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Image Coding with an.>° Norm
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Abstract—A new image coding technique based on ad®- sion schemes basically minimize an MSE-like criterion on the
norm criterion and exploiting statistical properties of the recon-  reconstruction error [4]. Thus, the overall distortion is evalu-

struction error is investigated. The original image is preprocessed, .04 and controlled using tHe2-norm. However, this criterion
guantized, encoded, and reconstructed within a given confidence .

interval. Two important classes of preprocessing, namely linear IS global (on the whole image) and does not exploit “local”
prediction and iterated filterbanks, are used. The approach is also knowledge, which is always available. One at least knows
shown to be compatible with previous techniques. the number of bits on which each pixel of the original image

The approach allows a great flexibility in that it can perform . : o . .
lossless coding as well as a controlled lossy one: specificationéS encoded. Moreover, in many applications (biomedical, for

are typically that only p% the reconstructed pixels are different €xample), one has indications on the precision with which
from the original ones. the pixel values are obtained. TH&-norm cannot take such

Index Terms—Confidence interval criterion, filterbanks, loss- information into account, since it “averages” the errors on
less image compression. the whole image. In this paper, we propose a set of methods
that are able to take such knowledge into account through
a new criterion involving a “confidence interval.” Therefore,
our algorithms allow a pixel-by-pixel control of the error. We
T RANSMISSION and storage of digital signals both rerestrict ourselves in this paper to the case of very good quality

quire some compression of the original data to reduce tigmost lossless) image coding, giving only a few indications

overall system cost. In many applications, the image qualigy, visual differences betweek? and L°° coding.

is reduced by the coding process: the image is converted intq ;4. specifically, we determine the components in the

a set of binary digits in such a way that the original datg, ., ression scheme in order to ensure that a given percentage

can be recovered from the binary set within some dlstomonOf the reconstruction errors are smaller than some given

level. These “lossy” image compression schemes are usu I}[esholdt. This is obtained withoua priori knowledge of the

based on some “transform coding” technique. The origina I : . -
. : o - . . . _Image statistics, but some knowledge on the distortion statistics
image is split into a set of coefficients using some invertible ) . o :

. ior 18 required. Since the transform maps the initial discrete signal

encoding. This transformation can be of several kinds: discré?éo an “almost contmuou.s" one, a statistical mo‘_je_" depending
cosine transform (DCT), filterbanks [1], wavelets [2], and <gn the transform, can bt_’-} introduced and the statistical approach
on. Linear prediction can also be considered as a particuft°Ve Pecomes meaningful. As an example, we are able to
transformation [3]. This first step (transformation) does n@Ptimize a compression scheme such that, e.g., say only 2%
produce any data compression, but prepares the next stép&rrors exceed half the initial quantization step. That is, after
The transform coefficients are then quantized (which préequantizing (with the initial quantization step), only 2% the
duces some data compression, but also generates distortiofUfput pixels will be different from the original ones.
the reconstructed signal) and possibly entropy-coded (furthefAS a preprocessing, we consider two classical types of
compressing the data, without additional distortion). transformations: linear prediction and filterbanks. In each case,
The compression scheme is optimized by choosing #me original imager is transformed, quantized, encoded, and
appropriate set of parameters (transform, quantizer steps, eteconstructed to giver. The distortionAz = z — z is
so that the overall compression ratio is minimized for statistically modeled in order to be controlled accurately. In the
given reconstruction error measure. Classical lossy compreResen compression schemes, either prediction or filterbanks
would achieve perfect reconstruction if no gquantization was
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Transmitter Receiver

Fig. 1. DPCM block diagram. The transmitter includes the receiver to ensure identical prediction on botl slddgesnotes the predictor. The prediction
error is quantized, encoded (global Huffmann coding) and transmitted. The receiver reconstructs the approximaie signal

we minimize the overall bit rate under the constraint the above condition is satisfied and the quantization error is
always supposed to be uniformly distributed.
prob{|Az| < t} > p%. 1

This problem is solved in the context of a predictive coding lll. CODING WITH LINEAR PREDICTION
scheme in Section Ill, and in the context of wavelet trans- Linear predictive coding is particularly well adapted to loss-
forms (iterated filterbanks) as a subband coding in Section Ikss or high-quality coding, and easily implemented. Therefore,
Section V-A provides a comparison between both techniquiésis the first logical choice in our context. In a general
in the context of near lossless coding. predictive coding scheme, the correlation between the neigh-

Compatibility with other lossless coding techniques is ald¥oring pixel values is used to compute the linear predictor
examined in Section VI, showing that lossy plus losslegghich, when applied on the image, provides a prediction for
coding [3] can also be used with same performances if te@ch pixel. A well-known approach to predictive coding is
lossy part is optimized using ah* criterion. Finally, we differential pulse code modulation (DPCM). In DPCM, the
give some indications on the visual differences between Idwediction z is subtracted from the actual pixel valueto
bit rate systems optimized usig? and L> norm criteria. ~ form a differential image that is much less correlated than
the original data and can be assumed to have a Laplacian
distribution [3], [5].

