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and Confidence Interval Criteria
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Abstract—A new image coding technique based on anLLL111-
norm criterion and exploiting statistical properties of the recon-
struction error is investigated. The original image is preprocessed,
quantized, encoded, and reconstructed within a given confidence
interval. Two important classes of preprocessing, namely linear
prediction and iterated filterbanks, are used. The approach is also
shown to be compatible with previous techniques.

The approach allows a great flexibility in that it can perform
lossless coding as well as a controlled lossy one: specifications
are typically that only ppp% the reconstructed pixels are different
from the original ones.

Index Terms—Confidence interval criterion, filterbanks, loss-
less image compression.

I. INTRODUCTION

T RANSMISSION and storage of digital signals both re-
quire some compression of the original data to reduce the

overall system cost. In many applications, the image quality
is reduced by the coding process: the image is converted into
a set of binary digits in such a way that the original data
can be recovered from the binary set within some distortion
level. These “lossy” image compression schemes are usually
based on some “transform coding” technique. The original
image is split into a set of coefficients using some invertible
transformation in order to improve the signal statistics prior to
encoding. This transformation can be of several kinds: discrete
cosine transform (DCT), filterbanks [1], wavelets [2], and so
on. Linear prediction can also be considered as a particular
transformation [3]. This first step (transformation) does not
produce any data compression, but prepares the next steps.
The transform coefficients are then quantized (which pro-
duces some data compression, but also generates distortion in
the reconstructed signal) and possibly entropy-coded (further
compressing the data, without additional distortion).

The compression scheme is optimized by choosing an
appropriate set of parameters (transform, quantizer steps, etc.)
so that the overall compression ratio is minimized for a
given reconstruction error measure. Classical lossy compres-
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sion schemes basically minimize an MSE-like criterion on the
reconstruction error [4]. Thus, the overall distortion is evalu-
ated and controlled using the -norm. However, this criterion
is global (on the whole image) and does not exploit “local”
knowledge, which is always available. One at least knows
the number of bits on which each pixel of the original image
is encoded. Moreover, in many applications (biomedical, for
example), one has indications on the precision with which
the pixel values are obtained. The-norm cannot take such
information into account, since it “averages” the errors on
the whole image. In this paper, we propose a set of methods
that are able to take such knowledge into account through
a new criterion involving a “confidence interval.” Therefore,
our algorithms allow a pixel-by-pixel control of the error. We
restrict ourselves in this paper to the case of very good quality
(almost lossless) image coding, giving only a few indications
on visual differences between and coding.

More specifically, we determine the components in the
compression scheme in order to ensure that a given percentage

of the reconstruction errors are smaller than some given
threshold . This is obtained withouta priori knowledge of the
image statistics, but some knowledge on the distortion statistics
is required. Since the transform maps the initial discrete signal
into an “almost continuous” one, a statistical model, depending
on the transform, can be introduced and the statistical approach
above becomes meaningful. As an example, we are able to
optimize a compression scheme such that, e.g., say only 2%
of errors exceed half the initial quantization step. That is, after
requantizing (with the initial quantization step), only 2% the
output pixels will be different from the original ones.

As a preprocessing, we consider two classical types of
transformations: linear prediction and filterbanks. In each case,
the original image is transformed, quantized, encoded, and
reconstructed to give . The distortion is
statistically modeled in order to be controlled accurately. In the
chosen compression schemes, either prediction or filterbanks
would achieve perfect reconstruction if no quantization was
involved. Thus, the reconstruction error is due to quantization
only.

The classical assumption made on quantization noise and
transform coefficients are recalled in Section II. Since recon-
struction errors depend only on quantization, the problem
amounts to determining the quantizers in the compression
scheme so as to achieve% the values of the error
inside the confidence interval which for simplicity is chosen of
constant amplitude, depending on a given threshold. Hence,
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Fig. 1. DPCM block diagram. The transmitter includes the receiver to ensure identical prediction on both sides.LP denotes the predictor. The prediction
error is quantized, encoded (global Huffmann coding) and transmitted. The receiver reconstructs the approximate signalx̂.

we minimize the overall bit rate under the constraint

prob (1)

This problem is solved in the context of a predictive coding
scheme in Section III, and in the context of wavelet trans-
forms (iterated filterbanks) as a subband coding in Section IV.
Section V-A provides a comparison between both techniques
in the context of near lossless coding.

