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Abstract

This paper reviews a number of different approaches aiming at introducing some robustness
into source coders/decoders when the coded bit-stream is to be sent through a noisy channel.

Various methods are presented with reference to a scheme in which all tasks that have to
be completed in sequence are explicitly shown. Depending on the assumptions on which these
methods rely, some blocks are merged, and have to perform a more complex task which is then
to be optimized for minimum distortion under noisy channel conditions.

Past and current studies are outlined in this context.

1 Introduction

Roughly speaking, source coding is a data compression process that aims at removing as much
as possible redundancy from the source signal, while channel coding is the process of intelligent
redundancy insertion which creates some kind of protection against the channel noise. In this
aspect, these two processes seem to act in opposition.

The joint source-channel coding theorem of Shannon consists of two parts [26]: a direct part that
states that if the minimum achievable source coding rate of a given source is below the capacity of
a channel, then the source can be reliably transmitted through the channel, considering that the
sequences of source samples are appropriately long; and a converse part stating that if the source
coding rate is strictly greater than channel capacity, the reliable transmission is impossible. This
theorem yields that source coding and channel coding can be treated separately without any loss
of performance for the overall system. In other words, the source and channel coding functions are
fundamentally separable [20].

Hence, in the majority of the design algorithms, the basic design procedure consists of selecting a
source encoder which changes the source sequence into a series of independent equally likely binary
digits followed by a channel encoder which accepts binary digits and puts them into a suitable form
for reliable transmission over the channel.

This separability holds if the communication is point-to-point, i.e. single channel [25]. However,
this hypothesis is not realistic in a broadcasting communication with multi-path fading. In [29] a
specially defined source-channel pair is given where the source is transmissible through the channel
(with zero error), yet its minimum achievable source coding rate is twice the channel capacity. So



a probable overcome in performance is also conceivable for certain specially defined source-channel
pairs.

Moreover, a tandem source-channel coding may, in practice, necessitate very long blocks of
source symbols and very complex coders. The following example illustrates a simple (artificially
defined) case, where even though Shannon’s solution is optimal, but there exists another optimal
solution which is better, from an economic point of view.

Suppose that in a simple transmission scheme, we have a binary symmetric channel (BSC), with
the transition probability, ¢ = 0.10. It is required to transmit a signal from a binary symmetric
source (BSS) via this channel, with average distortion, D < 0.1. Considering Shannon’s joint
source-channel coding theorem, one must first design a source code for the BSS with average
distortion ~ 0.1, and then design an appropriate channel code for the BSC with very small error
probability.

However, there is a simpler system that yields the same performance without source coding nor
channel coding. One can transmit the source signals, directly without any coding [21, problem 5.7].
That is, connecting directly the source to the channel. This occurs because the source and the
channel are matched to each other in the sense that the transition probabilities of the channel solve
the variational problem defining the rate distortion function (R(D)) and the letter probabilities of
the source drive the channel at its capacity [3, page 73]. This simple example shows that despite its
optimality, Shannon’s separation theorem doesn’t result in necessarily the best economic solution.

The objective of combined source-channel coding is to include both source and channel coding
modules in the same processing block in order to reduce the complexity of the overall system,
compared to the tandem scheme. It is however important to be noticed that the cost to be payed
for this reduction of complexity, is the loss of flexibility [20]. If one opts for a jointly coded system,
he/she can no longer easily adapt his/her system later to a different source (or channel).

In this paper, we give a general presentation of the problem. Next, vector quantization as a data
compression tool is examined. The concept of channel coding is the next subject to be discussed.
The first source-channel coding approach that we consider consist of a hierarchical protection of
the bits. Then, we investigate the index assignment approach and the simultaneous optimization
schemes that optimize the quantizer and the index assignment. Next, we examine the algorithms
that bypass the binary representation step and provide directly the constellation points. Finally,
we consider the Rate/Distortion approach.

