ay
C i c o o 0o o ¢ o o o —w U
3
¥
C - [} ¢ [} o} o] — |
i
Y
C | ol g o] Q —i! (!
scale
j=loga (c)
Figure 8-1 An octave-band filter bank. Basic computational cell of (&) the DWT

and (b) the inverse DWT. (¢} Overall organization takes the form of an
octave-band filter bank. The analysis part gives wavelel coefficients that
correspond to a dyadic grid in the time-scale plane. Signal is secon-
structed using the transposed scheme (b) (synthesis filler bank).

Part 11



Yf

Chap. 8

Fast Algorithms for Wavelet Transform Computation 221

The general algorithm of interest to us now, derived by Shensa [15], can be
described as follows. Given the continuous-time wavelet (), one first approximates
it by ¥(¢) in such a way that the following equation holds:

2927 =Y ket —m), =1 (&-20)

where h;(n) are discrete wavelets present in a DWT, and ¢(f) is some interpolating
function (the scale function). The precise way these J simultaneous approximations
can be accomplished is outlined in section 8.5.2.

The derivation of the algorithm is now straightforward. Substituting (8-26) into
the equation defining the WS coefficients (8-3), and assuming that the initialization
(8-17) has been done gives:

Ciu = f 202727t — kydt (8-27)
=Y X —2k) (8-28)
= DWT{%,, 2, k?} (8-29)

This ends the derivation of the Shensa algorithm: the WS coefficients with
respect to the approximated wavelet yi(f) are computed exactly for all signals
using a DWT, provided that the input is appropriately prefiltered. The accuracy
of this algorithm is balanced by the approximations made for the input (8-17) and
for the wavelets (8-26); the algorithm is exact only when the input and the wavelets
have been replaced by their approximations.

Note that we have three different types of inputs at work: the original analog
signal, its approximation introduced by the original sampling, with discrete-time
samples x,, and the filtered version X, defined by (8-18). They involve two successive
approximations: the first one is made regardless of the parameters in the algorithm
(initial sampling). The second one is the prefiltering, which depends on the para-
meters of the algorithm, and amounts to a nonorthogonal projection of x(7).

8.5.2 The Wavelet Approximation

One may wonder how (8-26) can be computed. These approximations are
important because their accuracy determines that of the whole algorithm. First,
note that this whole set of equations is equivalent to assuming that Eqgs. (8-14)
[which is (8-26) rewritten for j = 1)], plus (8-13) hold. These two-scale difference
equations were studied in detail by Daubechies and Lagarias in [21].

There are two steps involved. First, determine a low-pass filter g(n) and an
interpolating function ¢(¢) satisfying (8-13). Second, approximate (1) by linear
combinations of integer translates of ¢(¢) (8-14). This step determines the high-
pass filter i(n). Of course, it is crucial to choose a good interpolating function ¢(r)
so that ¥(¢) can be accurately approximated. Note, however, that once (1) is accu-
rately approximated by V(1) for which (8-13) and (8-14) hold, the J approximations
at all scales (8-26) are satisfied automatically; for example, minimizing the error’s



222

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 11

energy [ |y(1) — Tf}(f)|2df minimizes the maximum error |C;j — CA‘_f_kl of the wavelet
coefficients at all scales. Several “standard” choices for ¢(f) were cited in section
8.2.2.

8.5.3 Using the Inverse DWT to Compute the Inverse WS
(IWs)

We have seen that wavelet series coefficients (8-3) can be computed using a
DWT (8-29). Similarly, its inverse transform (8-5) can be computed using an inverse
DWT (8-9), under a condition similar to (8-26), but written for synthesis wavelets

/0]
277 =Y bt —n),  j=1,-0 (8-30)

Of course, this condition is, in practice, replaced by more tractable conditions as
explained earlier. Substituting (8-30) for 277/*4(271) in the formula defining the
inverse WS (8-5) results in

IWST{C; i} = D yudlt — 1) (8-31)

where the C; are the WS coefficients (8-3), and y, is defined by
yn = IDWT(C; i} (8-32)

Thus, the inverse DWT, followed by a D/A converter with characteristic #(1), com-
putes the IWS exactly.

The accuracy of the algorithm again depends on that of the signal and wavelet
approximation. The resulting analysis/synthesis WS scheme is depicted in Fig. 8-2.
First, the analog signal x(¢) is discretized according to (8-15). The discrete-time signal
x, is then prefiltered (8-18) and fed into the DWT algorithm. During synthesis, the
signal is reconstructed using an inverse DWT, followed by the interpolation (or D/A
conversion) (8-31).

Note that in this WS/IWS Shensa algorithm, the analysis and synthesis discrete
wavelets do not necessarily form a perfect reconstruction filter bank pair. However,
we now restrict the focus to the perfect reconstruction case to derive conditions under
which the original signal x(¢#) is recovered exactly.

When the DWT allows perfect reconstruction, one has y, = X,. It can be shown
that we are in fact in the “biorthogonal” case [12,14], and that one has

£<>

x(t) Xn

| D/A |

Y
=50

=0~

YYvvvvvvy

Figure 8-2 Full analysis/synthesis WS scheme. Exact reconstruction holds under
certain conditions on x(f) (see text).

|




V

Chap. 8

Fast Algorithms for Wavelet Transform Computation 223

f Bt — W) (t — mydt = 8y, (8-33)
Since y, = X,, we also have

IWS{WS{x()}} = Z( f R (u — m)du) Pt — n) (8-34)
The right-hand side of (8-34) is easily recognized to be a projection of x(#) onto the
subspace V, spanned by linear combinations of the ¢(t — n): if x(¢) belongs to Fos iy
if X(w) =3, cid(u — k), then using (8-33), Eq. (8-34) simplifies to x(¢). Therefore,
only the projected approximation of x(7) onto V, is recovered. However, since we
recover %,, we may attempt to reconstruct x(7) (or its projection onto Vo) directly
from X,,.

8.6. THE DWT FOR CWT COMPUTATION

The DWT, as well as WS, are nonredundant transforms. However, it may be useful
to obtain samples of the CWT at denser places of the time-scale plane than the
dyadic grid. It is, therefore, sometimes appropriate to generalize (8-29) in order to
obtain more samples in the time-scale plane. This is especially useful for signal
analysis, where one usually “oversamples” the discretization (8-3), in two ways:
First, one may want to evaluate the scale output at any time sample, whatever the
scale (see section 8.6.2), instead of a coarser sampling when increasing the scale.
Then it is often useful to have a finer sampling in scale, in order to obtain, e.g., “M
voices per octave” [5] (see section 8.6.1). Finally, one could wish a time-scale para-
meter sampling as follows:

a=d (8-35)
b=k (8-36)

where 1 < a; < 2. Note that a is restricted to positive values. This implicitly assumes
that the signal and wavelets are either both real-valued or both complex analytic (i.e.,
their Fourier transforms vanish for negative frequencies). One interest of (8-35) is the
possibility to approximate a nearly continuous CWT representation in the time-scale
plane for analysis purposes.