Compatibility with other lossless coding techniques is also
examined in Section VI, showing that lossy plus lossless
coding [3] can also be used with same performances if the
lossy part is optimized using an criterion. Finally, we
give some indications on the visual differences between low
bit rate systems optimized using and norm criteria.

II. PRELIMINARIES

The processing (transform) applied on the original signal in
the compression scheme is introduced in order to improve the
statistics of the coder input. Moreover, a fact that is seldom
used, it also increases the density of the original discrete data
and allows an almost continuous modeling of the statistical
distribution of the reconstruction errors.

In the case of a predictive preprocessing, each pixel is pre-
dicted by a linear combination of its neighbors. The transmitted
data is the prediction error.

For filterbanks, the original image is split into different
subimages. Each subimage has a reduced bandwidth compared
to the original full-band image. Furthermore [7], subband
signals statistics can often be accurately modeled by Laplacian
distributions.

After transformation, the resulting signalsare quantized
prior coding. Here, we consider only scalar uniform quantiza-
tion with stepsize . The quantization error can be modeled
as an additive noise lying between and . The input

is supposed to be Laplacian, with zero-mean and standard
deviation . As shown in [6], if the ratio is high (more
than 0.7), the quantization noise can be accurately modeled
by a uniform distribution

if

otherwise

with zero mean and variance .
In our case (almost lossless coding), and the standard

deviation of the quantizer input signal is larger than one. So,

the above condition is satisfied and the quantization error is
always supposed to be uniformly distributed.

III. CODING WITH LINEAR PREDICTION

Linear predictive coding is particularly well adapted to loss-
less or high-quality coding, and easily implemented. Therefore,
it is the first logical choice in our context. In a general
predictive coding scheme, the correlation between the neigh-
boring pixel values is used to compute the linear predictor
which, when applied on the image, provides a prediction for
each pixel. A well-known approach to predictive coding is
differential pulse code modulation (DPCM). In DPCM, the
prediction is subtracted from the actual pixel value to
form a differential image that is much less correlated than
the original data and can be assumed to have a Laplacian
distribution [3], [5].

The predictive error is then quantized and encoded. The
quantized differential image is transmitted to reconstruct the
pixel values. Since the quantization of the differential image
introduces errors, the reconstructed values typically differ from
the original ones. To ensure that identical predictions are
formed at both the receiver and the transmitter, the transmitter
also bases its prediction on the reconstructed values. This is ac-
complished by introducing the quantizer within the prediction
loop at the analysis and the reconstruction side as shown in
Fig. 1. In essence, the transmitter includes the receiver within
its structure.

This compression scheme uses a linear predictor, scalar
uniform quantization, and lossless coder. Since the differ-
ential image has a Laplacian distribution, the probability of
occurrence of the various quantized levels is not uniform
and the average number of binary digits required for their
representation can be reduced by using some variable length
coder. Here we use global Huffmann coding.

The predictor and the quantizer have to be chosen in such
a way that the bit rate is minimum while the “confidence
interval” constraint (1) is satisfied. Because the inclusion of
the quantizer in the prediction loop results in a complex depen-
dency between the prediction error and the quantization error,
a joint optimization should ideally be performed. However,
to avoid the complexity of modeling such interactions, both
components are usually optimized separately.

A. Predictor Optimization

The classical criterion for computing the linear predictor is
the minimization of the mean-squared prediction error [3], [5].
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Fig. 2. DPCM predictor configuration. The pixelXn is predicted using the
neighboring pixels; e.g., for a third-order predictor, the prediction ofXn is
a combination of pixels A, B, and C [3].

Under this criterion, the best linear estimate of a sample
is the value that minimizes

(2)

If , where is the predictor order
and the coefficients to be optimized, the minimization of
criterion (2) yields to the following set of linear (Wiener–Hopf)
equations:

where . The optimal predictor coefficients are
then obtained by solving the linear system above.

Regarding the predictor order, which means the number of
samples involved in the weighting, experimental studies on
various images show that there is only a marginal gain beyond
a third-order predictor. In this paper, we use a third-order
predictor of the form

where are the predictor coefficients;, , and are the
neighboring points shown in Fig. 2.

Recall that the full scheme in Fig. 1 would achieve zero
error if no quantizer was introduced. The reconstruction error

is thus fully determined by the quantizer, which has to
be optimized as described below.