1.1 Communication Model

Here we present the transmission block diagram. So we try to have a very general presentation.
Although the presented model is not the most general one : for a more general model, one can put a
fading channel instead of AWGN, for example. Figure (1) depicts this general model : the message
emitted from the source is first passed from a transformation block, as is very common for audio
signals; source compression is performed in order to eliminate more redundancy; indez assignment!
(TA), is then used for giving a good bit pattern to each codevector; the resulted source coded bits
are then protected by a channel encoder; the modulation permits us to transmit the signal in the
physical channel; the channel is assumed to be noisy, so the output of the channel is the sum of its

! Also known as Labeling.



input and noise which is usually modeled as Gaussian noise; the demodulator and the hard limiter
are used to regenerate a binary sequence; finally, a series of operations including channel decoding,
inverse index assignment, codebook search and inverse transformation are applied to recover the
original message.
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Figure 1: Block diagram of the transmission system.

This general model can be simplified in different ways. In fact, each method described in this
paper, makes its own assumption on the model and combines some of the blocks in figure (1) into
a single block and/or easily omits some of the blocks. For example, a BSC, simply models the
modulator, channel noise, demodulator and hard limiter set as in one block.

Some methods make a single block from two or three other blocks and apply some optimization
routines to it. As an example, in coded modulation (CM), the channel coder and the modulation
block are put together. As another example, in modulation organized vector quantization, all
the blocks : vector quantization, index assignment, channel coding and modulation are merged
together and optimization is made for this merged block.

1.2 Vector Quantization

A common tool for data compression is vector quantization (VQ). It is a redundancy removal process
that makes effective use of four interrelated properties of vector parameters : linear dependencies
(correlations), nonlinear dependencies, shape of the probability density function (pdf) and vector
dimensionality itself [19].

Let x = [z125...2x]7 be an N-dimensional vector whose components {zy,1 < k < N} are
real-valued continuous amplitude random variables?, y the output of the VQ (another real-valued,
discrete-amplitude, N-dimensional vector). We write y = ¢(x), where ¢ is the quantization opera-
tor.

The value of y is to be taken from a finite set of L elements : Y = {y;,1 < ¢ < L}, which is
called a codebook. The design of a codebook consists of partitioning the N-dimensional space of the
random vector x into L non overlapping regions or cells {C;,1 < ¢ < L} and associating with each

2 Also usually assumed to be of zero-mean, stationary and ergodic.



cell C; a vector y;. A well designed VQ is such that it minimizes a given error criterion. The most
usual criterion is the Euclidean distance. Our aim is to minimize the average Euclidean distance,
D, over a very large number of samples, M:

M
D= lim M; d[x(n), y(n)] (1)
N
dlx,y] = > (zr — w)? (2)
k=1

which simplifies, assuming ergodicity and stationarity, to :

L
D= Zp(x € C;)E[d(x,y:)|x € ] (3)
L =1
D= Ep(x €C) /xec‘ d(x,y:;)p(x)dx (4)

A well known algorithm for VQ design is the Lindé-Buzo-Gray algorithm (LBG) [18]. This
algorithm is also known as generalized Lloyd algorithm (GLA) or K-means algorithm and is based
on an iterative use of two concepts:

1- Each input vector shall be encoded into its closest codevector.

2- The optimum codevector assignment for each cell is the centroid of all input vectors being
encoded to that cell.

1.3 Channel Coding

Channel coding® consists of various methods that add some protection to the message, once passed
from the source coding process. This is done by adding some redundancy to the message which
will be used later in the channel decoder to detect and to correct the errors due to the channel
noise.

There are two main groups of channel coders : the block coders and the convolutional coders. A
binary block channel coding, denoted by (n, k, dynsr), is a collection of 2% code words, each consisting
of n binary elements. Roughly speaking, among 2" possible code words, just 2* information words
are allowed to be transmitted. The channel decoder can receive any of the 2% code words but is
supposed to extract the best information word if the received code word is not an information
word, itself. The code rate is defined as the ratio : R. = &.

n
The minimum Hamming distance of any two code words in a channel coder defines the minimum
distance (dmin). The number of bit errors that a given channel coding is capable to correct, can
be obtained from the following relation :

®Also known as error protection and error correcting coding (ECC).