The predictive error is then quantized and encoded. The

The processing (transform) applied on the original signal juantized differential image is transmitted to reconstruct the
the compression scheme is introduced in order to improve thigel values. Since the quantization of the differential image
statistics of the coder input. Moreover, a fact that is seldomtroduces errors, the reconstructed values typically differ from
used, it also increases the density of the original discrete dgi@ original ones. To ensure that identical predictions are
and allows an almost continuous modeling of the statisticRfrmed at both the receiver and the transmitter, the transmitter
distribution of the reconstruction errors. also bases its prediction on the reconstructed values. This is ac-

In the case of a predictive preprocessing, each pixel is pigbmplished by introducing the quantizer within the prediction
dicted by a linear combination of its neighbors. The transmittégop at the analysis and the reconstruction side as shown in
data is the prediction error. Fig. 1. In essence, the transmitter includes the receiver within

For filterbanks, the original image is split into differenits structure.
subimages. Each subimage has a reduced bandwidth comparethis compression scheme uses a linear predictor, scalar
to the original full-band image. Furthermore [7], subbangdniform quantization, and lossless coder. Since the differ-
signals statistics can often be accurately modeled by Laplacigtial image has a Laplacian distribution, the probability of
distributions. occurrence of the various quantized levels is not uniform

After transformation, the resulting signajsare quantized and the average number of binary digits required for their
prior coding. Here, we consider only scalar uniform quantizgaepresentation can be reduced by using some variable length
tion with stepsizeg. The quantization error can be modeledoder. Here we use global Huffmann coding.
as an additive noise lying betweery/2 and¢/2. The input  The predictor and the quantizer have to be chosen in such
y is supposed to be Laplacian, with zero-mean and standardvay that the bit rate is minimum while the “confidence
deviationo. As shown in [6], if the ratioo/q is high (more interval” constraint (1) is satisfied. Because the inclusion of
than 0.7), the quantization noise can be accurately modetge quantizer in the prediction loop results in a complex depen-

Il. PRELIMINARIES

by a uniform distribution dency between the prediction error and the quantization error,
1 —q 7 a joint optimization should ideally be performed. However,
-, f=<z<=z to avoid the complexity of modeling such interactions, both
felw)=4q q 2 , 2 components are usually optimized separately.
0, otherwise
with zero mean and varianag/12. A. Predictor Optimization

In our case (almost lossless coding)x 2 and the standard  The classical criterion for computing the linear predictor is
deviation of the quantizer input signal is larger than one. Siiye minimization of the mean-squared prediction error [3], [5].
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previous Note that if¢ < 2¢, the quantization error and consequently
Line (Y —(BY—~(C)—(D)— )— the reconstruction error are always less than the given thresh-
current old. Since condition (3) allows a certain percentage of errors

Line (Y —(y—C)—( O —— to exceedt, the quantization step meeting (1) is larger than
2t. Equation (3) is easily solved ify yielding fit(l/q) dr =

Fig. 2. DPCM predictor configuration. The pixél,, is predicted using the 2t/q > p%. The required value of the quantization step is

neighboring pixels; e.g., for a third-order predictor, the predictionXof is

a combination of pixels A, B, and C [3]. thus ¢ = 2t/p.
o . . C. Results
Under this criterion, the best linear estimate of a sample ) ) ]
is the values, that minimizes An example of what can be done using this approach is
shown in Table Il for two images. All results are provided in
0?2 = E[(z, — 7,)?]. (2) the context of “almost lossless coding,” hence with reference

N . . to a threshold = 0.5, with original images initially quantized
If 2, = >, hizn_;, where N is the predictor order on 8 b/pixel. The first column provides the results obtained
and h; the coefficients to be optimized, the minimization ofor p = 100% of errors in[—0.5, 0.5]. This corresponds to

criterion (2) yields to the following set of linear (Wiener—Hopf)plain lossless coding using DPCM, since the image is exactly

equations: reconstructed by requantizing the reconstructed signal on 8
N b/pixel. As is well known, this approach allows a noticeable
Z hi R = Ra . i=1.9 N reduction of the bit rate that is necessary for transmission (58%
14l 5 — 40,5 J=1 4, . . K
= the initial bit rate is necessary for Lena, 36% for coronair). The

other columns show the variation of the bit rate by allowing
whereR; ; = E[z; z;]. The optimal predictor coefficients aremore and more errors to exceed the chosen threshold, in a
then obtained by solving the linear system above. controlled manner, by using the above approach.

Regarding the predictor order, which means the number ofwe observe that the percentages computed on the recon-
samples involved in the weighting, experimental studies @fructed image are almost equal to the required ones, thus
various images show that there is only a marginal gain beyopgkifying the white noise assumption. However, although the
a third-order predictor. In this paper, we use a third-ordejt rate decrease is noticeable, it does not decrease quickly
predictor of the form when more errors are allowed, i.e., when the percentdge

. decreases (allowing 20% pixels to be recovered with an error

Tn = A+ ha B+ hsC has aIIowe((j the bi? rates Ft)o be further decreased of 8% and
whereh; are the predictor coefficients), B, andC are the 11%, respecti.vely)..A larger coding gain would be obta}ined
neighboring points shown in Fig. 2. only by working WIFh a larger threshold. _However: t.hIS

Recall that the full scheme in Fig. 1 would achieve zerp®T€SPonds to an increase of the distortion, and it is well
error if no quantizer was introduced. The reconstruction errSPOWn that replacing the linear prediction by a filterbank may

# — z is thus fully determined by the quantizer, which has t ad to better compression ratios in this case. In the following,
be optimized as described below ' iliterbanks are introduced in the same framework.