The full discretization previously defined is addressed separately, by working
with one parameter sampled as in the WS transform, while the other one takes
denser, regular sampling values. The general case is obtained by combining both
techniques.

8.6.1 Finer Sampling in Scale

Here, we stay with b = k2, while the scale parameters are sampled according to

=My vy M — 1 (8-37)



224

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 11

where m is called the “voice.” In other words, @, in (8-35) is chosen as an Mth root
of 2.

The following simple method [3] allows one to compute WS coefficients on M
voices per octave, using the standard “octave-by-octave” algorithm (8-29) as a
building block. For each m, replace ¢() by the slightly stretched wavelet
2~mMIM MMy in the expression of ¥, (f) = 271227t — k). The wavelet
basis functions become

QUMM 2y p=Gtm/M ;s _ k2)y),  jkeZ, ~ m=0,---,M—-1  (838)

The grid obtained in the time-scale plane (b, @) is shown in Fig. 8-3. Now, a compu-
tation on M voices per octave is done by applying the octave-by-octave algorithm M
times, with M different prototypes.

Of course, the parameters of each octave-by-octave algorithm must be recom-
puted for each m using the procedure previously described. Clearly, the whole algo-
rithm requires about M times the computational load of one octave-by-octave
algorithm.

This method is certainly not the best one for an “M voices per octave™ compu-
tation if M is large, because it does not take advantage of the fact that the various
prototypes (8-38) are related in a simple manner. It would be more appropriate to
devise a method that takes advantage of both time redundancy and scale redundancy
(with more scales than in the octave-by-octave case). The algorithm devised by
Bertrand et al. in [1] is based on scale redundancy but is suited for another type
of computation (see section 8.9.3).

scale

& oo $ oo
Lo
¢ O

O oo oo
&

Figure 8-3 Sampling of the time-scale plane cor-
responding to three voices per octave
in a WS. The imbrication of the com-
putation is shown using points
labeled by circles, squares, and
crosses, which can be computed sepa-
rately using octave-by-octave DWT

$ o o oo & oo
o o oo oo

j=loga algorithms.

.-




f

Chap. 8

Fast Algorithms for Wavelet Transform Computation 225

8.6.2 Finer Sampling in Time: Modified Shensa and “a
trous” Algorithms

Here, we restrict our study to an octave-by-octave computation, i.e., ¢ = Y,
while considering all possible values for the time parameter b = k. First, note that
the computation of the WS coefficients treated in section 8.5.1 is nothing but part of
the computation required here, since

Cix = CWT{x(t); 7, k2} (8-39)

Now, the Shensa algorithm for the WS coefficients can be readily extended to the
required computation of CWT{x(r); 2/, k} [15]. We have a result similar to (8-29),
namely,

CWT{x(1); 2, k} = DWT{%,; 2, k} (8-40)

where %, is a prefiltered discrete input defined by (8-17), more easily computed using
(8-18). The only difference is, of course, that the DWT is computed for all integer
values of b, instead of b = k2, as in the standard description of the DWT. Equation
(8-40) indicates that CWT coefficients sampled on an arbitrary grid in the time-scale
plane can be computed using a filter bank structure derived from the initial DWT.
This fact was mentioned by Gopinath and Burrus in [16] and subsequently discussed
in detail by Shensa in [15]: The resulting CWT algorithm was recognized to be
identical with the “a trous” algorithm of Holschneider et al. [3,5].

This “a trous” structure is pictured in Fig. 8-4(a). It can be easily derived as
follows. For fixed j, the result of (8-40) is simply the discrete input filtered by h;(n),
whose transfer function is given by (8-24). The difference with section 8.4 is the
absence of decimation. Now, reorganize the computatlon in a hierarchical way as
follows. The input is lterdt:vely filtered by G(z), G(z%), and so on. At the jth step, it is
enough to filter by H(22 ) in order to obtain the expected coefficients (8-40), as
shown in Fig. 8-4(a). The term “a trous”—with holesrwas coined by Holschneider
et al. in reference to the fact that only one every 21 coefficients is nonzero in the
filter impulse responses at the jth octave.

8.6.3 A Slightly Different Building Block

We now consider another variation of filter bank implementation of the CWT—
which was also derived by Shensa in [15]—because it is more suited to further
reduction of complexity using fast filtering techniques than the one using DWT.
Consider the filter bank structure of Fig. 8-4(c), where the elementary cell is depicted
in Fig. 8-4(b). This filter bank structure is easily deduced from the one of Fig. 8-
4(a) [15].

The advantage of this slightly different structure is easily understood as follows:
Consider the computation performed at the first octave (j =1) of Fig. 8-4 and
compare it to Fig. 8-1(a). In the latter structure, half the wavelet coefficients required
for the CWT at this octave are computed: the missing ones are the outputs of H(z)
that are discarded by the decimation process. It is sufficient to remove the subsam-
pling on H(z) to obtain the required wavelet coefficients of the first octave, as shown



226 Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 1T
B H(z) |——" lstoctave highpass
filter
/
> Hz) to-
G(z) g
)
(L} v
= () [—= 2ndoctave § 1
2 G(2) f9wpass
v 8 ilter
g
G @
N
N
> H(#) |— 3rdoctave | Cell C
' Y Y
G(2h
l (a) (b)
time b
| NN [ I Y Y Y N Y NN RO R Ny (N NN [ S (S (e

o ¢ + O o < + o) o <

scale
j=loga (©

Figure 8-4 (a) “A trous” structure as derived by Holschneider et al; (b) basic
computational cell used for computing CWT coefficients octave by
octave; () connection of the cells used in this paper and corresponding
location of the wavelet coefficients in the time-scale plane.

in Fig. 8-4(a). Also, in Fig. 8-1(a), the output of the filter G(2) is used to compute the
wavelet coefficients for the next stage (j = 2) for even values of the time-shift para-
meter b. The missing sequence, which allows one to obtain the coefficients with odd
values of b is nothing but the discarded subsampled sequence; it is recovered in Fig.
8-4(a).