A code word (C) can be obtained from an information word (X) using the generator matriz

(G) [21] :

C=XxG (6)
gi1 912 Jin

[c1cg...cn] = [E129...21] ¥ ga1 g22 ° Gon (7)
gkl gk2 Jkn

The decoding is done using a parity check matriz (H). If the received block is the same as the
transmitted block, the product S = C’ x H = C x H = 0; otherwise the decoder has to search for
the best information code that minimizes the expectation of error. This task can be quite difficult,
specially in the case of non perfect codes [21]. In fact, channel decoding acts very similar to the
vector quantization. Both method search for the optimum “code”, among some restricted ones in
the total “code space”.

It is necessary to be noticed that some coding systems (MORVQ, for example) do not have a
separate channel coding block. In fact, in these systems the role of channel coding is played by an
appropriate structure of source coder indices.

2 Hierarchical Protection

One way to maintain the performance in the noisy environment transmission is to better protect the
more sensitive information bits which are suspected to contribute to greater errors. This method
is known as unequal error protection (UEP) in the literature. Another use of the hierarchy of
information will be discussed in section 5.2, page 12.

As an example one can mention an LPC vocoder. The human auditory system is more sensitive
to pitch and voicing errors than the errors in the other LPC parameters. In the LPC-10 algorithm
[24, page 268], pitch and voicing are encoded so as to prevent single-bit transmission errors from
causing gross pitch and voicing perturbations, while no channel coding is provided for the other
parameters.

As another example, in one realization of the CELP vocoder, the most significant bits of the
binary representations of the codevectors are more sensitive to channel errors than the least sig-
nificant bits. This property has been used to protect only the most significant bits [23].

Of course, one can imagine a progressive use of channel coders : use the very simple channel
coders (even none at all) for the least sensitive bits and the stronger channel coders for more
sensitive bits. This approach can be employed in networking problems where many types of data
with different sensitivities to noise are to be transmitted. In [11] an example of such a system is
explained : for each bit, a factor of sensitivity to channel error is defined. Using this factor, the
optimal error rate allowed for each bit that minimizes the effects of channel noise, is estimated.
Finally, a UEP coder is used to achieve different levels of protection.



3 Index Assignment

Index assignment of the codevectors does not affect the average distortion, in the absence of channel
noise, while in the presence of channel noise, this assignment plays an important role in determining
the overall VQ performance. Basically, LBG does not provide any protection against channel noise
because any change of bit can redirect one codevector to any other one in the codebook. So, even
a low bit error rate (BER) can heavily distort the signal if no index assignment strategy is used.

In effect, a VQ used in real circumstances, where noise exists, has to be reinforced. One way
of such reinforcing is to provide some structure to the codebook where the codevectors that are
more supposed to be confused represent close codevectors. This is called pseudo Gray coding in
the literature[33] and can be achieved by a good index assignment.
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i~ Possible distinct combinations to assign L = 2° codevectors to L codewords. The 2° and the

b! factors in the denominator eliminate respectively the symmetric cases and the bit permutation

cases. This results 8.3 x 10%%° distinct possible combinations for b = 8 bits.

It must be noticed that the IA is an non polynomial (NP)-complete task since there are

Farvardin has observed [8] that when the splitting* technique [18] is used for VQ training, the
resulting codebook has a natural ordering that can somehow protect the signal in the presence
of channel errors. This is due to the splitting mechanism which makes sister codevectors behave
similarly. However, this is not entirely efficient because if an error occurs on the first split bits, the
resulting distortion can be much greater.

A general solution to the IA problem is to perform the VQ design first and then permute the
indices in such a way that the resulting codebook becomes more robust against channel noise®. It
is shown in [6] that a non negligible reduction in distortion can be obtained through a well designed
TA rather than a random one.

The problem can be formulated simply as explained in figure (2):
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Figure 2: Block diagram of the VQ based coding system used over a noisy channel.

Two methods will be discussed in this cadre : simulated annealing and binary switching algo-
rithm.

“That is to begin the training with a few (possibly just one) codevectors and dividing each codevector into two
sister codevectors gradually, with the small perturbations.

®The other method consists of simultaneous optimization for source and channel, where the IA is included in the
encoding process and will be discussed in the next section.



3.1 Simulated Annealing

Since TA is an NP-complete problem, Farvardin used simulated annealing (SA) to solve it [8].
SA is a Monte Carlo algorithm which has been widely used to solve combinatorial problems [14].
It imitates the physical process of annealing which finds a lower energetic equilibrium for the
crystallization of steel.