B. Quantizer Optimization

Given an optimal predictor, the next step is to choose the
quantizer that minimizes the bit rate under the constraint that
the reconstruction error lies within the confidence interval. To
solve this problem, a statistical model of the reconstruction
error is required. Using the compression scheme of Fig. 1, and
assuming no channel errors, we easily find that

which is the quantization error. Since the quantizer
is uniform, with a step , the quantization error is, under
the conditions recalled in Section II, uniform in .
The reconstruction error has consequently the same uniform
distribution. Equation (1) can then be rewritten as

(3)

where

if

otherwise

Note that if , the quantization error and consequently
the reconstruction error are always less than the given thresh-
old. Since condition (3) allows a certain percentage of errors
to exceed , the quantization step meeting (1) is larger than

. Equation (3) is easily solved in, yielding
%. The required value of the quantization step is

thus .

C. Results

An example of what can be done using this approach is
shown in Table II for two images. All results are provided in
the context of “almost lossless coding,” hence with reference
to a threshold , with original images initially quantized
on 8 b/pixel. The first column provides the results obtained
for % of errors in . This corresponds to
plain lossless coding using DPCM, since the image is exactly
reconstructed by requantizing the reconstructed signal on 8
b/pixel. As is well known, this approach allows a noticeable
reduction of the bit rate that is necessary for transmission (58%
the initial bit rate is necessary for Lena, 36% for coronair). The
other columns show the variation of the bit rate by allowing
more and more errors to exceed the chosen threshold, in a
controlled manner, by using the above approach.

We observe that the percentages computed on the recon-
structed image are almost equal to the required ones, thus
verifying the white noise assumption. However, although the
bit rate decrease is noticeable, it does not decrease quickly
when more errors are allowed, i.e., when the percentage%
decreases (allowing 20% pixels to be recovered with an error
has allowed the bit rates to be further decreased of 8% and
11%, respectively). A larger coding gain would be obtained
only by working with a larger threshold. However, this
corresponds to an increase of the distortion, and it is well
known that replacing the linear prediction by a filterbank may
lead to better compression ratios in this case. In the following,
filterbanks are introduced in the same framework.

IV. FILTERBANKS CODING

Since the efficiency of DPCM decreases when more distor-
tion is allowed in the image compression scheme, filterbanks
coding (FBC) is now considered.

The corresponding compression scheme is depicted on
Fig. 3. It uses a perfect reconstruction octave-band filterbank,
scalar uniform quantization, and global Huffmann coders. For
a given set of perfect reconstruction filters, the problem is
that of determining the best quantizers minimizing the global
bit rate while a certain percentage of reconstruction errors
lies within a given confidence interval, as in (1). However,
the problem is much more difficult in this case, as will be
clear below. An evaluation of the statistical properties of the
reconstruction error is required in order to solve this problem.

A. Statistical Properties of the Reconstruction Error

Since we use perfect reconstruction filters and lossless
coders, the error is generated by the quantizers only. Its distri-
bution is thus a function of the quantization noise. Therefore,
we first need to find the dependency between both signals.
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Fig. 3. Filterbank compression scheme. The encoding part uses an oc-
tave-band separable filterbank (wavelet transform) iteratedJ times on the
lowpass filter which splits the input image into(3J + 1) subimages. These
subimages are then quantized and losslessly encoded (using Huffmann cod-
ing). The synthesis part reconstructs the approximate signalx̂.

Fig. 4. Reconstruction error. Only one iteration of a 1-D signal is considered.
�0
n

and �1
n

are quantization errors.�x is the reconstruction error,g and h
are the set of the filter coefficients.

Since the system is linear, the reconstruction error is the
result of the contribution of the various quantization errors
to the actual output. In each subband, the quantization error
is interpolated and filtered through the synthesis structure
depicted in Fig. 4 in the context of one iteration of a one-
dimensional (1-D) signal. For simplicity, we show in this
1-D context that the reconstruction error has a Gaussian
distribution. The demonstration would be similar in the two-
dimensional (2-D) case.

Due to the interpolation in the synthesis phase, the odd
and even samples of depend on a different set of filter
coefficients. So, two cases have to be considered:

(4)

where (resp., ) is the filter (resp., ) length.
The quantization errors have, as seen in Section II, a

uniform distribution in with zero-mean and
variance .

The reconstruction error is thus a linear combination of
uniform distributions. Because of the filter coefficients and the
different values of the quantization steps in the various sub-
bands, these uniform distributions have different bandwidths
and different energies. Thus, to prove that the reconstruction
error converges to a Gaussian distribution, some conditions
on its first three moments have to be satisfied in order to use
central limit ramifications developed in [8]. These conditions
are that the mean and the third moment should be zero, while
the variance should take finite value. This is checked below.

