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Holder Regularity of Subdivision Schemes
and Wavelets

0. Rioul

Abstract. We study special functions obtained as limits of dyadic and
p/q-adic subdivision schemes in one dimension. While the former are used
for designing compactly supported wavelet bases, the latter are a flexible
generalization which has already found application in digital signal pro-
cessing. For ¢ > 1, however, we obtain an infinite set of different limit
functions instead of shifted copies of a single one, and a direct application
of former ideas becomes impossible. However, our “discrete” approach
allows us to extend the results of Daubechies and Lagarias (on Hélder
regularity estimates based on infinite products of matrices) to p/g-adic
schemes. We obtain easily implementable, sharp Hélder regularity esti-
mates.

§1. Introduction

A subdivision scheme in one dimension can be defined as follows: consider a
finite sequence {g, } (g, # 0 for a finite number of values of n), referred to as
the subdivision mask in the sequel, and the discrete operator acting on finite
sequences
Gty = vy = E Uk Ggn—pk (1)
k

where p and ¢ are positive integers.

Definition 1. A p/g-adic subdivision scheme is a collection of sequences _q,jl,
computed using the recursion git! = G(g?), where G is given by (1).

We assume that p and ¢ are coprime, otherwise replace g, by gan Where
d = ged(p, q). Note that a subdivision scheme is uniquely defined given a sub-
division mask ¢,, and an initial sequence g.. For p/q = 2, we recover the classi-
cal binary subdivision schemes, which have long been used in computer-aided
geometric design [6] and yield compactly supported wavelets under additional
conditions on g, [4,5].
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Being a natural extension to binary subdivision schemes, p/g-adic syt
division schemes may find application in computer-aided geometric desigy,
However, the motivation for this study comes from signal decomposition proh.
lems: for ¢ > 1, subdivision schemes are strongly related to filter banks wit},
rational sampling changes, as studied by Kovacevi¢ and Vetterli [7]. Some of
the material presented here and the derivation of “rational” pseudo-waveletg
were investigated by Blu and the author in [1,2]. For many signal process.
ing applications, p/g-adic schemes (1 < p/q < 2) form a more flexible too]
than “pure” dyadic wavelets as they allow signal decomposition on fractiong
log, p/q of an octave using orthonormal bases [1,2,7].

In this paper we study special functions obtained as limits of p/g-adic
subdivision schemes using the “‘discrete approach” of [8]. We first define
uniform convergence of the {gJ}s.

Definition 2. A p/g-adic subdivision scheme {g}} converges uniformly to
the (compactly supported) function ¢(z) if

j]im sup |¢(z) — gf;jl =0, (2)
- 00 x

where n; is a sequence of integers such that |n; — (p/q)?z| is bounded as j
increases.

Compact supports of limit functions were estimated by Blu in [1]. For p/q =2
and initial sequence gl = g, we obtain the “father wavelet” ¢(z) as studied
in [4,5,8]. In this case every uniform limit is a finite linear combination of
translates of ¢, since replacing gl by gl _, gives ¢(z — k). However, this shift
invariance is never satisfied in the rational case (¢ > 1), as first noticed by
Cohen and Daubechies in [3]. Therefore, we consider an infinite set of limit
functions instead of one:

¢*(2) = uniform limit of gf;'s, (3)
where s € 7ZZ and g%,s is defined by
gf;as — Q’j((s,l_s), (4)

Here the initial sequence is an impulsion at time n = s, ie., 6, = 1 if
n = s, 0 otherwise. It can be easily shown that any uniform limit is a linear
combination of the ¢*(z), and that we obtain a pseudo-wavelet transform [1]
for which the “wavelets” at resolution (p/q)~7 are in the form ¥ ((p/q)’z). It
is known that these wavelets can never be put in the exact form 9 ((p/q)’z —k)
(hence the name “pseudo-wavelets”), but can be approximated in this manner
under conditions on g, (see below). Qur goal is to answer the following
questions:

1) Can we find conditions on the subdivision mask {g, } such that uniform
limit functions ¢*(z) exist for all s, yielding a “pseudo-wavelet” trans-
form?
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2) What are the conditions on g, such that the obtained pseudo-wavelets (or
the limit functions ¢*(x)) are “smooth”? This amounts to determining
e.g. the Holder regularity of ¢°(x).