An appropriate temperature variable, T, is to be defined. This variable is initialized to a high
value®, T,,, in the beginning of the process and is decreased progressively until a sufficiently small
value”, Ty, is reached. A high value of T signifies a high degree of randomness while a low value of
it means that nothing is left at random. A high value of T' at the beginning of the process, permits
to avoid many local optima.

The SA algorithm can be written as follows [14]:

Initialization :

- An initial state for IA is given : S = Sp.

- Temperature is initialized to the melting temperature : 7' = T,,.

Iteration :

- Randomly choose another state, S’, as a perturbation of the last state, by changing the
assigned codewords of two codevectors (both codevectors are chosen randomly).

- Let AD, = D.(S') — D(S5).

-If AD. < 0 then S = 5".

- Otherwise replace S by S’ with probability e=2P</T,

- Slightly decrease T

Termination :

- If T = T}%, or a stable state is reached, end.
- Otherwise continue the iterations.

The SA algorithm can theoretically give the global optimum solution, unconditionally on the
initial state, provided that the initial value, T},, and the schedule of decreasing 7', are chosen
appropriately. Unfortunately, this is difficult to achieve and therefore good optima from SA might
be difficult to obtain in most practical cases.

As an example, Farvardin has reported a signal-to-noise ratio (SNR) of about 8.95 dB for SA,
compared to 8.87 dB for a naturally organized LBG with splitting. The test parameters were :
€ = 1072, N = b = 8 bits for a first order Gauss-Markov source with the correlation coefficient,
p=0.9.

3.2 Binary Switching Algorithm

Another algorithm for an improved IA was proposed by Zeger and Gersho [33]: binary switching
algorithm (BSA).In BSA, to each codevector y is assigned a cost function C(y). This cost function

®Melting temperature (10.0 in the example of [8]).
"Freezing temperature (2.5 x 107* in the example of [8]).



is a measure of the contribution to the total distortion due to the possible channel errors when y is
decoded, assuming a certain permutation, #. Then the codevectors are sorted in decreasing order
of their cost values. The vector that has the largest cost, say y, is selected as a candidate to be
switched first.

A trial is conducted : y is temporarily switched with each of the other codevectors to determine
the potential decrease in the total distortion D, = Ef;(} Cr(yk), following each switch. The code-
vector which yields the greatest decrease in D, when switched with y is then switched permanently
with it. The algorithm is then repeated for the next highest cost and so on.

Although a global optimal IA is not necessarily obtained by BSA, good locally optimal solutions
have been reported [33]. Simulation tests have been made with a first order Gauss-Markov source
as well as an independent identical distribution (iid) and speech waveform. As an example, for
€=10"%2, N = 4, b = 8 bits, 1.5 dB gain has been achieved compared to the initial state.

4 Simultaneous Optimization of VQ and TA

We mentioned previously what the state of the art is to assign indices to the codevectors of a given
vector quantizer when they are to be transmitted over a noisy channel. We now turn our attention
to the direct design of a vector quantizer which is intended for use over a noisy channel. Figure
(3) illustrates the block diagram for this situation.
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Figure 3: Block diagram of the VQ based coding system used over a noisy channel. Here, the IA is included
in the encoding process.

We will examine two methods here that are based on simultaneous optimization of quantizer
and TA : “channel optimized vector quantization” which is a generalization of LBG for the noisy
channel transmission and “self organizing hyper cube” which is a generalization of Kohonen map
into higher dimensions.

4.1 Channel Optimized Vector Quantization

Farvardin proposed a joint optimization for the source and the channel coders [9, 10]. It is in
fact a generalization of the same methodology used for optimum scalar quantizer design in [7].
This optimization is performed by presenting a modified distortion measure involving both the
quantization error and the error due to channel perturbation [2]:
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D= lim — Z Zp(]|7r(z)) x d[x(n),y;(n)], x(n) € C; (8)
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This distortion measure leads to a simultaneous optimization for source and channel. The

resulting algorithm is very similar to the LBG algorithm and is named channel optimized vector

quantization (COVQ). The cells, C;, are updated according to the following equation [10]:

L L

;= {x: ) p(lm(i)) x |lx = y5l1* < D_p(lw(D) x [|x —3l*, 1}, i € {1,..., L} (9)

That is, each input vector x is classified into the cell with the least expectation of distortion
: this equation is referred to as generalized nearest neighbor. The codevectors, y;, are updated
according the following equation:

gt = i p(ilm(?)) Je, xp(x)dx ;
T Sk p(iIm (i) e, p(x)dx |

The term y; represents the centroid of all input vectors that are decoded into C;, even if the
transmitted index, 7, is different from j. So this equation is called generalized centroid. It can
be noted that these two equations can be simplified into the LBG learning equations by simply
assuming that:

€ {1,..,L} (10)

p<j|7r<z'>>:{3 e (1)

This way, LBG can be regarded as a special case of COVQ when transition probability, ¢ = 0.

It is shown that the obtained optimum encoding cells are convex polyhedrons and that some
cells might vanish thus creating empty cells [9]. This means that the system trades quantization
accuracy for less sensitivity to channel noise. Figure (4) shows an example of COVQ for a two-
dimensional (N=2), three-level (L=3) VQ and a discrete memoryless channel (DMC) with the
parameters as in the following Table.

Transition matrix P(7]j) in the DMC example.

|7 1 2 3
1 1— 2¢ € €
2 2e 1—4e 2e
3 € € 1—2¢

This figure illustrates that the higher the channel noise is, the greater is the risk that some cells
vanish. Assuming that there are L' nonempty encoding cells, L' < L, only L' codewords need to
be transmitted. Of course, any of L binary codewords may be received and therefore the codebook
must remain of size L. It is interesting to observe the analogy that exists between the presence of
empty cells (codevectors with no corresponding input vector) and the added redundancy in channel
coding.
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Figure 4: Figures (a), (b), (c¢) and (d) show the quantization cells for ¢ = 0.00,0.10,0.15 and 0.20,
respectively for a simple DMC. The codevectors get closer when ¢ increases and finally one of the cells, Cs,
vanishes for ¢ = 0.20. The ¢; are the codevectors for a non noisy environment.

Simulations have been reported [9, 10] for first order Gauss-Markov sources, as an example, for
p=0.9,e¢=10"%2 N = b = 8. COVQ and naturally organized LBG with splitting have resulted
in 9.70 dB and 8.87 dB, respectively. COVQ has had L' = 26 empty cells (out of L = 256), in this
example.

4.2 Self Organizing Hyper Cube

A direct mapping from the input space to the Hamming space has been proposed in [31]; this
mapping is roughly a b-dimensional generalization of the 2-dimensional Kohonen map [15, 16],
hence it is named as self organizing hyper cube (SOHC). Kohonen map is also known as self
organizing map and competitive map, because it is an iterative algorithm to design a VQ, which
keeps a topological similarity of the input space in the coding space.

SOHC is trained with an algorithm similar to the Kohonen algorithm with some modifications:
the codevectors are arranged in a b-dimensional cube (instead of a 2-dimensional map); the neigh-
borhood function is defined in the hyper cube and Hamming distance (dg) is used as the distance
measure of the binary representations of the indices (instead of Euclidean distance in the Kohonen
map).
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As a result of such a definition of distance between the codevector indices, in SOHC, there is
almost no difference between the quantized bits. In other words, the least and most significant bits
have no sense in SOHC. Roughly speaking, the effect of noise on each bit is almost the same.

Examining figure (5), if we consider that the chosen codevector to be transmitted is 0000, a
single bit of error can commute it to either of 1000, 0100, 0010 or 0001. Since all these codevectors
are the first order neighbors of 0000 (with dg = 1), this commutation does not contribute a gross
error.

. . 0000 . 0001, .
Input Space (N=3 dimensions) Hamming Space (b=4 dimensions)

Figure 5: An example of SOHC. Left : input space. Right : SOHC. Codevector 0000 and its first order
neighbors are highlighted in both spaces.

Adding the splitting technique to SOHC, improves further its performance [32]. In SOHC with
splitting, each time that the codewords are split, the dimension is increased, too. SOHC has been
tested for quantizing and transmitting log area ratio (LAR) [30] parameters of speech, over a BSC.
Better objective results were reported, compared to naturally organized VQ and Kohonen map,
specially for high transition probabilities.