Consider one of the subbands of the synthesis phase, e.g.,
the lowpass one of Fig. 4, denoted. We have

where for even samples and
for odd samples. We easily find that has a zero-mean
and a variance .

Since quantization is scalar, we can assume that quantization
errors are independent. We further assume that the quantization
errors in different subbands are also independent. All these
conditions can be shown to hold under the same hypothesis as
the one recalled in Section II for the quantization noise to be
uniform. Under these conditions, we have

if

otherwise
and

Note that the variance has a finite value (since we use finite
length filters). Under the independence hypothesis, it can be
shown that the third moment is null: .

The results above are easily extended to 2-D signals and
many iterations. We can thus use generalized central limit
theorems detailed in [8] and [9] to show that an infinite sum
of those errors has a Gaussian distribution.

In practice, the filterbanks are iterated several times, which
increases the number of subbands, since foriterations of a
2-D signal we have subbands. Thus, e.g., for
iterations we have 16 subbands and the convergence to a
Gaussian distribution is ensured.

Finally, we end up with a Gaussian distribution reconstruc-
tion error, with a zero-mean, and a variancedepending on
quantization step values and on the set of filter coefficients
involved in each subband. For example, for we have

where and are associated to odd and even samples of the
error.

For iterations, the whole error is a contribution of the
different samples due to the interpo-
lations. Furthermore, these samples have the same contribution
in the whole signal, and a probability density

.

B. Quantizers Optimization

Since a statistical model of the reconstruction error is
available, a control of this error is feasible. So, we can find
the quantizers allowing a certain percentage of distortion such
as in (1).



KARRAY et al.: IMAGE CODING WITH AN NORM 625

Fig. 5. Contribution of the various subbands. The lowpass subimage is
transformed to give four other subimages four times smaller due to the
decimation in the analysis phase. The contribution of each subimage in the
global bit rate is thus divided by four in each iteration.

Taking into account the uniform contribution of the various
, we have

prob prob

erf (5)

where erf .
Recall that is a function of the squared quantiza-

tion steps. Besides, the optimal quantization steps satisfying
prob % must also minimize the global bit rate,
which is the sum of the bit rates in the various subbands.
Note also that the decimation in the analysis phase divides by
two the size of the subimage in each subband and since we
use separable dyadic filters, the contribution of a subimage
resulting from iterations is . This is illustrated
in Fig. 5.

Let denote the total bit rate, the dynamic range in
subband number, and the bit rate in subband. For
simplicity, we evaluate the contribution of subband as
a function of quantization step by

(6)

Although this is only a rough evaluation of the actual bit
rates, which are much lower after Huffmann coding, this
formula has been chosen in order to be able to perform the
optimization. Despite this approximation, the results are quite
accurate, as will be seen in Section V. This is certainly due
to the fact that, for such high-precision coders, the bit rate
evaluated by formula (6) has been observed to be almost linear
in terms of the Huffman bit rate. Quantization steps have to be
chosen such that the total bit rate, , is minimum
while (5) is satisfied. Thus, we end up with a constrained
minimization problem

erf

(7)

In its present form, it is a nonlinear minimization problem
with a nonlinear constraint. To avoid divergence of general
optimization algorithms, we solve the problem in two steps:
first, we determine the best quantizers which minimize the bit
rate such that the maximum error is less than a given threshold
(deterministic problem). Then, using the relationship between
the variance of the error and the quantization steps, we solve
(1) (statistical problem).

C. Deterministic Point of View

In a first step, a deterministic approach is used to find
the quantizers such that the bit rate is minimum and the
reconstruction error does not exceed a given threshold
, i.e., . This condition can be written using

the maximum of the reconstruction error, also called -
norm: . We finally have to solve the constrained
minimization problem

(8)

An evaluation of the maximum reconstruction error is thus
required.

1) Estimation of the Max Norm of the Distortion:Since the
exact value of the maximum depends on the filter coefficients
and the original image, we can only give an upper bound as
an estimate of the norm of the reconstruction error. We
first keep with the simplified context of a monodimensional
signal, with a simple two-band filterbank. The result is then
extended to 2-D signals and iterations.