B. Quantizer Optimization IV. FILTERBANKS CODING

Given an optimal predictor, the next step is to choose trtleﬁl?sCZIltg\?v:c:flicr:etﬂzyircr):aD:c(::oMmdergrsZ?c?r?SsthheenQemzlrtz r(?)l;:]okr;
guantizer that minimizes the bit rate under the constraint that Y P '

the reconstruction error lies within the confidence interval. 'I%Odmg (FBC) is now c0n5|dered_. . .
The corresponding compression scheme is depicted on

solve this problem, a statistical model of the reconstructiqpl 3. It uses a perfect reconstruction octave-band filterbank
error is required. Using the compression scheme of Fig. 1, and” ™" P '

assuming no channel errors, we easily find that= z — 7 = scalar uniform quantization, and global Huffmann coders. For
¢ — ¢ which is the quantiz:altion error. Since t_he qua;tiz given set of perfect reconstruction filters, the problem is
is uniform, with a stepg, the quantizétion error is undeﬁ at of determining the best quantizers minimizing the global
h di N led d: : if ' bit rate while a certain percentage of reconstruction errors
the conditions recalled in Section Il, uniform [fq/2, Q/2]'. lies within a given confidence interval, as in (1). However
The reconstruction error has consequently the same unlfoﬁé oroblem is much mare difficult in 'this case .as wil be’

distribution. Equation (1) can then be rewritten as . - .
g @) clear below. An evaluation of the statistical properties of the

t ] reconstruction error is required in order to solve this problem.
/ p we(z) dx > p% (3)
- A. Statistical Properties of the Reconstruction Error
where Since we use perfect reconstruction filters and lossless
1. if =2 < < q coders, the error is generated by the quantizers only. Its distri-
we(z) =9 2 - 2. bution is thus a function of the quantization noise. Therefore,
0, otherwise we first need to find the dependency between both signals.
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» — Consider one of the subbands of the synthesis phase, e.g.,
& ’ the lowpass one of Fig. 4, denoted We haveey,,, =

" ) >k € _xg2k+u Whereu = 0 for even samples and = 1
Q2 C : Cc-1 Q5 & " . .
© — TB w1~  for odd samples. We easily find that,,.,, has a zero-mean
: : : : : : I : and_a Varianc@'g _: E[(Ek 62—k92k+u)2]' . .
e Since quantization is scalar, we can assume that quantization
v A _ —1 . . .
. . i . . " errors are independent. We further assume that the quantization
a3 Fiterbank _ h ™ i . errors in different subbands are also independent. All these
1g. o. literbank compression scheme. € encoding part uses an ORI .
tave-band separable filterbank (wavelet transform) iteratetimes on the 88nd|t|ons can be shown to hold under the same hypothe3|s as

lowpass filter which splits the input image int8. + 1) subimages. These the one recalled in Section Il for the quantization noise to be

subimages are then quantized and losslessly encoded (using Huffmann ¢afiform. Under these conditions, we have
ing). The synthesis part reconstructs the approximate signal

q?
i i L if k=1
o E[en—ken—l] = 12
n g 0, otherwise

and

G— Az

2
2 _ @ Z 2
O—u:l_; g?k-l—u'
k

ONO

Fig. 4. Reconstruction error. Only one iteration of a 1-D signal is considereéote that the variance has a finite value (since we use finite
€0 ande) are quantization errorsAz is the reconstruction error; and h length filters). Under the independence hypothesis, it can be
are the set of the filter coefficients. 9 ’ . p ypg !
shown that the third moment is nulj,, = E[e’] = 0.
The results above are easily extended to 2-D signals and

. o . . any iterations. We can thus use generalized central limit
Since the system is linear, the reconstruction error is the o o

o . o theorems detailed in [8] and [9] to show that an infinite sum
result of the contribution of the various quantization errors

to the actual output. In each subband, the quantization erPc];rthose errors has a Gaussian distribution.

o . . In practice, the filterbanks are iterated several times, which
is interpolated and filtered through the synthesis structure : : .

. L . . , Increases the number of subbands, sinceffaterations of a
depicted in Fig. 4 in the context of one iteration of a on

dimensional (1-D) signal. For simplicity, we show in thl.';,ez D §|gnal we have/ + 1 subbands. Thus, e.g., fof = 5
. Iterations we have 16 subbands and the convergence to a
1-D context that the reconstruction error has a Gausmgn . T
aussian distribution is ensured.

distribution. The demonstration would be similar in the two- _. ) : o
Finally, we end up with a Gaussian distribution reconstruc-

dimensional (2-D) case- Han error, with a zero-mean, and a variancedepending on

Due to the interpolation in the synthesis phase, the o o ) .y
and even samples ahz depend on a different set of filterguantlzat_lon step values and on the set of filter coefficients
coefficients. So, two cases have to be considered: involved in each subband. For example, o= 1 we have

(Ng/2)—1 (Ni/2)—-1 2 2
2 o Z 2 2 a1 Z 2 2
A-/L'Qn = E 691—k.92k —+ E 6}1—kh2k a'u, v=0,1 = E g?k-l—qul-l—'U + E h’?k—l—quH—'v
= = k, 1 k, 1
2 2
(Ng/2)—1 (Nr/2)—-1 43 2 2 43 2 2
Azl = E € g1 + E et _rhory1 (4) 12 Zk,l 2htult2i40 T 7o 1%,1 2h+ulV2iu
k=0 k=0
where N, (resp.,/V) is the filterg (resp.,h) length. wherew, andv are associated to odd and even samples of the