At the next octave, j = 2, both inputs are processed separately using identical
cells. One provides the same coefficients as in the WS computation [round dots in




Chap. 8

Fast Algorithms for Wavelet Transform Computation 227

Fig. 8-4(c)], while the other allows one to start a new computation of the same type,
shifted in time, and beginning at the next scale [squared dots in Fig. 8.4(c)]. The
whole process is iterated as shown in Fig. 8-4(c).

In the overall organization, all outputs of both filters have to be computed,
those of G(z) being used to build two interleaved sequences, while those of H(z) are
simply the desired samples of the CWT at the given scale. This is in contrast to the
basic computational cells of the fast DWT algorithms. Hence the reorganization of
the computations described in section 8.7.2 should not be used in this case.

8.6.4 Inner Product Implementation of the CWT

Consider the filter bank implementation of Fig. 8-4(c), and assume that both
filters g(n) and h(n) are finite impulse response (FIR) filters and have same length L.
When the filters are directly implemented as inner products, the octave-by-octave
CWT algorithm requires

2L mults/input point/cell 2(L — 1) adds/input point/cell (8-41)

Note that there are 2! elementary cells at the jth octave in Fig. 8-4(c), which
are identical but “work™ at a different rate: a cell at the jth octave is fed by an input
which is subsampled by 2/~1 compared to the original input x(7). Therefore, the total
complexity required by an octave-by-octave CWT algorithm on J octaves, is exactly
J times the complexity of one cell. Thus the complexity of any filter bank imple-
mentation of a CWT grows linearly with the number of octaves. This results then,
for a CWT on J octaves, in

2LJ mults/input point 2(L — 1)J adds/input point (8-42)

As mentioned in [3], this is a significant improvement compared to the naive method
that would consist of directly implementing the CWT and would not take advantage
of the fact that wavelets are easily related by dilation (this direct implementation
would require a complexity exponentially increasing with J). Since the whole CWT
algorithm requires J times the complexity of one cell, the latter is the total complex-
ity of the CWT per input point and per octave. Hence the complexity of one cell is
also the total complexity of the CWT per output point, i.e., per computed wavelet
coefficient.

Since the elementary cell contains filters, its arithmetic complexity can be
reduced using any fast filtering technique. This is explained in the following section.

8.7. EFFICIENT IMPLEMENTATIONS OF THE DWT

In the following, we derive efficient implementations of the DWT, which can be used
to compute WS coefficients using the Shensa algorithm. Hence most of the content
of this section also applies to the implementation of tree-structured two-band filter
banks iterated on the low-pass filter.



228

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 11
8.7.1 Preliminaries

It is important to note that the standard DWT algorithm, implemented directly
as a filter bank, is already “fast.”” This fact was mentioned by Ramstad and
Saramaki in the context of octave-band filter banks [22]. What makes the DWT
“fast” is the decomposition of the computation into elementary cells and the sub-
sampling operations (decimations), which occur at each stage. More precisely, the
operations required by one elementary cell at the jth octave [Fig. 8-1(a)] are counted
as follows. There are two filters of equal length L involved. The “wavelet filtering”
by h(n) directly provides the wavelet coefficients at the considered octave, while
filtering by g(n) and decimating is used to enter the next cell. A direct implementation
of the filters g(n) and A(n) followed by decimation requires 2L multiplications and
2(L — 1) additions for every set of two inputs. That is, the complexity per input point
for each elementary cell is

L mults/point/cell and L — 1 adds/point/cell (8-43)

Since the cell at the jth octave has input subsampled by 27!, the total complexity
required by a filter bank implementation of the DWT on J octaves is
(43414 4 55) =2(1 —277) times the complexity (8-43). That is,

2L( — 27 )mults/point and 2(L — 1)(1 — 27"yadds/point (8-44)

The DWT is therefore roughly equivalent, in terms of complexity, to one filter of
length 2L. Note that the complexity remains bounded as the number of octaves, J,
increases [22].

In contrast, a naive computation of the DWT, which would implement (8-7)
exactly as written, with precomputed discrete wavelets &;(n), would be very costly.
This lack of efficiency is due to the fact that (8-7) does not take advantage of the
dilation property of wavelets, summarized by the two-scale difference equation:
Since the length of A;(n) is (L — 1)(2’ — 1) + 1, one would have, at the jth octave,
-1 -1D+1 real multiplications and (L — N - 1) real additions for each set
of 2 inputs. For a computation on J octaves (j = 1, ---, J), this gives

J(L — 1)+ 1 mults/point and J(L — 1) adds/point (8-45)

This complexity increases linearly with J, while that of the “filter bank” DWT
algorithm is bounded as J increases. The use of the filter bank structure in the
DWT computation thus reduces the complexity from JL to L. This is a huge gain;
the DWT already deserves the term “‘fast.*

8.7.2 Reorganization of the Computations

The derivation of faster algorithms described in section 8.8 is primarily based on
the reduction of computational complexity. Here, “complexity”” means the number
of real multiplications and real additions required by the algorithm, per input point.
In the DWT case, this is also the complexity per output point since the DWT is
critically sampled. Of course, complexity is not the only relevant criterion. For
example, regular computational structures (i.e., repeated application of identical




f

|

Chap. 8

Fast Algorithms for Wavelet Transform Computation 229

computational cells) are also important for implementation issues. However, since
most algorithms considered in this paper have regular structures, a criterion based
on complexity is fairly instructive for comparing the various DWT algorithms. We
have chosen the total number of operations (multiplications + additions) as the
criterion. With today’s technology, this criterion is generally more useful than the
sole number of multiplications [23], at least for general-purpose computers (another
choice would have been to count the number of multiplication-accumulations, for
implementation on digital signal processors).

From the operation counts given earlier (8-44), it is clear that if all elementary
cells require the same complexity, then a filter bank implementation of the DWT
requires 2(1 — 2’ times the complexity of one cell. Therefore, any fast convolution
technique applied to the elementary cell will further reduce the computational load
of the DWT. Section 8.8 proposes two classes of fast algorithms: one based on the
fast Fourier transform (FFT) [24] and the other on short-length FIR filtering algo-
rithms [23].