According to (4), an upper bound is found for each kind
of distortion samples [ for even samples and

for odd ones]. The -norm estimate is then
the maximum of both:

An upper bound is obtained if the quantization errors (
and ) have maximum amplitude and have the same sign as
the filter coefficients. Since satisfies , where
is the quantization step, we obtain

Since separable filterbanks are involved, the filtering and
interpolation are separately done on lines then columns of the
2-D signals, which results in four types of samples, depending
on the parity of their indexes, giving
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(a) (b)

Fig. 6. Equivalent constrained optimization problems. (a) Problem(P1) has a convex cost function and linear constraints delimiting the feasible domain
(K1). (b) Problem(P2) has a linear cost function and convex constraints, the feasible domain is(K2). It is easily seen from(P1) the optimum
solution is on the boundary of(K1) or (K2).

After iterations of the filterbank we similarly obtain

where and vary between 0 and (i.e.,
possibilities, coming from the successive interpolations in
the synthesis phase) andand describe the different signal
samples.

Without anya priori knowledge on the signal, this estimator
is optimal, but overly pessimistic for many real images.
Furthermore, it is a linear function of the quantization steps.

Since is the contribution of the interpolated samples
, the relation has to be satisfied for every
combination, yielding a linear system of constraints.

Thus, the optimization problem (8) has a convex criterion:
, using the notations of (6), and linear

constraints where coefficients depend on
the set of filter coefficients involved in subbandand the
combination of and seen above.

2) Deterministic Computation of the Quantization Steps:
Finding the optimal quantization steps minimizing the bit
rate such that the reconstruction error is at most equal to
the threshold is thus equivalent to solving the constrained
optimization problem

(9)

with convex criterion and linear constraints [see Fig. 6(a)].
As illustrated in Fig. 6, we can prove that there is a unique

solution which is on the boundary of the feasible domain.
In order to prove it, consider for instance Fig. 6(a). The
feasible domain ( ) is a convex polyhedron. It is also
closed, nonempty, and bounded. So, using general theorems,
we conclude that the problem has an optimal solution. Then,
we can easily show,ab absurdo, that the optimum is unique
and on the boundary of the feasible domain (more detailed
proof is available upon request).

Now, in actual problems, the number of constraints is huge
(over 1000 constraints when the lowpass filter is iterated five
times in two dimensions), which makes the use of general
optimization procedures very difficult. Moreover, these general
optimization algorithms need a starting point close to the
optimum so as to avoid divergence problems. Therefore, we
have chosen to solve the problem in two steps: first, find
an approximate solution, then use a general optimization
algorithm using this approximation as a starting point to find
the optimum solution.

Using (6), the problem (9) can also be written as follows:

(10)

with linear criterion and convex constraints [see Fig. 6(b)].
These two problems are equivalent and linked by the

function . Since this function is convex and bijective, each
vertex of is associated to a “virtual” vertex
of which saturates the same constraints, see Fig. 7. The
feasible domain determined by the constraints is a
convex polyhedron. Further, the minimization of the linear
criterion on gives the best vertex of (9); the optimal
solution is on the boundary. Since the criterion is linear and

a convex polyhedron, the best vertex is obtained using
the simplex algorithm [10], [11]. But, since is not easily
determined and and are equivalent, the best vertex
in is associated to the vertex in where the criterion
is minimum. We can thus solve the problem using the (9)
version. However, we have to adapt the simplex algorithm to
this particular case of a convex criterion by evaluating the
cost function at each vertex.

The obtained best vertex is an approximation of the opti-
mum which is on the boundary of the feasible domain. Note
that the further the vertices are from the axis, the better the
approximation is. The obtained approximate solution is used in
the second step as a starting point of the general optimization
algorithm, to find the optimum solution. Its convergence is
thus ensured and relatively fast.



KARRAY et al.: IMAGE CODING WITH AN NORM 627

Fig. 7. Vertices in the equivalent constrained optimization problems. Each vertex(Qi) of the feasible domain(K1) is linked by the functionx 7�! log
2
x

to a virtual vertex(Bi) in (K2). The virtual vertices of(K2) are the vertices of the convex polyhedron(D).