The guantization errorg® have, as seen in Section Il, aerror.
uniform distribution in [—q;/2, ¢;/2] with zero-mean and For J iterations, the whole error is a contribution of the
varianceq?/12. different samplegAx.,, )y, v=0, ..., 27—1 due to theJ interpo-

The reconstruction error is thus a linear combination détions. Furthermore, these samples have the same contribution
uniform distributions. Because of the filter coefficients and ttie the whole signal, and a probability densit, .(z) =
different values of the quantization steps in the various sub/(s,, ,U\/%)e—(wz/%ﬁ,v),
bands, these uniform distributions have different bandwidths
and different energies. Thus, to prove that the reconstruction
error converges to a Gaussian distribution, some conditiofs
on its first three moments have to be satisfied in order to useSince a statistical model of the reconstruction error is
central limit ramifications developed in [8]. These conditionavailable, a control of this error is feasible. So, we can find
are that the mean and the third moment should be zero, white quantizers allowing a certain percentage of distortion such
the variance should take finite value. This is checked belovas in (1).

Quantizers Optimization
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In its present form, it is a nonlinear minimization problem

1 with a nonlinear constraint. To avoid divergence of general

Fn optimization algorithms, we solve the problem in two steps:

first, we determine the best quantizers which minimize the bit
rate such that the maximum error is less than a given threshold
1 1 (deterministic problem). Then, using the relationship between
4 rn the variance of the error and the quantization steps, we solve
(1) (statistical problem).

&| ~ |5 -

1
%

Fig. 5. Contribution of the various subbands. The lowpass subimageés: L .
transformed to give four other subimages four times smaller due to the Deterministic Point of View

gﬁft',r;‘laé'i‘t’?;tnetigeﬂ?u”sagfv'%fg%@efozf;?ncggtcr;]bﬁgfgﬂig;.eaCh subimage in they, o first step, a deterministic approach is used to find
the quantizers such that the bit rate is minimum and the
reconstruction erroiAxz does not exceed a given threshold
Taking into account the uniform contribution of the various, i.€., |Az,| < t Vn. This condition can be written using
(Az),, », we have the maximum of the reconstruction error, also callB®-
norm: ||Az||. < t. We finally have to solve the constrained

minimization problem
prob{|Az| < t} = 22% > prob{Az,, ., < t} P

U, v

min anbz>
= 2% Z erf<#> (5) < i : (8)

Ou, V2 1Az]a <t

. An evaluation of the maximum reconstruction error is thus
where erfa) = 2/(y/7) [y e dz. required
2 i iza- : . . . .
Recall thate,, , is a function of the squared quantiza 1) Estimation of the Max Norm of the Distortior8ince the

tion steps. Besides, the optimal quantization steps satisfyig)gact value of the maximum depends on the filter coefficients
'and the original image, we can only give an upper bound as

prob{|Az| < ¢} > p% must also minimize the global bit rate
N estimate of th€ > norm of the reconstruction error. We

which is the sum of the bit rates in the various subban
Note also that the decimation in the analysis phase divides Xt keep with the simplified context of a monodimensional

two the size of the gub_lmage in each _subpand and SINCE Ynal, with a simple two-band filterbank. The result is then
use separable dyadic filters, the contribution of a sub|mag tended to 2-D signals and iterations

! L ) o Y L,
'resll:J.Itlng fromy iterations isn; = 1/2%. This is illustrated According to (4), an upper bound is found for each kind
in F1g. 5. of distortion samples (A2, )max fOr even samples and

Let & denote the total bit rater; the _dynamic range in (AZans1)max for 0dd ones]. TheL>-norm estimate is then
subband numbei, and b; the bit rate in subband. For the maximum of both:

simplicity, we evaluate the contributioly of subband: as
a function of quantization steg, by 182 < max { (A2 ) max
« = (A$2n+l)l1lax'
g =27 (6) . . : o
An upper bound is obtained if the quantization erraf$ (

- . and ') have maximum amplitude and have the same sign as
Although this is only a rough evaluation of the actual bl{he filter coefficients. Since’ satisfies|’| < /2, whereqi

rates, which are much I0\_Ner after Huffmann coding, thi the quantization step, we obtain
formula has been chosen in order to be able to perform the

optimization. Despite this approximation, the results are quite q° gt B
accurate, as will be seen in Section V. This is certainly due ) Z |g2x] + 9 Z| 2k]

to the fact that, for such high-precision coders, the bit rate ||Az||., < max o k 1’“ .
evaluated by formula (6) has been observed to be almost linear q q

. . N = G2k+1] + 5 hak+1
in terms of the Huffman bit rate. Quantization steps have to be 2 zk: 1921-41] 2 zk: il

chosen such that the total bit rate= . n;b;, is minimum

while (5) is satisfied. Thus, we end up with a constrained Since separable filterbanks are involved, the filtering and

minimization problem interpolation are separately done on lines then columns of the
2-D signals, which results in four types of samples, depending
on the parity of their indexes, giving

T
min n; log, | —
[zz: 82 <qZ )] (A$2nl, Qn)max

) : . (7) A-TQm, 2n+1)max
27 > erf(o_ 7 ) > p%

A-/172771-1—1, Qn)max

|Az||so < max E
(A$2nl+l, 2n+l)max
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(@ (b)

Fig. 6. Equivalent constrained optimization problems. (a) Problén) has a convex cost function and linear constraints delimiting the feasible domain
(K1). (b) Problem(P>) has a linear cost function and convex constraints, the feasible domdifi’43. It is easily seen from(P1) the optimum
solution is on the boundary off{;) or (K2).