For instance, with a transition probability e = 1072, N = 10, b = 8, the spectral density
distortion (SD) [12] measure for SOHC, Kohonen map and naturally organized LBG with splitting
were about 3.3 dB, 3.4 dB and 3.5 dB, respectively. With SOHC, a further protection is also
possible, using some classic error control coding technique, since SOHC provides the bit patterns
in which all the bits are (almost) equally likely to cause error.

5 Direct Modulation Organizing Scheme

Another possible source-channel configuration is the direct modulation organization. In this con-
figuration, the encoder includes the modulator and benefits directly from the flexibility that is
naturally present in a constellation. As shown in figure (6), the channel is considered with an
additive white Gaussian noise (AWGN).

Several works have been done in this field. To mention some, we can indicate a competitive
learning algorithm which gives aft direct mapping from input space to the signal space is presented
[27]; the hierarchical modulation, in which the constellation points are located to minimize the
error expectation is explained [25, 5]. There exists some other works that we will not extend in this
paper : joint optimization of three blocks (source coder, channel coder and modulator) [28]; Trellis
coding and Lattice coding which are special kinds of covering the signal space by the constellation
points [1, 17].

11
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Figure 6: Block diagram of the Direct Modulation VQ based coding system, used over an AWGN channel.
The source encoder, channel encoder and modulator are represented in one block.

5.1 Modulation Organized VQ

Withdrawing any binary representation, Skinnemoen proposed the modulation organized vector
quantization (MORVQ) [27]. This method uses a quantizer which maps the codevectors directly
into the constellation plane. It makes efficient use of the Kohonen learning algorithm to map the
N-dimensional input space to the 2-dimensional signal space, in such a manner that the close
codevectors in the modulation space, are assigned to the close points in the input space. This
property is obtained by proper use of a neighborhood function [15, 16] and the resulting codebook
has some organized structure. Having this structure, most little changes due to channel noise make
the output codevector to be one of the neighbors of the source vector and so the distortion will not
be very important.

Skinnemoen observed a great difference between explicit error protection and the structure of a
codebook. He states that any transmission system (with or without error protection) has a BER
working threshold. Above that limit, the system’s performance breaks down. The role of MORVQ
is to increase this threshold. This is the great advantage of MORVQ; however, in MORVQ, no
more channel coding can be added since it does not produce any intermediate bit pattern which
can be processed by the channel coding.

Good numerical results have been reported in quantizing first order Gauss-Markov sources
and line spectrum pairs (LSP) [13] parameters of speech spectrum in an AWGN channel. As an
example, for quantizing LSP parameters with N = 10 and L = 256, SD was 2.11 dB and 7.82
dB, respectively for MORVQ and LBG, for a highly noisy channel. Also it is observed that for
MORVQ, the degradation curve by increasing channel noise is rather smooth while for LBG there
is a threshold above which the system performance drops rapidly.

5.2 Hierarchical Modulation

Ramchandran et al. have proposed in [25] a Multi-Resolution broadcast system. One basic idea in
their proposition consists in partitioning the information into two parts : the coarse information
and the refinement or the detail information®. The coarse information is to be received correctly

8Many transformations, like subband and wavelet coding have a natural multiresolution interpretation.
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even in a very noisy transmission environment, while the detail information is mostly destined to
the receivers whose channels have better qualities (graceful degradation)®.

MR 16 QAM
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Figure 7: An example of Multi-Resolution Constellation. Each set of close points constitutes a cloud with
four satellites points surrounding it. The detail information is presented in the satellites while, the course
information is represented in the clouds. So there is 2 bits of coarse information and 2 bits for detail. Note
also that the Gray code is used for numbering the satellites (and the clouds) in such a way that the codewords
with Hamming distance equal to 2 are far from each other. This is like the application of Karnaugh map in
digital design and can be used for larger constellations, too.

