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Abstract

The objective of this paper is to design and evaluate
the performance of a transmission system with jointly
optimized source and channel coding of a uniformly
distributed source to be transmitted over a binary sym-
metric channel (BSC).

We first provide the optimal performance theoreti-
cally attainable (OPTA) according to Shannon’s the-
orem. Then, we propose a new structure for joint
source and channel coding in which the samples are
first expressed in binary representation and bits of
same weight are processed separately. Finally, we de-
termine the lower bound for total distortion attainable
with this structure and compare it to OPTA curves
and to simulation results.

1 Introduction

This paper addresses the transmission of digital data
over noisy channels with jointly optimized source and
channel coders. The type of source considered in
this paper has a uniform probability distribution, and
the transmission 1s over a binary symmetric channel
(BSC). Our choices for the source and channel may
seem overly simplistic. We feel, however, that their
study gives a better understanding of the problem of
joint source/channel coding. Moreover, we shall derive
building blocks that can be used in more sophisticated
systems.

Figure 1 illustrates our transmission system. In this
configuration, the source/channel code rate is defined
as the average number of coded bits per source sample:
r = . We seek to minimize the m.s.e. distortion
D = = E{||U—U"||?}, with the constraint that » < rq,
where 7y 1s the desired bit rate.
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Figure 1: A simple transmission structure.

From Shannon theory we know that source and
channel coding can be treated separately without any
loss of performance for the overall system [3]. This is,
however, an asymptotic result, as it necessitates very
long blocks and very complex coders. Our approach is
to achieve relatively good results, using comparatively
simple coders.

In this paper, we first derive upper and lower bounds
for the optimal rate-distortion functions, taking chan-
nel transmission errors into account. Then, we propose
a new structure in which the source is decomposed into
parallel binary streams. For this structure, we find a
theoretically attainable rate-distortion function, using
the Lagrangian multiplier method, and compare it to
the optimal one. Finally, we compare these theoreti-
cal results with those obtained by a practical method
based on the proposed structure.

2 Bounds for Uniform source

A memoryless source with uniform probability density
function is considered. This source is to be coded and
transmitted over a BSC. Note that the uniformity of
the source does not permit too much for source coding,
except for the dimensionality that can be exploited [2].
We now proceed to derive the optimal rate-distortion
function r(D), as well as upper and lower bounds.

2.1 OPTA

The optimal performance theoretically attainable
(OPTA) is the expression of the smallest possible dis-



tortion as a function of the bit rate, when transmitting
a given source on a given channel. According to Shan-
non’s theory [3], the OPTA curve r(D) is given by

r(D) = — (1)

where R(D) is the source rate-distortion function and
C is the channel capacity.

For our model, the BSC is parameterized by the
raw bit-error probability p, on which the OPTA de-
pends. More precisely, one has C'= 1 — Ha(p), where
Hsy(x) = wlogy L + (1 — x)log, 7= is the binary en-
tropy function. There is no closed-form expression for
the uniform source R(D) function; it is derived below
with the aid of Blahut’s algorithm [1]. However, it is
a simple matter to obtain closed-form expressions for
lower and upper bounds, as shown next.

2.2 Gaussian upper bound

It is known that a theoretical upper bound of the
source rate-distortion function R(D) (without channel
consideration) is given by the source rate-distortion
function Ry(D) of a Gaussian source of same variance
o? [5]:
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This gives an upper bound for the OPTA curve:
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This upper bound is plotted in figure 2 for a uniform

source distributed on [—%; %], for which ¢% = 11_2

2.3 Shannon’s lower bound

The Shannon’s lower bound [5] for the source rate-
distortion function is given by

1
R(D) > Rs(D)=H — §log2 2mweD.

where e = 2.71828... and H denotes the differential
entropy of the source, given by H = %log2 1202 for a
uniform source. It has been observed that this bound
1s not attainable except for very small distortions.
Shannon’s theorem gives a lower bound for the

OPTA curve:

llog 1207
D) > r (D) = 2 2 2meD
r(D) > (D) = 12 (3)

This lower bound is plotted in figure 2.
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Figure 2: Upper and lower theoretical bounds, com-
pared with the OPTA curve obtained by Blahut’s al-
gorithm, for a uniform source and zero error channel

(p=0).

2.4 Blahut’s algorithm

Using Blahut’s algorithm [1], we found numerically the
source-distortion function R(D). From (1) this gives
the OPTA curve r(D) = % plotted in figure 2.
We observe that the OPTA curve is close to the upper
bound for the small values of r and comes closer to
the lower bound for the large values of . Note that
the distance between the lower and upper bounds is
constant, about 1.5 dB.