After J iterations of the filterbank we similarly obtain Now, in actual problems, the number of constraints is huge
(over 1000 constraints when the lowpass filter is iterated five
[AZ]oo < max{max(Azys o, 27n40) ) times in two dimensions), which makes the use of general

optimization procedures very difficult. Moreover, these general
wherew andv vary between 0 ang’ —1 (i.e., 27 x 27 = 227 optimization algorithms need a starting point close to the
possibilities, coming from the/ successive interpolations inOPtimum so as to avoid divergence problems. Therefore, we
the synthesis phase) and andn describe the different signal have chosen to solve the problem in two steps: first, find
samples. an approximate solution, then use a general optimization

Without anya priori knowledge on the signal, this estimato@lgorithm using this approximation as a starting point to find

is optimal, but overly pessimistic for many real imagedhe optimum solution.
Furthermore, it is a linear function of the quantization steps. Using (6), the problem (9) can also be written as follows:

Since Az is the contribution of the interpolated samples
Az, ., the relation||Az||, < ¢ has to be satisfied for every min <Z mbz)
(u, v) combination, yielding a linear system of constraints. (Py): i (10)
Thus, the optimization problem (8) has a convex criterion: ZaijQ—bi <t
> ni logy(ri/g;), using the notations of (6), and linear 5

constraintsy . a;;¢; < t; where coefficients:;; depend on

- - . : with linear criterion and convex constraints [see Fig. 6(b)].
the set of filter coefficients involved in subbardand the [ g. 6(b)]

These two problems are equivalent and linked by the

combination; of u andv seen above. function2~*. Since this function is convex and bijective, each

.2).Determinist_ic Computgtion of the ngnti;gtion Step?/ertex(Qi) of (K1) is associated to a “virtual” verteB;)
Finding the optimal quantization steps minimizing the b'&f (K5) which saturates the same constraints, see Fig. 7. The

rate such that. the recongtruction error.is at most qual AQsible domain D) determined by the constraints3;) is a
the_thres_holdt is thus equivalent to solving the Cor‘Str"’“ne(éonvex polyhedron. Further, the minimization of the linear
optimization problem criterion on (D) gives the best vertex of (9); the optimal
solution is on the boundary. Since the criterion is linear and
min <Z —n; log, %‘) (D) a convex polyhedron, the best vertex is obtained using
. i the simplex algorithm [10], [11]. But, sincgD) is not easily
(Pr): ) . )
Zaij(ﬁ <1 G=1, . 22 'determ.lned aanKl) and(K>) are equivalent, the be;t vgrtex
- in (D) is associated to the vertex {7 ) where the criterion
is minimum. We can thus solve the problem using the (9)
with convex criterion and linear constraints [see Fig. 6(a)]. version. However, we have to adapt the simplex algorithm to
As illustrated in Fig. 6, we can prove that there is a uniquiis particular case of a convex criterion by evaluating the
solution which is on the boundary of the feasible domairost function at each vertex.
In order to prove it, consider for instance Fig. 6(a). The The obtained best vertex is an approximation of the opti-
feasible domain K1) is a convex polyhedron. It is alsomum which is on the boundary of the feasible domain. Note
closed, nonempty, and bounded. So, using general theorethaf the further the vertices are from the axis, the better the
we conclude that the problem has an optimal solution. Theapproximation is. The obtained approximate solution is used in
we can easily showab absurdo that the optimum is unique the second step as a starting point of the general optimization
and on the boundary of the feasible domain (more detailatjorithm, to find the optimum solution. Its convergence is
proof is available upon request). thus ensured and relatively fast.
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Ql
9
_

Logyx

\J

A

(K1)

s

Fig. 7. Vertices in the equivalent constrained optimization problems. Each \gptgxof the feasible domaini'1) is linked by the functiont — log, =
to a virtual vertex(B;) in (I£2). The virtual vertices of K2) are the vertices of the convex polyhedral).

TABLE | TABLE I
BiT RaTES (HuFFMANN CoDING) OBTAINED BY FBC, AND REQUESTING ALMOST LossLEssCoDING UsiNG DPCM. WE SHow THE OVERALL BIT
THE MAX ERROR BELOWER THAN ¢ = 0.5. THE NUMBERS BETWEEN RATES OBTAINED AFTER A GLOBAL HUFFMANN CoDING (GHC) FOR
PARENTHESES SHOW THE ACTUAL MAXIMUM ERROR THE LAST Row VARIOUS PERCENTAGES OFERRORS EXCEEDING ¢ = (.5 (SeE FiG. 2)
Has BEEN OBTAINED BY FORCING THE MAX ERRORTO BE EQUAL TO TENA (512 %512
t = 0.5 BY A SCALE FACTOR ON THE QUANTIZATION STEPS percentage (%)  required ]| 100 | 99 95 30 55 30
STC (bpp) LENA (512 x 512) | Medical (256 = 256) | Aetial (12 x 512) of crrors < 0.5 observed || 100 | 98.99 ] 9498 | 90.06 ; 84.79 | 79.95
(Coronair) (Aerial view of Corse) GHC (bpp) 464 | 462 | 456 | 448 | 439 | 431
Griginal =17 697 305 Medical image (coronair, 256 x 256)
Preliminary Results 7.7 (0.20) 196 (0.20) 3.44 (0.92) percentage (%) required | 100 | 99 | 95 [ 90 | 8 | 80
Final Results 561 (0.5) 373 (0.5) .42 (0.5) of errors < 0.5  observed 100 | 99.03 | 95.01 | 90.35 | 85.51 | 80.09
GHC (bpp) 2.80 | 288 | 283 | 2.76 | 2.69 | 2.60
However, note that the constraints have been taken into TABLE Il