TABLE I
BIT RATES (HUFFMANN CODING) OBTAINED BY FBC, AND REQUESTING

THE MAX ERROR BE LOWER THAN t = 0:5. THE NUMBERS BETWEEN

PARENTHESESSHOW THE ACTUAL MAXIMUM ERROR. THE LAST ROW

HAS BEEN OBTAINED BY FORCING THE MAX ERRORTO BE EQUAL TO

t = 0:5 BY A SCALE FACTOR ON THE QUANTIZATION STEPS

However, note that the constraints have been taken into
account through an upper bound of the max norm of the
reconstruction error. As already pointed out, this upper bound
of the -norm is not achieved in actual images, hence the
obtained maximum error is usually less than the required
threshold (an order of magnitude of the observed threshold is

). Based on the linear dependency between the quantization
steps and the upper bound, we apply some scale factor to
all quantization steps in order to bring the reconstruction
error up to the required threshold. Note that this is only
an approximation, since the dependency between the actual
threshold and the quantization steps is not linear. The scale
factor is tuned using an iterative optimization procedure. In
Table I we show the difference between Huffmann coding
applied to the original image, applied to the image obtained
by using the quantization steps as provided by the constrained
optimization procedure (the observed maximum error is seen
to be about 0.2, while 0.5 was requested), and after applying
the scale factor to the quantization steps.

So far, we have determined optimal quantization steps
according to the deterministic approach in (9). As it is,
the proposed solution allows to perform lossless coding, by
choosing , and requantizing after reconstruction.
However, some applications allow a “small” number of errors
to exceed the given threshold. We recover the statistical
problem (8).

D. Statistical Computation of the Quantization Steps

Recall that the quantization steps depend linearly on the
upper bound of the error, which is close to. Hence, if the
threshold is multiplied by some constant , the steps
should also (almost) be multiplied byand the variance of
the error by . Therefore, it is natural to state the statistical
problem relatively to the one solved in Section IV-C2: the
new quantization steps are chosen as . Since the

TABLE II
ALMOST LOSSLESSCODING USING DPCM. WE SHOW THE OVERALL BIT

RATES OBTAINED AFTER A GLOBAL HUFFMANN CODING (GHC) FOR

VARIOUS PERCENTAGES OFERRORSEXCEEDING t = 0:5 (SEE FIG. 2)

TABLE III
ALMOST LOSSLESSCODING USING FBC. WE SHOW THE OVERALL

BIT RATES OBTAINED AFTER A GLOBAL HUFFMANN CODING (GHC)
FOR VARIOUS PERCENTAGES OFERRORSEXCEEDING t = 0:5, THE

12-TAP DAUBECHIES FILTER [12]) IS ITERATED FIVE TIMES.
FOR p = 100%, THE DETERMINISTIC CRITERION OF IV-C2 IS USED

reconstruction error has been shown to be nearly Gaussian,
is easily evaluated by computing the enlargement factor of the
Gaussian such that% of the error is larger than the threshold
. This corresponds to the relation

erf (11)

Taking into account the different samples , we find
by solving the equation

erf (12)

where is the standard deviation associated to
and function of the optimal quantization steps solution of the
deterministic problem (9). Since (12) is nonlinear, it is solved
using a general algorithm. However, since it depends on a
single variable , solutions are reliable and fast.

E. FBC Used as an “Almost Lossless Coder”

A direct application of the above scale factor to the
quantization steps computed as described in Section IV-
C2, gives the results shown in Table III. These results are
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obtained with the same context of “almost lossless coding”
as the linear prediction approach. For simulations, we use a
12-tap Daubechies filter [12] iterated five times. This choice
is experimentally proved to give the best results in terms
of compression gain among all Daubechies filters, and any
possible number of iterations.

The first column is obtained in lossless context
using the optimal quantizers according to the -criterion.
For the other columns of Table III, we note that the bit rate
reduction is more and more important whendecreases. The
compressed image quality is, however, high and sufficient
for some applications where some details can be ignored.
The important point, however, is that the distance to lossless
is controlled through the percentage of pixels outside the
confidence interval.

Furthermore, it is observed that there is a good agreement
between the required and the observed percentages, which
proves the efficiency of the statistical Gaussian model of the
reconstruction error.

V. COMPARISON BETWEEN VARIOUS LOSSLESSTECHNIQUES

A. Comparison Between DPCM and FBC

As shown in Tables II and III, DPCM achieves better
compression rate than FBC when lossless or near to lossless
coding is required. When more loss is allowed % , the
filterbanks become more efficient.

This observation has been confirmed by using other thresh-
old values. For a given threshold, we evaluate the com-
pression rates obtained with various percentages of errors
exceeding . The results obtained with different values of the
threshold are summarized in Fig. 8. Note that the property
mentioned above is maintained, i.e., FBC gives better results
for larger confidence intervals (when the percentage, of er-
rors less than a given threshold, decreases). However, note that
the threshold value must be rather small so that the assumption
required for the statistical modeling of the distortions [see (2)]
are valid. This means that the statistical confidence interval
criterion only holds in the context of near lossless coding.