3 A new joint source-channel
coding structure

3.1 Bitwise decomposition

The bounds derived above are useful since one may
check the performances of practical algorithms against
them. On the other hand, we are searching for simple
algorithms and have chosen to decompose a uniform
source U into a set of N binary sources U; which are
transmitted through the same channel, as shown in
figure 3. Thus, we consider the binary representation
of each source sample, truncated on N bits, and then
perform the compression and the protection operations
on each bit stream separately.

An important consideration is the following. We
assume that the original source U is uniformly dis-
tributed (e.g., between —1/2 and 1/2) and that natu-
ral binary coding is used, i.e., the U;’s are such that
U= Zf\;l 2711J;. Then it is easily seen that each bit
stream U; is a binary symmetric source (BSS), that
is, the bits U; are independent and identically dis-
tributed with Prob(U; = 0) = Prob(U; = 1) = 1/2.



Figure 3: Source-Channel coder combination. Each
row of bits (msb, ..., Isb) is processed separately.

Of course, the output will be reconstructed by the for-
mula U’ = Zf\;l 27U

3.2 Remark on memoryless sources

Before deriving optimal performances, a preliminary
remark 1s in order. It follows from information
theory that for any memoryless source, the rate-
distortion function may be determined as R(D) =
miny, ) {I(U,U'); E(U — U’')* < D} where U and U’
represent input and output random variables (not vec-
tors) and (U, U’) is the mutual information between
U and U’. Therefore, even though actual processing is
made by blocks of length m, the calculation of R(D)
i1s made using the definition of D for m = 1, that is,

D=EU - U2

3.3 Additivity of distortion

A second important consideration is that distortion is
additive. To prove this, write

D = EWU-U)?

N N 2
= E (ZQ—Z'UZ»—ZTZ'U;)
i=1 i=1

= Yy EREW - U)W - 1))
,J

Since U; and Uj are independent for ¢ # j, and con-
sidering that U; and U/ have same biases (that is,
E(U;) = E(U})) we have E(U; — U)(U; — U]’) =
E(U; — U))E(U; = Uf) = 0 for all i # j. Therefore,
D simplifies to

N

N
D= 4TEWU; —U})?* =) wD;
i=1

i=1

where D; = E (U; —U/)? is the m.s.e. corresponding to
bit ¢, which depends on the channel raw error proba-
bility p, and w; = 4~7 is the weighting associated with
bit .

Thus, D 1s a linear superposition of bit distortions
D;. It is important to note that this result was ob-
tained with the assumption that E(U;) = E(U/).

Since we have decomposed our source into BSS sources,
the next step is to find the OPTA performance r;(D;)
for each BSS U; transmitted over a BSC. This is done
in the following section.

4 OPTA for a binary source

4.1
The OPTA for a BSS U; over a BSC is well known

when the distortion §; is defined as an error prob-
ability: 6; = E (wg(U; — U})) where wpg(x) is the
Hamming weight of z, that is, wg(x) = 0if 2 = 0
and = 1 otherwise. This clearly corresponds to an
m.s.e. distortion E(U; — U/)? if we require that U;

and U/ € {0,1}. In this case the source rate-distortion
function is given by [3, 5]

Error probability distortion

Ri(d;) = 1 — Ha(d:)
From (1) this gives the following OPTA curve.

1= Ha(6)
100 = T )

4.2 m.s.e. distortion

Even though our basic system is binary, we want
the additional flexibility in the output U/ to be dif-
ferent from {0, 1}, because it yields lower values of
m.s.e. distortion and also permits the requirement that
E(U;) = E(U}), which was needed to obtain the addi-
tivity property in the preceding section.

Consider, for example, the limit case r; = 0. Then
U! = 1/2 is the value that minimizes D; = E(U; —U/)?,
and one has E(U;) = E(U/). In general, the output is
still reconstructed as U’ = Zf\;l 270! even though
the U/ are no longer “bits”.

With this assumption, we have to re-calculate the
OPTA for a m.s.e. measure of distortion I); in place
of the error probability distortion d;. But there is a
simple relationship between them, which we now de-
rive.

Replace U/ = 0 by ¢1’s and the U/ = 1 by ¢z in the
output, where ¢; and cs are real-valued constants. We
seek to minimize D; for a given §; with a good choice
of these constants. Since

1 1
Di = (L= 6) {6t + (1= e2)"} + 05 (1 en)? + €3],
it is easily seen that ¢ = 1 — ¢ = §; is the choice that
minimizes 1;, and we have our basic requirement that

E(U;) = E(U]) = 1/2. Tt follows that

DZ':(SZ'—(SZZ,



which determines the value of the error probability

6; < % that should be used in the OPTA (4) as

1
& = 5(1 -1 =4D;).
The OPTA curve is, therefore, given by:
(D ) 1— Hz(l—\/ 12—4D,)
ri(li) =
1 — Hy(p)

(5)

In figure 4, we have plotted the corresponding source
rate-distortion function R;(D;) = 1 — Hz(l_ivlz_m),
along with operating points obtained for simple coders
used in the simulation presented in [6].