account through an upper bound of the max norm of the AimosT LossLessCopING UsiNGg FBC. WE SHow THE OVERALL

reconstruction error. As already pointed out, this upper bound BT RATES OBTAINED AFTER A GLOBAL HUFFMANN CODING (GHC)
FOR VARIOUS PERCENTAGES OFERRORS EXCEEDING t = 0.3, THE

of the L>-norm is not achieved in actual images, hence the 12-Tap DAUBECHIES FILTER [12]) IS ITERATED FiVE TIMES.
obtained maximum error is usually less than the required Forp = 100%, THe DETERMINISTIC CRITERION OF IV-C2 |s UseD
thresholdt (an order of magnitude of the observed threshold is LENA (312 X 519)
H H . crcentage (% equired || 100 99 95 90 85 30
t/2). Based on the linear dependency between the quantization E?:r(;r;:c; E))) Sharved 1009990 1 9330 [ 89.90 [ $4.67 [ 79.40
steps and the upper bound, we apply some scale factor to  GIIC (bpp) 5.61 ] 501 | 461 | 437 | 4.18 | 103
H ; H ; : Medical image (coronair, 256 x 256)
all quantization steps in order to bring the re_co_nstructlon e ) reated T 100 109 |95 T 09 T 8 | 80
error up to the required threshold Note that this is only of crrors < 0.5 observed || 100 | 99.01 | 95.32 | 89.89 | 84.56 | 79.36
GHC (bpp) 3.76 | 3.13 2.82 | 2.61 2.43 231

an approximation, since the dependency between the actual
threshold and the quantization steps is not linear. The scale

factor is tuned using an iterative optimization procedure._ lconstruction error has been shown to be nearly Gaussian,
Table | we show the difference between Huffmann coding easily evaluated by computing the enlargement factor of the

applied to the original image, applied to the image obtainggh,ssjan such tha®s of the error is larger than the threshold
by using the quantization steps as provided by the constrainedrpis corresponds to the relation

optimization procedure (the observed maximum error is seen
to be about 0.2, while 0.5 was requested), and after applying erf< ¢ ) > P (11)
the scale factor to the quantization steps. ac/2 100

So far, we have determined optimal quantization SteépStaying into account the different samplese,, ,, we find
according to the (_Jletermlnlstlc approach in (9). As_ it is,, by solving the equation
the proposed solution allows to perform lossless coding, by
choosingt = 0.5, and requantizingt after reconstruction. P 1 t
However, some applications allow a “small” number of errors 100 227 Z erf
to exceed the given threshold. We recover the statistical
problem (8). where o, ,, is the standard deviation associated A, .,

and function of the optimal quantization steps solution of the

D. Statistical Computation of the Quantization Steps deterministic problem (9). Since (12) is nonlinear, it is solved

Recall that the quantization steps depend linearly on tHg'n9g a g_eneral algor_lthm. Howe_ver, since it depends on a
upper bound of the error, which is close toHence, if the single variablex, solutions are reliable and fast.
threshold¢ is multiplied by some constant, the stepsg;
should also (almost) be multiplied byand the variance? of E- FBC Used as an “Almost Lossless Coder”
the error bya?. Therefore, it is natural to state the statistical A direct application of the above scale factarto the
problem relatively to the one solved in Section IV-C2: thguantization stepg; computed as described in Section IV-
new quantization steps are chosengas= «q;. Since the C2, gives the results shown in Table Ill. These results are

(12)
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obtained with the same context of “almost lossless coding”
as the linear prediction approach. For simulations, we use a

12-tap Daubechies filter [12] iterated five times. This choice §2
is experimentally proved to give the best results in terms &
of compression gain among all Daubechies filters, and any 8
possible number of iterations. g
The first column is obtained in lossless contéxt< 0.5) g
using the optimal quantizers according to thee-criterion. © }
For the other columns of Table Ill, we note that the bit rate wOr - —LPC - FBC |
reduction is more and more important whgmnlecreases. The 0 5 10 15 20
compressed image quality is, however, high and sufficient percentage of errors exceeding the threshold (%)

for some applications where some details can be ignored. . o )
8. Comparison between DPCM (solid lines) and FBC (dashed lines).

. . . . Fig.