The basic DWT elementary cell, depicted in Fig. 8-1(a), contains two filters.
However, they are always followed by subsampling (or decimation), which discards
every other output. It is well known that reducing the arithmetic complexity of an
FIR filter implementation is obtained by gathering the computations of several
successive outputs [24]. Since the filter outputs are decimated in Fig. 8-1(a), it is
necessary to reorganize the computations in such a way that “true” filters appear. To
do this, we apply a biphase decomposition, [17] to all signals involved, which consists
of separating them into even- and odd-indexed sequences. The biphase decomposi-
tion expresses the z-transform of the input sequence x,, as:

X@)y=Y xz™ (8-46)
= Xo(2) + 27 X1 (D) (8-47)

where Xo(2) = X, X,z " and X (z) = ¥, Xonp12 "

Similarly, apply the biphase decomposition to the L-tap filters G(z) and H(z)
involved in the computation. The cell output Y(z) that enters the next stage is
obtained by first filtering by G(z), then subsampling. Picking out the even part of
G(z)X (2) results in

Y(2) = Go(2)Xo(2) + 27 G1(2) X1 (2) (8-48)

Now that this rearrangement has been made, the output Y(z) is obtained differ-
ently: First the even- and odd-indexed input samples Xy(z) and z7'X,(z) are
extracted as they flow by (hence, the delay factor 27! for odd-indexed samples).
Then, L/2-tap filters Gy(z) and Gy(z) are applied to the even and odd sequences,
respectively. Finally, the results are added together. The other output of the ele-
mentary cell (the one corresponding to the filter H(z)) is obtained similarly using
Hy(z) and H\(2).

The resulting flow graph is depicted in Fig. 8-5 (the corresponding IDWT cell is
simply obtained by flow graph transposition). Compare with Fig. 8-1(a): there are
now four “true” filters of length L/2, whose impulse responses are the decimated



230

Wavelels, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 11

X0(z) '”""‘ enter next
W, Y !
~ —-’-—I G1(z) DWT

[t e -
X1{(z) coetficients

Figure 8-5 Rearrangement of the DWT cell of Fig, 8-1{a) that avoids subsampling,
hence allows the application of fast filtering techniques.

imitial filters G(2) and H(z). The complexity has not changed, but the resuliing
structure is easily improved by the use of classical fast filtering algorithms, as
shown in the next section.

8.8. FASTER DWT ALGORITHMS

The aim of this section is to further reduce the computational load of the DWT. We
briefly motivate this with a brief analogy to fast filtering. FFTs are used for imple-
menting long filters (typically L > 64) because they greatly reduce the complexity:
Compared to a direct implementation of the filter, the number of operations per
input point is reduced from L to log, L, hence the term “fast.” For short filters,
however, the FET is no longer efficient and eother fast filtering techniques are used
[23,247; the resulting gain is fairly modest, but still interesting when heavy computa-
tion of short filters is required, provided that the accelerated algorithm does not
require a much more involved compuiation compared fo the initial one. The situa-
tion of the DWT is identical: using FFTs, the complexity of the DWT can be reduced
{rom 2L 1o 4log, L, when the filter length £ is large. However, DWTs have been
mosily used with short filters so far (although nothing ensures that this will last
forever). For them, using different techniques, smaller gains are obtained, typically
a 30% saving in the number of computations, which can still be useful.

We assume real data and filters (of finite length), but the results extend casily (if
necessary) to the complex-valued case. A quick evaluation of the corresponding
number of operations can be obtained from the results provided in the following
real-vaiued case: the FFT-based algorithms described next require about twice as
many multiplications in the complex case as in the real case, a property shared by
FFT algorithms [24], However, a straightforward filter bank implementation of the
DWT (Fig. 8-1), or the “short-length” algorithms described in section 8.8.3, require
about three times as many multiplications in the complex case, assuming that a
complex muitiplication is carried out with three real multiplications and additions
[24].

We shall not derive algorithms explicitly for the inverse DWT. However, an
inverse DWT algorithm is easily obtained from a DWT algorithm as follows: If the
wavelets form an orthogonal basis, the exact inverse algorithm is obtained by taking
the Hermitian transpose of the DWT flowgraph. Otherwise, only the structure of the
inverse algorithm is found that way, the filter coefficients g(u), i(n) have to be




Chap. 8§

Fast Algorithms for Wavelet Transform Cemputation 231

replaced by g(m), h(n), respectively. In both cases, any DWT algorithm, once trans-
posed, can be used to implement an inverse DWT. [t can be shown that this implies
that the DWT and mverse DWT require exactly the same number of operations
(multiplications and additions) per point.

The filters involved in the computation of the DWT (cf. Fig. 8-1) usually
have equal length L. This is true in the orthogonal case, while in the biorthogonal
case the filter lengths may differ by a few samples only. Although an implemen-
tation of “Morlet-type” wavelets given in [3,5] uses a short low-pass filter g(m)
and a long high-pass filter (), we restrict our focus in this section to the case of
equal filter lengths for simplicity, If lengths differ, one can pad the filter coeffi-
clents with zeros.

8.8.1 An FFT-Based DWT Algorithm

This method consists of computing the four L/2-tap filters of Fig. 8-5 using the
overlap-add or overlap-save FFT. Operation counts are done using the “split radix™
FFT algorithm which, among ali practical FFT algorithms, has the best known
complexity for lenpgths that are powers of 20 N =27 (n =logs N should not be
confused here with the sample index #). For real data, the split radix FFT (or inverse
FFT) requires exactly

2N — 3y 42 (real) mults (8-49)
230~ 5)+4 (rcal) adds (8-50)

We now briefly recall the standard method for computing filters using the FFT. The
input of the DWT cell is blocked B samples by B samples (the decimated sequences
input to the filters therefore flow as blocks of length B/2). Each discrete filter is
performed by computing the inverse FFT (IFFT) of the product of the FFTs of
the input and filter. Since the latter FFT can be precomputed once and for ali, only
one IFFT and one FFT are required per block for one filter. However, this results in
a cyclic convolution [24}, and the overlap-add and overlap-save methods [24} can be
used in order to avoid wraparound effects. One is the transposed form of the other
and both require exactly the same complexity. For one filter of length L/2, with
input block fength B/2, wraparound effects are avoided if the FFT length N satisfies
N> L/2-+ B2 — 1. Here, we assume B = 2N — (L — 2},

Assume that each elementary cell has the same structure, pictured in Fig. 8-6.
The input s first split into even- and odd-indexed sequences. Then, a length-N FF'T
is performed on each decimated input, and four frequency-domain convolutions are
performed by multiplying the (Hermitian symmetric) FET of the input by the
(Hermitian symmetric) FFT of the filter. This requires 4N /2 complex multiplications
for the four filters. Finally, two blocks are added (2N /2 additions) and two IFFTs
are applied. Assuming that a complex multiplication is done with three real multi-
plications and three real additions [24], this gives a total of



232 Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part II

store output :

(block B/2) = : F— wait for another
block before
X(2) —"®— entering next cell

_,®_ coefficients

(block B/2)

Figure 8-6 FFT-based implementation of the DWT cell of Fig. 8-4. Overlap-add (or
overlap-save) procedure is not explicitly shown.

n+1
Aznf,z_—(;rfz) mults/point/cell (8-51)
3n—1)2"t 16 ,
( i _) — adds/point/cell (8-52)

Note that for a given length L, there is an optimal value of N that minimizes the
complexity. Tables 8-1 and 8-2 show the resulting minimized complexities for dif-
ferent lengths L in comparison with the inner product implementation of the filter
bank. The comparison is clearly in favor of the FFT version of the DWT algorithm
for medium to large filter lengths (L = 16). The asymptotic gain brought by the
FFT-based DWT algorithm is about L/(2log, L). However, as seen in Table 8-1,
the FFT implementation of the DWT is not effective for short filters.