R(D) and the coders
T T

Figure 4: R;(D;) and simple repetition and Hamming
coders used in our simulations.

Figure 5 illustrates the behavior of the OPTA distor-
tion D; as a function of the BSC raw error probability
p, for different values of bit rate r;. Several remarks
are in order.

e For r; = 0 (no transmission at all) we have an
horizontal line D; = % which corresponds to U/ =
% at the receiver, as we have already noticed.

e For r; = 1, we have D; = p — p? and §; = p.
The total error probability distortion is imposed
by the channel, and the optimal choice is to do no
coding at all.

e For r; = oo, we obtain the vertical line p = %
This corresponds to the limit case lim,, 500 D; =0
for all p.

5 Lagrangian bound

Now that we have determined the optimal performance
ri(D;) for each bit stream ¢, it remains to determine
the optimal allocation of bit rates r; that minimizes the
total distortion D = ), w; D; for a given rate budget

Figure 5: Theoretical bound for distortion function
versus row-error probability, p, for different values of

ri € {0,0.7,...,0.9999, 1, 1.0001, ..., 1.1,2, 0o}.

r = .. 7. This will give the OPTA »(D) for our
structure of figure 3. We solve this problem by the
Lagrangian multiplier method.

5.1 Derivation

The problem is to minimize D = Zf\;l w; D; subject
to Zf\;l r; = r where 1;(D;) is given by (5). An equiv-
alent problem in the variables Dy,..., Dy 1s to mini-
mize r = Zf\;l 7;(D;) subject to Zf\;l w; D; = D. For
convenience in the derivation we use the latter form of
the problem.

Let A be the Lagrange multiplier corresponding to
the constraint. Since the objective function r to be
minimized 1s convex, and the constraint is linear in
the D;’s, the solution to our problem is determined by
the equation

oL
=0
oD;

where £ is the Lagrangian functional

L= ZTZ(DZ) + /\(Z w; Dy — D)

Using (5) and the formula Mg;(x) = log,(1=%) we ob-

tain the following necessary and sufficient condition for
optimality:

L +/T—A4D;
O
JT—iD, e\ /T—1D;

Now, with any value of A > 0, this condition gives the
optimal values of the D;’s. These in turn give the val-
ues of the r;’s from (5). The D;’s were computed from
A by inverting the complicated function (6) numeri-
cally. The result is, for any A > 0, a bit rate r = >, r;
and a value of total distortion D = >, w;D; which
give a solution to the problem.

) = Awi(1 = Hs(p)) (6)




5.2 Results and comparison

The result (which we call “Lagrangian bound”) is plot-
ted in figure 6. Notice that the curves obtained for
different values of p are just scaled versions of each
other on the r axis.
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Figure 6: Solid: Theoretical OPTA curves (Lagrange,
Blahut) and the upper bound for p = 0.

Figure 6 also compares our Lagrangian bound to the
OPTA curve obtained by Blahut’s algorithm and the
Gaussian upper bound (2). Tt is interesting to note
that the Lagrangian bound is tangent to the upper
bound every time R is an integer. This can be ex-
plained as follows.

It turns out that the upper bound (2) is also, when
R is an integer, the optimal rate-distortion function
when scalar quantization 1s used on the source sam-
ples U. Indeed, assuming for example that the source

is uniformly distributed on the interval [—%; %], so that
o? = 11—2, it is easy to see that R = Ry(D) in (2)
. . 2

is equivalent to D = ¢?27%F = ‘{—2 where ¢ = 27 F

is the quantization step. Now, by using our bitwise
decomposition as in figure 3, even though bits are pro-
cessed block-wise, it seems that we have lost the abil-
ity to wector quantize the source samples U. Note,
however, that our structure was proposed for a joint
source/channel coding problem for which one also con-
siders transmission errors due to a binary channel. It
would be desirable to improve our structure to permit
vector quantization while also taking binary transmis-
sion errors into account. This is a subject for future
investigation.

In [6], we have proposed an optimization procedure
based on the proposed bitwise structure, using simple
binary coders. The rate-distortion optimization was
performed using a variation of Shoham and Gersho’s
algorithm [4]. Figure 7 shows the result of this opti-
mization and compares it to the Lagrangian bound.

transition probability = 0.01
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Figure 7: Numerically attainable bound (with the used
set of coders) and theoretical bound obtained by La-
grange’s multiplier method. Also shown is the perfor-
mance curve obtained without any coding.

6 Conclusion

In this paper we have proposed a new structure for
joint source and channel coding of a uniform source to
be transmitted over a binary symmetric channel, and
have derived precise theoretical performance for this
structure.

Further possible improvements include the ability
to vector quantize the source samples on their binary
representation, to take other types of sources into ac-
count (including Gaussian and Laplacian) and to treat
the case of multiple sources.
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