The Important point, however, is that the d'_Stance to !OSSIe\ﬁlg give the results obtained after a global Huffmann code (GHC) after linear
is controlled through the percentage of pixels outside thediction, or after a wavelet transform for various thresholds. This is done
confidence interval. for different percentages of errors exceeding a given threshold. We show

. . he. compression ratio (defined as 100 times the initial bit rate divided by
Furthermore, it is observed that there is a 900d agreem%ﬁt one, after compression). DPCM achieves higher compression ratios for

between the required and the observed percentages, whighlil percentages of errors, while FBC performs better when more errors are
proves the efficiency of the statistical Gaussian model of tiagowed.

reconstruction error.

V. COMPARISON BETWEEN VARIOUS LOSSLESSTECHNIQUES  efficient in terms of compression ratio because the 2-D pixel
intercorrelations are not easily taken into account. Hence,

A. Comparison Between DPCM and FBC several improvements of the statistics of the coders’ inputs are
As shown in Tables Il and Il DPCM achieves bette?nade by preprocessing the original signal. Linear prediction

IS an example of thoskybrid techniquesas explained above.
esg A
n other example, useful when short transmission time is
required, is thdossy plus lossless residual codifig]. This
This observation has been confirmed by using other threstﬁ‘-:h.nlque 'S based on the transmission of a lossy but h'.gh'
quality version of the image, followed by a lossless encoding

old values. For a given threshold, we evaluate the com- - . . . :
; . : X of the remaining difference (residual) image to achieve perfect
pression rates obtained with various percentages of errors

exceeding’. The results obtained with different values of théeconstructlon of the original image. In the lossy part of the

threshold are summarized in Fig. 8. Note that the proper%Cheme’ lossy transform coding techniques, such as filterbanks,

mentioned above is maintained, i.e., FBC gives better resu#se used. The lossy part of the coder is usually optimized by

. ) an L2-criterion. Performances in terms of lossless compression
for larger confidence intervals (when the percentagef er-

rors less than a given threshold, decreases). However, note ﬁ]eeﬁend on the bit rate repartition between the lossy and the

the threshold value must be rather small so that the assumpgc‘?s'esS part. In the simulations given below, the tradeoft

compression rate than FBC when lossless or near to lossl
coding is required. When more loss is allow@d< 90%), the
filterbanks become more efficient.

required for the statistical modeling of the distortions [see (2 tween the bit allocation for the lossy part and the residual

) : - ) . s been chosen in order to obtain the best total entropy.
are valid. This means that the statistical confidence interva .
Based on the results of this paper, we developed a transform-

criterion only holds in the context of near lossless coding. based technique able to achieve lossless coding using an

As for the deterministic approach, which does not need aiy’o-criterion We described how to choose the quantizers

modeling, the threshold value is also limited according to tt}ﬁ the FBC scheme to have a lossless compression. Using

relationship (6) between the bit rate, the dynamic range apd
S L e, same procedure, we can also perform lossy plus lossless
the quantization steps. The quantization steps can not exceeq. . s ;
oding, with a lossy coder optimized using &AfF°-norm. The

the dynamic range values. So, in the context of very hi .
ynan 9 ' . o Y N reshold in the lossy.> part of the coder has been chosen
compression rates, we have to consider additional constraints

; T . in"such a way that the total entropy of the lossy plus lossless
(g: < ;) in the optimization problem of Section IV-C2. These der in minimized

CO”.S‘T"’“”FS depend on the or|g|nall 'mage. Recall that the VVh&%ln Table IV we show the entropy bitrates obtained on the
optimization procedure is otherwise signal independent. . .
Lena image by these various schemes. The lossy plus lossless

coders have been tuned such that the amount of loss (either
in an L? or L> sense) results in a minimum for the global
entropy. Note that, if no preprocessing is applied to the original
A number of lossless coding techniques for continuousnage, lossless coders are not very efficient, since only a
tone images have appeared in the literature [3], [13]. Thesempression gain of (1.07) is achieved. Plain lossless FBC
techniques are based on such concepts as runlength codfitgrated filterbank) follows.
bit plane processing, predictive coding, etc. This gain improves with DPCM, but it is clearly seen
The simplest techniques consist in applying lossless codénat lossy plus lossless compression schemes still have better
on the original image. These methods are not usually vepgrformances. When the lossy part is optimized with/&f

VI. COMPARISON TO OTHER
CLASSICAL LOSSLESSTECHNIQUES
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Fig. 9. Histogram of the errors with? and L°° criteria in the reconstructed Lena images at the bit rate of 1.4 b/pixel (given by a global Huffmann coding)
using the MSE-criterion (solid curve) and tii€°-criterion (dashed curve). The vertical lines (dashed lined.fr and solid lines for.?) show the minimum
and maximum error values in both cases. As expected, the maximum error is highek3adttiterion than withZ>°-criterion.

TABLE IV minimization of theZ2-norm of the reconstruction error, as
CoMPARISON BETWEEN VARIOUS L0OSSLESSCODING TECHNIQUES IN TERMS OF explalned In [4]_ However the structure Of the fllterbank |S

ZERO-ORDER ENTROPIES THE FIRST THREE LINES CORRESPOND TOCLASSICAL K fixed. Th d . foll E . .
TECHNIQUES WHILE THE LAST Two ONES ARE EITHER THE PLAIN TECHNIQUES ept Ixea. € procedure Is as Tollows: For a given image,

EXPLAINED IN THIS PAPER (LINE 4) OR MIXED TECHNIQUES (LAST LINE) we first apply theL>°-criterion technique to obtain a certain
Tossless Coding Techmique Bit rate (bpp) bit rate. Then, using.?-criterion, we choose the quantizers
Ze"“"fj;g;‘“w’y Zg; minimizing the MSE for the same bit rate. The reconstructed
. IV B . . .
Towsy (DWT) plus lossloss residual coding (L -crterion) 158 images as well as the reconstruction errors are compared using
lossless DW'I' (1. %-criterion) 5.61 i i i i H
lossy (DWT) plus lossless residual coding (L™-criterion) 4.56 Op{ec_tlve and visual means, with the same bit rate for the two
criteria.