There is a subtlety to keep in mind when wraparound effects at the cell output
are eliminated in the time-domain. One could immediately take the output blocks

TABLE 8-1: FFT-Based DWT Algorithms: Arithmetic Complexity Per
Point and Per Octave

Filter Inner Product  FFT-Based Vetterli, Vetterli, Vetterli,
Length Filter Bank Algorithm 2 Octaves Merged 3 Octaves Merged 4 Octaves Merged

2 241 346 3.17+5.83 3.07 + 6.07 3174 6.17
(2) (2) (4) 4)
4 443 44933 4,56+ 10.97 5.17+12.43 5.58 + 14.00
(4) (16) (32) (128)
8 8+7 523+ 14.15 5.68 + 14.67 6.10+ 15.33 6.61 4+ 16.90
(16) (64) (128) (256)
16 16+ 15 6.56 -+ 18.24 6.61 + 17.41 6.88 + 18.10 7.25 4 19.06 -
(32) (128) (512) (1024)
2 32431 7.92 4 22.37 7.50 + 20.05 7.56 4 20.14 7.90 +21.01
(64) (256) (1024) (2048)
64 64 + 63 9.12 +26.20 8.25 4+ 22.55 8.23 4 22.13 8.54 1 22.90
(256) (1024) (2048) (4096)
128 128 +127  10.27 +29.67 9 +24.79 8.89 + 24.10 9.16 + 24.76
(512) (2048) (4096) (8192)

Each entry gives the number of operations per input or output point in the form mults + adds, and the initial FFT
length. Complexities should be multiplied by 2(1 —27) for a computation of the DWT on J octaves.




Chap. 8 Fast Algorithms for Wavelet Transform Computation 233
TABLE 8-2:  Arithmetic Complexity Per Point and Per Cell: DWT
Algorithms
Filter Length L Straightforward Filter Bank ~ FFT-Based Algorithm Short Length Algorithm
4 443 449.33 3+4
@ (2)
6 645 4,67 + 12 4463
(®) (3
8 847 5.23 + 14.15 4.5+ 8.5
(16) (2% 2)
10 10+9 5.67+15.33 4.8+ 14.2
(16) (%)
12 12411 6.18 + 16.73 6412
(16) (2 x 3)
16 16+ 15 6.56 + 18.24 9+ 13
(32) (2x2)
18 18 + 17 6.83 4+ 19 84+ 17
(32) (3x3)
20 20+ 19 7.13 4+ 19.83 72+214
(32) (5% 2)
24 24+ 23 7.32 + 20.68 124+ 18
(64) (2% 3)
30 30+29 7.76 4 21.92 9.6 + 27
(64) (5% 3)
32 32431 7.92 + 22.37 18 +22
(64) (2x2)

Each entry gives the number of operations per input or output point in the form mults + adds, and either the FFT
length or the type of fast-running FIR algorithm used. Complexities should be multiplied by 2(1 =2 J) for a
computation of the DWT on J octaves.

(now of length B/2 instead of B) as inputs to the next cell, but this would halve the
block length at each stage. This method is not effective eventually because the FFT is
most efficient for an optimized value of the block length B (at fixed filter length L). It
is therefore advisable to work with the same optimized degree of efficiency at each
cell, by waiting for another block before entering the next cell, so that each cell has
the same input block length B and FFT length N. This method involves strictly
identical cells: they not only have the same computational structure, but they also
process blocks of equal length. As usual, the resulting total complexity of the DWT
is 2(1 — 2”) times the complexity of one cell, as shown in section 8.7.1.

8.8.2 A Generalization: The Vetterli Algorithm

The FFT-based DWT algorithm just described can be improved by gathering Jy
consecutive stages, using a method due to Vetterli (originally in the filter bank
context [25], and then applied to the computation of the DWT [12]). The idea is
to avoid subsequent IFFT’s and FFT’s by performing the subsampling operation in
the frequency domain. This is done by inverting the last stage of a decimation-in-



234

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 11

time radix-2 FFT algorithm. The FFT length is then necessarily halved at each DWT
stage, whereas the filter lengths remain constant, equal to L/2.

Unfortunately, this class of algorithms has two major limitations. First, the
structure of computations is less regular than for the simple FFT algorithm of the
preceding section because FFTs have different lengths. Second, the relative efficiency
of an FFT scheme per computed point decreases at each stage.

Table 8-1 lists the resulting complexities for Jy = 2, 3, and 4, minimized against
N = 2". Vetterli algorithms are more efficient than the initial FFT-based computa-
tion of the DWT (J, = 1) only for long filters (L > 32) and small J,. Efficiency is lost
in any case when J; is greater than 3.

8.8.3 DWT Algorithms for Short Filters

We have seen that for small filter lengths (L < 16), FFT-based algorithms do
not constitute an improvement compared to the initial filter bank computation.
Therefore, it is appropriate to design a specific class of fast algorithms for short
filters. Here, “fast running FIR™ algorithms [23] are applied to the DWT computa-
tion. The class of “fast running FIR algorithms” is interesting because the multiply/
accumulate structure of computations is partially retained, hence these algorithms
are very efficiently implemented [23].

A detailed description of fast running FIR algorithms can be found in [23].
Basically, a filter of length L is implemented as follows. The involved sequences
(input, output, and filters) are separated into subsequences, decimated with some
integer ratio R. Assuming L is a multiple of R, filtering is done in three steps:

1. The input is decimated and the resulting R sequences are suitably combined,
requiring A4; additions per point, to provide M subsampled sequences.