As an efficient end-to-end broadcast have its transmission constellation matched to its source
coding scheme, they proposed a multi-resolution constellation as depicted in figure (7). The coarse
information is carried by the clouds, while inside each cloud, the mini-constellations or satellites
provide the details. The loss of coarse information is associated with the receiver inability to
decipher correctly which cloud was transmitted while the loss of detail information occurs when
the receiver confuses one intra-cloud signal point for another. Of course, many other configurations
could be thought which yield the same property and one has to choose the best configuration
according to the presented problem. The same idea has been used in conjunction with Trellis
modulation coding (TMC) as well as with embedded channel coding [25].

Combelles et al. [5] have used the same idea of multi resolution coding, in conjunction with
Turbo code [4], which was used to protect the coarse and detail information with % and % rates,
respectively. They achieved 4 dB better performance for the coarse information while 2 dB degra-
dation for the detail information, compared to a single resolution system using Turbo code, with
the same overall spectral efficiency to obtain the same error rate (10~*), while for a Rayleigh fading
channel their simulation shows 5 dB of better performance for the coarse information and 3 dB
degradation for the detail information.

In [25] an example is given where with a multi resolution system, the broadcast coverage radius
(64 km) is much greater than for a single resolution system (45 km) while for the multi resolution
system, the radius of full data availability is a little smaller (38 km).

°This classification can be made more precise, making several classes of importance.
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6 Rate/Distortion Source-Channel

A special case is considered : a memoryless source with uniform pdf is to be coded and transmitted
over a BSC. The uniformity of source, does not permit too much for source coding (except the
dimensionality [19]). However, we will see that since different bits have different contributions
to the total error, it is rather reasonable to send different bits with variable compressing and/or
protection rate.

The originality of the work to be presented here is that it considers each sample, bit by bit and
performs the compression and the protection operations on them separately. To do so, the blocks
of ny most significant bits (msb) are grouped together; the blocks of ny bits from the next row,
until ny least significant bits (1sb).

This hierarchical combination of source and channel coders is depicted in figure (8). Each block
is either a source coder or a channel coder (it can also be just a close connection or an open one,
as the extreme cases of coder). As the importance of bits augments (for the most significant bits,
for example), one expects that a stronger channel coding scheme is to be employed. Contrarily, for
the less important bits (the least significant bits, for example), a powerful source coding is used.

UL (msb) sc1 = cc1 b1 D1 U'1 (msb)
U l
u
SOHE(:e .......... | BSC —— e, User
SCN |~ CCN
UN (Ish) ON SON- PO ()
Figure 8: Source-Channel coder combination. Each line of bits (msb, ..., Isb) is treated separately.

Although the source coding and the channel coding in this structure are performed separately,
we consider it as a combined source-channel coding since the optimization constraints are applied
simultaneously to both coders.

This system was optimized for a limited number of possible source and channel decoders. To
simplify the implementation, we considered just Hamming and repetition codes as the channel
encoder and the inverse Hamming and Majority vote (inverse of repetition) codes as source encoder.

Seeing the duality that exists between channel coding and source decoding, also between source
coding and channel decoding, we have considered the same channel decoders as source coders and
the same channel coders as source decoders.

Considering five different repetition coders (Rs 1,3, Rs51,5, R7,1,7, Ro.1,9, R11,1,11) and eight differ-
ent Hamming coders(H7 43, H15,11,3, H31,26,3, He3,57,3, H127,120,3, Has5,247,3, Hs11,502,3, H1023,1013,3), the
total number of possible combinations grows too rapidly with the number of used bits. Fixing the
maximum number of bits to 10, there will be ((5+ 8 + 2)'°)? = 3.32 x 10?3 possible combinations.
This makes an exhaustive search very hard to be done.

The optimization was done with the use of the bit allocation algorithm (BAA) [22]. It fits a
polyline on the R/D plane as shown in figure (9) which covers all the possible combinations. For a
highly condensed cloud, BAA gives the envelope of the permitted region. It works with an iterative
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use of a subroutine which gives one point on the envelope corresponding to a given tangent to the
envelope, A. BAA searches for the optimum A which yields an acceptable bit rate and maximum
SNR, like a binary search.

transition probability = 0.01
T T T

SNR (dB)

| 1 | | |
10 20 30 40 50 60
R (bits)

Figure 9: The cloud of possible combinations. The curve with “*” shows the attainable bound and the
curve with “o” shows the performance of a simple system without any SC nor CC for 1, 2, ..., 10 bits.