The repartition of the distortions generated in the recon-
criterion, the best performances are obtained (4.56 b/pixel fg§ycted Lena images at 1.4 b/pixel (global Huffmann coding)
the DWT lossy plus lossless coder versus 4.64 for the DPGM the two approaches is plotted in Fig. 9. We notice that the
scheme). errors have different repartitions. We should notice especially

It should, although, be noted that FBC performance {fat, with the MSE-criterion, errors have higher intensity
greatly improved in the context of lossy plus lossless resiginaximum error is 34 with MSE-criterion and 17 wittro-
ual coding. As seen in Section V, FBC is efficient whegyiterion). This means that visual distortions may appear earlier
some loss is allowed. Moreover, the obtained residual is Wl the reconstructed image using th&-norm.
decorrelated. This could explain this improvement. This phenomenon is also seen on the error images (obtained
Nevertheless, a conclusion about the best transform is #@m the difference between the original image and the recon-
easy [13], since the choice of particular technique is not detefrycted ones at the same bit rate 1.4 b/pixel) where the errors

mined strictly by the achievable bit rate. Each strategy offegse higher inZ? approach, see Fig. 10. Note that the errors
certain features that may be useful to meet side requiremegfs concentrated on the edges [Fig. 10(a)].

that might exist in a particular environment. This becomes very noticeable when the compression ratio
increases, and the> coded images often look sharper thizh
VII. THE L>-CRITERION IN THE coded images. This must, however, be confirmed by intensive
CONTEXT OF Low BIT RATE CODING simulations.

As seen above, thB>>-norm criterion allows a local control We although should notice that in the MSE context, we
of the distortion in such a way that the difference between thginimize the distortion for a given entropy bit rate computed
reconstructed and the original image does not exceed a giventhe image, whereas in the™ context we constrain the
threshold. Typically, although transform and quantization aegror to be less than a given threshold and minimize the bit
used, we can perform lossless compression when the threshialé given by (6). Particularly, the quantizers are optimized
is half the initial quantization step. to give minimum entropy bit rate in the first case but only

However, these schemes also have the potential for partheoretical bit rate in the second one. This simplified the
forming low bit rate coding with a different criterion than theoptimization procedure ih>°-criterion case and made it signal
classicalL?-norm. The question is how do these two criterigndependent. But since visual quality comparison between the
compare in this context. two criteria is required, we should minimize the same cost.

In order to compare botd > and L? (MSE) criteria, a Therefore, by means of some statistical assumptions on the
full coding and decoding of images was implemented. In tleders’ inputs, we plan to evaluate the entropy bit rate to be
MSE approach, the choice of the quantizers is based on thanimized. This procedure may improve the visual quality in
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@

(b)

Fig. 10. Error images between the original image (Lena, 515%12) and the reconstructed ones after a compression to 1.4 b/pixel (global Huffmann
coding) with L? and L> criteria. (a) Error image obtained in the?-norm context. (b) Error image obtained with*-norm. The errors in (a) are
higher and more concentrated on the edges than in (b).

L context and give a more realistic comparison between applications where regions of interest can be defined,
both approaches.

VIIl. CONCLUSION .

In this paper, we derived a technique of high-quality image
coding based on a confidence interval criterion. The proposed
approach has been explained in the context of predictive as
well as filterbank coding. It has a very large flexibility.

It allows efficient losslesscoding to be performed by
simple means (see Tables Il and Ill). The DPCM is[1]
then more efficient than FBC in this context of Iossles%Z]
compression (see Fig. 8).

It is based on docal control of the distortions, which
allows one to go progressively from lossless compressioﬁ]
to a lossy one, since the reconstruction error is controllegy
sample-by-sample so as to achieve a given quality of
the reconstructed image. As shown in Fig. 8, the use
filterbanks is recommended if more than 5% of original
image pixel values exceed the given threshold.

The use of anL>°-norm is compatible with lossy plus (6]
lossless coding. It happens that the most efficient scheme
we could find makes use of a lossy FBC optimized withl7]
an L=-norm, plus a lossless coding of the residual errorg;
Whatever the application, any signal is measured within
a given accuracy, hence definingcanfidence interval ]
Our method is able to maintain the reconstruction errofsg)
within this confidence interval, thus resulting in practical
lossless coding in this case. (1]
We hope that since we can control the reconstruction error
pixel by pixel, we may envision in the future to vary thig!2]
error inside an image so that spatial masking properti?@]
can be used. This would already be useful is some medical

in which no loss is allowed, while some distortion can
be allowed elsewhere. This can be done in our scheme
simply by varying the quantization step values.

Finally, it has been outlined thdt>® coding could also

be useful in the context of lossy coding (more likely in
a high-quality context) due to the better coding of edges
in images.
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