2. The resulting sequences serve as inputs to M decimated subfilters of length
L/R.

3. The outputs are recombined, with A, additions per point, to provide the
exact decimated filter outputs.

Fig. 8-7 provides an example for R=2, 4, =2, M =3, and 4, = 2. Other
algorithms derived in [23] were also applied, corresponding to R =3 and R = 5.

This computation can be repeated: the subfilters of length Z/R are still amen-
able to further decomposition. For example, in order to implement a 15-tap filter,
one can either use a fast running FIR algorithm for R =3 or R = 5, or decompose
this filter by a “3 x 5 algorithm,” which first applies the procedure with R = 3, then
again decomposes the subfilters using the procedure associated with R =5.
Alternatively, a 5 x 3 algorithm” can be used. Each of these algorithms yields
different complexities, which are discussed in detail in [23]. The short-length DWT
algorithm is derived as follows. One applies fast running FIR algorithms to the four
filters of length L/2 in the elementary cell of the DWT (Fig. 8-5). Here, since two




Chap. 8

Fast Algorithms for Wavelet Transform Computation 235

X(z)

Y1(z)

Figure 8-7 Simple example of fast-running FIR filtering algorithm with decimation
ratio R = 2 [22]. Subscripts 0 and | indicate biphase decomposition.

pairs of filters share the same input, all preadditions can be combined together on a
single input.

Table 8-2 lists the resulting complexities, using the fast running FIR algorithm
that minimizes the criterion (multiplications + additions). When two different
decompositions yield the same total number of operations, we have chosen the
one that minimizes the number of multiplications. Table 8-2 shows that short-length
DWT algorithms are more efficient than the FFT-based DWT algorithms for lengths
up to L = 18.

Since, in practice, DWTs are generally computed using short filters [8,9], the
short-length algorithms probably give the best practical alternative when heavy
DWT computation is required. As an example, for L = 18, the short-length algo-
rithm requires a total of 25 operations per point instead of 35 for the direct method.

8.8.4 Other Considerations

e The Orthogonal Case: In our derivations, we did not take advantage of

orthogonality constraints [5,8-11,13] so as to be as general as possible.
However, orthogonality is worthy of consideration because of its simplicity:
the analysis and synthesis filters coincide (within time reversal and complex
conjugation). Furthermore, it allows one to further reduce the complexity of
the DWT: Using a lattice implementation of the DWT filter bank cell of Fig.
8-1(a), Vaidyanathan has shown [17] that the complexity can be reduced by a
factor of 50% in the orthogonal case.
Whether or not this reduction can be attained while preserving the inner
products (unlike the lattice structure implementation) is an open problem.
In any case, Tables 8-1 and 8-2 do not provide a fair and detailed comparison
between various algorithms in the orthogonal case.

e Unequal Filter Lengths: In the previous derivations, we have restricted our-
selves to filters of equal lengths for simplicity. However, it may happen that
one uses a low-pass interpolation filter g(») of small length (L, < 16) and a
very long high-pass filter i(n) of length L, > 16. This is the case in [3,5],



Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 11

where one typically uses a first-order interpolation filter g(n) (L, = 3) to
approximate the “Morlet wavelet,” a modulated Gaussian.

Obviously, for a direct implementation of the DWT filter bank, it is in this
case absurd to assume equal filter lengths since the complexity then becomes
(Lg + Ly)/2 mults and (L, + L; — 1)/2 adds.

However, FFT-based DWT algorithms are still efficient when one of the
filters is very long. In this case, some efficiency of FFT-based algorithms is
lost, but they still yield a substantial gain over a standard, straightforward
filter bank implementation of the DWT. As an example, for a wavelet of
length L, = 64 and interpolation filters of length L, = 3,7, and 11, the FFT-
based algorithms give respective gains over a standard DWT of 46.9%,
49.9% and 52.6%.

e Linear phase: In the previous discussion, we did not take other properties of
filters into account, such as the linear phase property, which holds for the
Morlet wavelet. In this case, rather than using involved fast algorithms, we
recommend straightforward use of the symmetry in the inner product imple-
mentation of the algorithms, which cuts by 2 the number of multiplications.

8.8.5 Faster CWT Algorithms

The same fast convolution tools can be applied on the CWT, slightly modified
building block described in section 8.6.2. The main difference is that the filters
involved are comparatively twice as long as in the WS case, due to the absence of
decimation. This increases the efficiency of the “faster” algorithms. Being applica-
tions of the same techniques, they are not described, but the arithmetic complexities
are given in Table 8-3, in order to allow the reader to evaluate their potential
compared to straightforward inner product implementation.

8.9. OTHER ALGORITHMS FOR CWT COMPUTATION

Several algorithms for computing CWT coefficients, which differ notably from those
already described, have been proposed recently (see e.g., [1,16,26-28]). Several of
them are outlined in this section.

8.9.1 Reproducing Kernels

Gopinath and Burrus [16] proposed a method that also uses DWTs. The signal
is assumed to be completely determined from its WS coefficients. Therefore, these
alone can be used to compute all CWT coefficients by some reproducing kernel
equation. The introduction of an auxiliary wavelet moreover allows one to precom-
pute the kernel and to obtain a method particularly suited to the computation of
CWT coefficients with respect to several wavelets. However, the kernel expansion in
[16] seems to be computationally expensive.




Chap. 8 Fast Algorithms for Wavelet Transform Computation 237
TABLE 8-3:  Arithmetic Complexity Per Computed Point for Various CWT
Algorithms
Filter Length L Straightforward FFT-Based FFT-Based Short Length
Filter bank Algorithm (2 Octaves Merged) Algorithm
2 442 4410 48+12 343
(4) (16) @
3 6+4 5414 584152 4453
(8) (32) (3)
4 8+6 6+ 16.8 6.5+17.2 454175
@® (32) 2x2)
5 10+8 6.5+ 19 6.9 + 18.7 4.8+13.2
(16) (64) (5)
6 124+ 10 7.1420.7 734198 6+ 11
(16) (64) (2:5:3)
8 16+ 14 79+235 78+21.6 9412
(32) (128) (2x2)
9 18+ 16 8.2+ 24.5 8.14223 8416
(32) (128) (3x3)
10 20+ 18 8.6+ 25.6 8.3+229 724204
(32) (128) (5x2)
12 24 4 22 9.2+274 8.6+24.2 12417
(64) (256) (2 x 3)
15 30 + 28 9.7+ 129 9-+25.2 9.6 4+ 26
(64) (256) (5% 3)
16 32430 99+29.6 9.1 4255 18 + 21
(64) (256) (2x2)
18 36+ 34 10.3 +30.9 9.4+ 263 16+ 24
(64) (256) (3 x3)
20 40 + 38 10.6 + 31.8 9.6 +27 14.4 +27.6
(128) (512) (5%:2)
24 48 -+ 46 11433 9.8 +27.8 24 +29
(128) (512) (2x3)
25 50 + 48 11.1433.3 9.9 +27.9 11.5+44.9
(128) (512) (5%:5)
27 54 + 52 11.34 34 10 +28.3 24 432
(128) (512) (3x3)
30 60 -+ 58 11.7+ 35 10.2 + 28.9 19.2 +35.6
(128) (512) (5x3)
32 64 + 62 11.9 4+ 35.7 10.4 +29.4 36+ 39
(128) (512) (2x2)
64 128 + 126 13.7 +41.1 11.6 + 33.1 T2+75
(512) (2048) (2x2)
128 256 + 254 15.4 +46.2 12.7+36.4 144 + 147
(1024) (4096) (2x2)