As for the deterministic approach, which does not need any
modeling, the threshold value is also limited according to the
relationship (6) between the bit rate, the dynamic range and
the quantization steps. The quantization steps can not exceed
the dynamic range values. So, in the context of very high
compression rates, we have to consider additional constraints
( ) in the optimization problem of Section IV-C2. These
constraints depend on the original image. Recall that the whole
optimization procedure is otherwise signal independent.

VI. COMPARISON TO OTHER

CLASSICAL LOSSLESSTECHNIQUES

A number of lossless coding techniques for continuous-
tone images have appeared in the literature [3], [13]. These
techniques are based on such concepts as runlength coding,
bit plane processing, predictive coding, etc.

The simplest techniques consist in applying lossless coders
on the original image. These methods are not usually very

Fig. 8. Comparison between DPCM (solid lines) and FBC (dashed lines).
We give the results obtained after a global Huffmann code (GHC) after linear
prediction, or after a wavelet transform for various thresholds. This is done
for different percentages of errors exceeding a given threshold. We show
the compression ratio (defined as 100 times the initial bit rate divided by
the one, after compression). DPCM achieves higher compression ratios for
small percentages of errors, while FBC performs better when more errors are
allowed.

efficient in terms of compression ratio because the 2-D pixel
intercorrelations are not easily taken into account. Hence,
several improvements of the statistics of the coders’ inputs are
made by preprocessing the original signal. Linear prediction
is an example of thosehybrid techniques, as explained above.

An other example, useful when short transmission time is
required, is thelossy plus lossless residual coding[3]. This
technique is based on the transmission of a lossy but high-
quality version of the image, followed by a lossless encoding
of the remaining difference (residual) image to achieve perfect
reconstruction of the original image. In the lossy part of the
scheme, lossy transform coding techniques, such as filterbanks,
are used. The lossy part of the coder is usually optimized by
an -criterion. Performances in terms of lossless compression
depend on the bit rate repartition between the lossy and the
lossless part. In the simulations given below, the tradeoff
between the bit allocation for the lossy part and the residual
has been chosen in order to obtain the best total entropy.

Based on the results of this paper, we developed a transform-
based technique able to achieve lossless coding using an

-criterion. We described how to choose the quantizers
in the FBC scheme to have a lossless compression. Using
the same procedure, we can also perform lossy plus lossless
coding, with a lossy coder optimized using an -norm. The
threshold in the lossy part of the coder has been chosen
in such a way that the total entropy of the lossy plus lossless
coder in minimized.

In Table IV we show the entropy bitrates obtained on the
Lena image by these various schemes. The lossy plus lossless
coders have been tuned such that the amount of loss (either
in an or sense) results in a minimum for the global
entropy. Note that, if no preprocessing is applied to the original
image, lossless coders are not very efficient, since only a
compression gain of (1.07) is achieved. Plain lossless FBC
(iterated filterbank) follows.

This gain improves with DPCM, but it is clearly seen
that lossy plus lossless compression schemes still have better
performances. When the lossy part is optimized with an-
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Fig. 9. Histogram of the errors withL2 andL1 criteria in the reconstructed Lena images at the bit rate of 1.4 b/pixel (given by a global Huffmann coding)
using the MSE-criterion (solid curve) and theL1-criterion (dashed curve). The vertical lines (dashed lines forL

1 and solid lines forL2) show the minimum
and maximum error values in both cases. As expected, the maximum error is higher withL

2-criterion than withL1-criterion.

TABLE IV
COMPARISON BETWEEN VARIOUS LOSSLESSCODING TECHNIQUES IN TERMS OF

ZERO-ORDER ENTROPIES. THE FIRST THREE LINES CORRESPOND TOCLASSICAL

TECHNIQUES, WHILE THE LAST TWO ONES ARE EITHER THE PLAIN TECHNIQUES

EXPLAINED IN THIS PAPER (LINE 4) OR MIXED TECHNIQUES (LAST LINE)

criterion, the best performances are obtained (4.56 b/pixel for
the DWT lossy plus lossless coder versus 4.64 for the DPCM
scheme).

It should, although, be noted that FBC performance is
greatly improved in the context of lossy plus lossless resid-
ual coding. As seen in Section V, FBC is efficient when
some loss is allowed. Moreover, the obtained residual is well
decorrelated. This could explain this improvement.

Nevertheless, a conclusion about the best transform is not
easy [13], since the choice of particular technique is not deter-
mined strictly by the achievable bit rate. Each strategy offers
certain features that may be useful to meet side requirements
that might exist in a particular environment.