This algorithm does not guarantee the global optimum for non condensed codes, however it
gives very good results. For example, the exhaustive search and BAA resulted, respectively, 16.47
dB and 16.53 dB SNR, for ¢ = 1072 and desired bit rate, Ry = 4 bits. The cloud of possible
combinations is also illustrated in figure (9) for the same example. The points of the cloud are
selected randomly with an independent uniform probability for each block. To draw the figure,
1000 sample configurations were used among many possible points and give an idea for the possible
region in the R/D plane.

Rd =4 bits Rd =4 bits
a)  R=395bits by R=4bits

SNR =16.47 dB (Ri, wi.Di) SNR=1322dB  (Ri, wi.Di)

sc cc

(1, 2621.4)

H(11/15) |36 257.7)

119, 364.6) (L. 6554)
H(1013/ 1023) [ {122 2640

BSC BSC

(101, 912)

H(1013/1023)

(037, 5736)

Figure 10: The optimum system of coders for ¢ = 1072 and Rq = 4. The pair of numbers in parenthesis
show the (R;, D;), the bit rate and the contribution to distortion due to each line.

Figure (10) illustrates the result of optimization for ¢ = 1072 and R4 = 4. One can observe that
there is a tendency to equalize the distortion due to each line, D;. In fact, the space of used (both
source and channel) coders is very sparse, otherwise, one could expect a much more equalized error
contribution of all lines. The distribution of bit rate to each line, R;, is inversely proportional to
the line number . So: R; > R; & 1 < j.

The performance of the proposed optimized system is compared to two other system perfor-
mances in figure (11) : a system without any coding at all and a system with only channel coding
and the same channel coding for all bits. All the systems run at six bit/sample rate.
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Rd = 6 bits
T

5 I | I
10° 10° 10™ 10° 10
Transition Probability

Figure 11: The system performances : “*” rate/distortion optimized system; “o” without any coding; “+”

with the same channel coding for all the lines.

As shown in the figure, the two last systems have practically the same performances for transition
probabilities below € < 2 x 10~* while the performances of the proposed optimizations are always
at least 1 dB above the two others and the maximum gain is about 6 dB. It is also noticeable that
even for non noisy channels (€ ~ 0) the proposed algorithm provides some gain.

It is also necessary to indicate that although the model used for this system is very simple, a
real optimization is searched and further improvements for more complex models are to be done.
In a special direction, the coder space can be also extended to more powerful codes which will lead
a more effective optimization.
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7 Conclusion

A survey of methods of combined source-channel coding is presented in this paper. The different
methods have been classified : first, one that exploits the unequal sensitivity of different symbols
and hence economize bit-rate for the most sensitive ones; second, those that rearrange a codebook
by permuting its codevectors; third, those that are the generalizations of the optimum source coders
in noisy conditions; fourth, those that exploit the flexibility offered in the modulation and match
the modulation space with the source input space, and fifth, those that exploit the redundancy in
different bit streams of a binary source. This last system is a novel contribution.

The following table summarizes some informations about these methods : the most important
references used, the considered source and channel and finally the error criterion used.

Survey of the reviewed methods.

| Algorithm || ref. | Source | Channel | criterion |
| Hier. Prot. || [11] | Image | BSC | SNR |
SA [8] Gauss-Markov BSC SNR
BSA [33] Gauss-Markov BSC SNR
Speech (Wave) BSC SNR
covQ [8, 9, 10] | Gauss-Markov | BSC/DMC SNR
SOHC [31, 32] Speech (LAR) BSC SD
MORVQ [27] Gauss-Markov AWGN SNR
Speech (LSP) AWGN SD
Hier. Mod. [5, 25] Image (HDTV) AWGN Packet loss
| Rate/Dist. || new work | BSS | BSC | SNR |

A universal solution that can satisfy all the problems is not known. Nevertheless, for each
problem, one can find a solution that is better matched to the application among the various
proposed methods.

Acknowledgment We would like to thank Ch. Pepin and J.Y. Chouinard for their precious
comments and suggestions on the primary version of this paper.
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