Each entry gives the number of operations per computed coefficient (i.¢., per input point per octave) in the form mults
+ adds, and either the FFT length or the type of fast-running FIR algorithm used.

8.9.2 Algorithms Using Splines

We have already emphasized the importance of splines for WT computation in

section 8.2.2. In fact, there is another remarkable property which makes them useful



238

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part 11

for CWT computation: B-splines of degree d follow a generalized two-scale differ-
ence equation (8-12) (generalized to an m-scale equation), valid for any m > 0 if d is
odd, and m odd only if d is even:

Blt/m) =Y (e — k). (8-53)
keZ

m,d

with ¢} defined (by identification) as

Z(d+l)(m+l)/2

m—1 d+l
md _—k —k
I 8-5
Z G 2 -~ (Z z ) (8-54)

k=0

This has led Unser et al. [28], following a generalization of Shensa’s algorithm, to use
B-splines in order to compute a DTWT in which the scale parameter a can take any
integer value. While this property is the key to an increased flexibility, the fast
algorithm is obtained following the same steps as in the Shensa algorithm:

e First, approximate the input signal as its spline approximations of degree d,:
x(f) =) xpi—k (8-55)
keZ
e Then, specify the wavelet by its B-spline expansion of degree d,:
() = ;mﬁ"za ~kj (8-56)
(=

Thus due to the generalized two-scale difference equation, the wavelet, when
expanded by a factor m, can be expressed as

Y(t/m) =Y ({[Plpn) * (DB (1 — k) (8-57)

kel

where ({[ply,} * (¢™®})(k) denotes the kth term of the convolution of
sequences p;, as defined in (8-56), upsampled by a factor m, and of sequence
¢, as defined in (8-54).

e Finally, the CWT of x(¢) at scale m is given by

CWT{x(0), m, b} =Y _({[plym} * (%) % DB (b — k) (8-58)
keZ

which, when evaluated at integer time samples, simplifies to:
CWTIX(D), m, k) = (([Ply) # (™ E) % (B} 5 (x)(K) (8-59)

where {p"T4*!} is the discrete B-spline of order d; + d» + 1.

The filter bank at work in the algorithm has very simple low-pass filters owing
to the special structure of B-splines. As seen from (8-54), they are iterated discrete
convolutions of moving sums, and therefore can be computed without any multi-
plication. This remarkable feature thus results in very efficient algorithms.




k. 4

Chap. 8

Fast Algorithms for Wavelet Transform Computation 239
8.9.3 Mellin-Transform—-Based Algorithms

Another beautiful CWT algorithm, which uses the scaling property of wavelets
w(t) — (I_Uzlff(f/(t) rather than the convolutional form of (8-1), (8-2) has been pro-
posed by Bertrand et al. [1]. This algorithm makes use of some redundancy between
the computations of the various scales of a signal around some time location, while
the previously described algorithms make use of redundancy between the computa-
tions of several successive outputs of the same scale.

This algorithm is briefly outlined here. Write (8-2) in the frequency domain,
assuming that the signal x(¢) and wavelet 4(7) are complex analytic. This gives

CWﬂﬂmaﬁﬁ=meWWWKﬁWMHW’ (8-60)
0

where X(f) = [x(f)e *™'dt and y(f) are the Fourier transforms of x(1) and (1),
respectively. Then perform the changes of variable ¢ = Inf. A correlation form in
o« = Ina appears in the integral.

CWT{x(¢); a, b} = f X ()22 D (e e T d gy (8-61)
R

After suitable discretization, this correlation can be performed using an FFT
algorithm. As stated in [1], the Mellin transform, M ,(B) of x(¢), plays a central role,
since it turns out to be exactly the inverse Fourier transform of \/]7 X(f) in the
variable ¢ = Inf"

M) = f/ X(y ey (8-62)
- f 2 X (e")e* ™ P dp (8-63)

As a result, the FFTs involved in the computation of (8-61) are “discrete Mellin
transforms,” as defined in [1].

This algorithm requires the precomputation of the whole Fourier transform of
x(1), which makes a running implementation (in case of infinite duration signals)
cumbersome. To overcome this difficulty, we propose a variation on the Bertrands—
Ovarlez algorithm, based on the time domain rather than on the frequency domain.
Assume that the signal and wavelets are causal (i.e., supported by ¢ > 0), and make
the change of variable = In ¢ in (8-2). One obtains a convolution in « = Ina :

CWT{x(1); a, b} = f e x(e” + b)YV yF (e ) dr (8-64)

The CWT coefficients are obtained, for a given b, by discretizing the convolution (8-
64), resulting in a discrete filtering operation that can be implemented for running
data.

Both algorithms (8-61), (8-64) have common characteristics. Some of them can
be considered as drawbacks: First, they involve a geometric sampling of either X(f)
or x(f). Second, the approximation error made by discretizing (8-61) or (8-64) is
difficult to estimate. Finally, in contrast to the octave-by-octave CWT implementa-




240

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part IT

tion previously described, the time shift structure of b has completely disappeared,
and the input has to be recomputed for each value of b. As a result, the complexity of
such algorithms (about two FFTs of length 2JM per input point, where J is the
number of octaves and M is the number of voices per octave) is found higher than
the one obtained for the more classical algorithms described earlier.

However, a nice property of the Mellin-based algorithms is that the CWT
coefficients are computed for all desired values of Ina at the same time (for given
value of b), while the efficiency of the classical algorithms requires the computation
of long signals. It makes the Bertrands-Ovarlez algorithms very useful when a
“zoom,” or a refinement, of the wavelet analysis in a short extent around some
time location b is desired.