VII. T HE -CRITERION IN THE

CONTEXT OF LOW BIT RATE CODING

As seen above, the -norm criterion allows a local control
of the distortion in such a way that the difference between the
reconstructed and the original image does not exceed a given
threshold. Typically, although transform and quantization are
used, we can perform lossless compression when the threshold
is half the initial quantization step.

However, these schemes also have the potential for per-
forming low bit rate coding with a different criterion than the
classical -norm. The question is how do these two criteria
compare in this context.

In order to compare both and (MSE) criteria, a
full coding and decoding of images was implemented. In the
MSE approach, the choice of the quantizers is based on the

minimization of the -norm of the reconstruction error, as
explained in [4]. However, the structure of the filterbank is
kept fixed. The procedure is as follows: For a given image,
we first apply the -criterion technique to obtain a certain
bit rate. Then, using -criterion, we choose the quantizers
minimizing the MSE for the same bit rate. The reconstructed
images as well as the reconstruction errors are compared using
objective and visual means, with the same bit rate for the two
criteria.

The repartition of the distortions generated in the recon-
structed Lena images at 1.4 b/pixel (global Huffmann coding)
in the two approaches is plotted in Fig. 9. We notice that the
errors have different repartitions. We should notice especially
that, with the MSE-criterion, errors have higher intensity
(maximum error is 34 with MSE-criterion and 17 with -
criterion). This means that visual distortions may appear earlier
in the reconstructed image using the-norm.

This phenomenon is also seen on the error images (obtained
from the difference between the original image and the recon-
structed ones at the same bit rate 1.4 b/pixel) where the errors
are higher in approach, see Fig. 10. Note that the errors
are concentrated on the edges [Fig. 10(a)].

This becomes very noticeable when the compression ratio
increases, and the coded images often look sharper than
coded images. This must, however, be confirmed by intensive
simulations.

We although should notice that in the MSE context, we
minimize the distortion for a given entropy bit rate computed
on the image, whereas in the context we constrain the
error to be less than a given threshold and minimize the bit
rate given by (6). Particularly, the quantizers are optimized
to give minimum entropy bit rate in the first case but only
a theoretical bit rate in the second one. This simplified the
optimization procedure in -criterion case and made it signal
independent. But since visual quality comparison between the
two criteria is required, we should minimize the same cost.
Therefore, by means of some statistical assumptions on the
coders’ inputs, we plan to evaluate the entropy bit rate to be
minimized. This procedure may improve the visual quality in
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(a) (b)

Fig. 10. Error images between the original image (Lena, 512� 512) and the reconstructed ones after a compression to 1.4 b/pixel (global Huffmann
coding) with L2 and L1 criteria. (a) Error image obtained in theL2-norm context. (b) Error image obtained withL1-norm. The errors in (a) are
higher and more concentrated on the edges than in (b).

context and give a more realistic comparison between
both approaches.

VIII. C ONCLUSION

In this paper, we derived a technique of high-quality image
coding based on a confidence interval criterion. The proposed
approach has been explained in the context of predictive as
well as filterbank coding. It has a very large flexibility.

• It allows efficient losslesscoding to be performed by
simple means (see Tables II and III). The DPCM is
then more efficient than FBC in this context of lossless
compression (see Fig. 8).

• It is based on alocal control of the distortions, which
allows one to go progressively from lossless compression
to a lossy one, since the reconstruction error is controlled
sample-by-sample so as to achieve a given quality of
the reconstructed image. As shown in Fig. 8, the use of
filterbanks is recommended if more than 5% of original
image pixel values exceed the given threshold.

• The use of an -norm is compatible with lossy plus
lossless coding. It happens that the most efficient scheme
we could find makes use of a lossy FBC optimized with
an -norm, plus a lossless coding of the residual error.

• Whatever the application, any signal is measured within
a given accuracy, hence defining aconfidence interval.
Our method is able to maintain the reconstruction errors
within this confidence interval, thus resulting in practical
lossless coding in this case.

• We hope that since we can control the reconstruction error
pixel by pixel, we may envision in the future to vary this
error inside an image so that spatial masking properties
can be used. This would already be useful is some medical

applications where regions of interest can be defined,
in which no loss is allowed, while some distortion can
be allowed elsewhere. This can be done in our scheme
simply by varying the quantization step values.

• Finally, it has been outlined that coding could also
be useful in the context of lossy coding (more likely in
a high-quality context) due to the better coding of edges
in images.
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