8.10. CONCLUSION

This chapter has reviewed several methods for efficiently implementing various kinds
of wavelet transforms, from the fully discrete version to the fully continuous one,
and for any type of wavelet.

Emphasis has been put on the various approximations required for the algo-
rithms to be efficient, and on their link with multiresolution analysis. As a result,
prefiltering the signal allows one to use the DWT as an intermediate computation for
any type of wavelet transform. Guidelines were given for the design of the appro-
priate prefilter.

Fast DWT algorithms were derived for computing WS coefficients and were
modified to compute wavelet coefficients with oversampling in the time-scale plane
(“CWT algorithms®).

While the inner product implementation of these transforms is already efficient,
a further improvement has been obtained by using fast convolution algorithms,
adapted to the situation. The availability of both FFT-based and fast-running-
FIR-based algorithms allows one to reduce the complexity of the existing algorithms
in any case of interest. Tables are provided for the reader to evaluate whether the
decrease in computation is worth the complexity of the implementation.

Other fast algorithms were also outlined, either using splines, or using discrete
Mellin transforms, each one offering specific advantages: The splines-based algo-
rithms can easily approximate some given wavelet, while still allowing a fast imple-
mentation. Mellin-based transforms are more suited to the situation where one is
able to sample the signal in a geometric manner (either in the time or in the frequency
domain), in which case the redundancy between all scales can efficiently be exploited.

REFERENCES

[1] J. Bertrand, P. Bertrand, and J. P. Ovarlez, “Discrete Mellin transform for
signal analysis,” in Proc. 1990 IEEE Int. Conf. Acoust., Speech, Signal
Processing, Albuquerque, NM, April 3-6, 1990, pp. 1603-1606.




.

Chap. 8 Fast Algorithms for Wavelet Transform Computation 241

[2] P. Goupillaud, A. Grossmann, and J. Morlet, “Cycle-octave and related trans-
forms in seismic signal analysis,” Geoexploration, vol. 23, pp. 85-102, 1984/85.

[3] M. Holschneider, R. Kronland-Martinet, J. Morlet, and Ph. Tchamitchian, “A
real-time algorithm for signal analysis with the help of the wavelet transform,”
in [5], pp. 286-297.

[4] M. Vetterli and J. Kovacevi¢, Wavelets and Subband Coding, Englewood Cliffs,
NJ: Prentice Hall, 1995.

[5] J. M. Combes, A. Grossmann, and Ph. Tchamitchian, Eds., Wavelets, Time-
Frequency Methods and Phase Space, Berlin: Springer, IPTI, 1989.

[6] Y. Meyer Ed., Wavelets and Applications, Paris: Masson/Berlin: Springer
Verlag, 1992.

[7] O. Rioul and P. Duhamel, “Fast algorithms for discrete and continuous wave-
let transforms,” IEEE Trans. Inform. Thoery, vol. 38, pp. 569-586, March 1992.

[8] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet
representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674
693, July 1989.

[9] S. Mallat, “Multifrequency channel decompositions of images and wavelet
models,” IEEE Trans. Acoust., Speech, Signal Process, vol. 37, pp. 2091—
2110, December 1989.

[10] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm.
Pure Applied Math., vol. 41, no. 7, pp. 909-996, 1988.

[11] Y. Meyer, Ondelettes et Operateurs, Tome 1. Paris: Herrmann, 1990.

[12] M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and design,”
. IEEE Trans. Acoust., Speech, Signal Process, vol. SP-40, pp. 2207-2232, 1992.
| [13] G. Evangelista, “Orthogonal wavelet transforms and filter banks,” presented at

Proc. 23rd Asilomar Conf., IEEE, November 1989.

[14] A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal bases of com-
pactly supported wavelets,” Comm. Pure Applied Math., vol 45, pp. 485-560,
1992.

[15] M. J. Shensa, “Affine wavelets: Wedding the Atrous and Mallat algorithms,”
IEEE Trans. Signal Proc., vol. 40, pp. 2464-2482, October 1992.

[16] R.A. Gopinath and C. S. Burrus, “Efficient computation of the wavelet trans-
forms,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
Albuquerque, NM, April 3-6, 1990, pp. 1599-1601 .

[17] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ:
Prentice Hall, 1993.

[18] P. Abry and P. Flandrin, “On the initialization of the discrete wavelet trans-
form algorithm,” IEEE Sig. Proc. Letters, vol. 1, pp. 32-34, February 1994,

[19] M. Unser and A. Aldroubi, “A general sampling theory for non ideal acquisi-
‘ tion devices,” IEEE Trans. Signal Proc., vol. 42, pp. 2915-2925, November

1994.




242

Wavelets, Wavelet Packets, and Matching Pursuits with Biomedical Applications Part IT

[20]

[21]

[22]

[23]

(24]
[25]

[26]

M. J. T. Smith and T. P. Barnwell, “Exact reconstruction for tree-structured
subband coders,” IEEE Trans. Acoust., Speech, Signal Process, vol. ASSP-34,
pp. 434-441, June 1986.

I. Daubechies and J. C. Lagarias, “Two-scale difference equations 1. Existence
and global regularity of solutions,” SIAM J. Math. Anal., vol. 22, no. 5, pp.
1388-1410, September 1991,

T. A. Ramstad and T. Saramah, “Efficient multirate realization for narrow
transition-band FIR filters,” in IEEE 1988 Int. Symp. Circ. Syst., 1988, pp.
2019-2022.
7. J. Mou and P. Duhamel, “Short length FIR filters and their use in fast
nonrecursive filtering,” IEEE Trans. Signal Proc., vol. 39, pp, 1322-1332,
June 1991.

H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms. Berlin:
Springer, 1981,

M. Vetterli, “Analyse, Synthese et Complexité de Calcul de Bancs de Filtres
Numériques,” Ph.D. thesis, Ecole Polytechique Federale de Lausanne, 1986.
D. L. Jones and R. G. Baraniuk, “Efficient computation of densely sampled
wavelet transforms,” in Advanced Signal-Processing Algorithms, Architectures,
and Implementations II, F. T. Luk (ed.), Proc. SPIE 1566, San Diego, CA, July
1991.

M. Unser, “Fast Gabor-like windowed Fourier and continuous wavelet trans-
forms,” IEEE Signal Proc. Letters, vol. 1, pp.76-79, May 1994.

M. Unser, A. Aldroubi, and S.J. Schiff, “Fast implementation of the contin-
uous wavelet transform with integer scales,” IEEE Trans. Signal Proc., vol. 42,
pp. 3519-3523, December 1994.