3) For q > 1, can we find conditions on g, such that “pseudo-wavelets” are
almost shifted versions of each other, i.c., ¥x((p/q) z) = ¥((p/q)’z — k)
within a smal error (to be estimated). This amounts to estimating
e =inf, o, |p°(z+5) — ¢° (z +5").

This paper is organized as follows, First, we introduce some useful polynomial
notation. Then, we state a necessary and sufficient condition for uniform
convergence, thereby answering question 1. We then answer question 2 by
deriving sharp Holder regularity estimates, which are known to be optimal
in the case ¢ = 1. This is a direct extension of Daubechies and Lagarias
estimates [5] to the rational case, and a small example (“pseudo B-splines”)
is provided. Finally, as an answer to question 3, we show that regularity is
also useful for achieving shift invariance within a small error.

§2. Notations and Preliminaries

In the sequel we shall heavily use the Laurent polynomial notation:

G(X) =Y g X" (5)

L

for any finite sequence g,,. Polynomial multiplication amounts to performing
a discrete convolution by the sequence g,, which we shall denote by G.

Equation (1) can be seen as resulting from three successive operations:
first, insert p — 1 zeros between every other sample of wu, (discrete dila-
tion U(X?) = D,(U(X))). Then convolve the result with g, (operator
G), and finally retain every gth sample of the result (discrete contraction
wyn = Cy(wy)). In other words, G = C,GD,,.

Using some flow graph algebra it can be easily shown that when p and
q are coprime, the iterated operator G7 can be put in a similar form, namely
GI = Ci GJDPJ—, where G7 corresponds to polynomial multiplication by

GH(X) = G'(X"j_')G(X;uq’"‘) - ‘G(ijil")G(XP""'}
i o -
= H G(x*'e ),

By definition (4) we obtain the fundamental relation
g’ = .()'é.:n_pjsa (7

which can be used to compute a subdivision scheme g* from the sequence
g! associated to polynomial G7(X). Using (6), it is easily seen that these
polynomials can in turn be computed recursively in two ways:

GIHY(X) = G(XQJ)Gj(XP) = GJ'(X‘?)G(XPJ). . (8)
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In the following we shall use the notation U7(X) = [, U(X? g Y fos
any polynomial U(X). The most general recursion formula for U7 (X) is

Ut(X) = U(XPHUI(XT). (8

§3. Uniform Convergence

Uniform convergence of {gi*} (Definition 2) requires an important condition
to be fulfilled by gy, which was first mentioned in [7] and proved in [1].

Proposition 1. If g/* converges uniformly to ¢*(x) # 0, then
Zgu—pk =1
k

for all n € 7Z.

This condition can he rewritten as

1—-X?
G(1) = p and =X divides G(X). (9)

Now consider F(X) = %{%G(X). It is casy to show that

1—- X7

Fi(X) = T

Gi(X). (10)

Hence the first-order differences d® = g3* — g* | follow a p/g-adic scheme
with subdivision mask F(X) (and initial sequence associated to (1 — X)X¥).

Theorem 2. The p/g-adic subdivision scheme g g* converges uniformly to
continuous limit function ¢*(z) for all s if and only if (9) holds and

1]1()X|_jn+l g*| = 0 as j — oo. (11)

Proof: Condition (11) is clearly necessary. Now, using (10) we have di* =
3 _ J 9y s+i\.
RNl i TR hence qun —pis ZD d where the sum is ﬁmte

Assuming (10) holds for all s it follows that il vin—pis tends uniformly to 0.
On the other hand, using recursion (8’) for F¥(X) we end up with

il i ) I,s
max [ g B Hlfdxg |f;j-n_pj-k| m!imxldkbL

which by induction gives

ili
max|dj’ (maxZLfn ka|> :
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Since [’

iy temds uniformly to 0, there exists v > 0 such that

max |g7}, — 93°] < e(p/a) ™, (117)

which is clearly stronger than (11). Now, by adapting a proof in [8], (11°)
implies
T T
max |77 — g7 | < ¢ (p/9)™",

where nj is chosen as in Definition 2. From this follows that gf)? is a uniform
Cauchy sequence, hence converges to ¢*(x) which can be easily shown to be
continuous., M

Theorem 2 is powerful for proving uniform convergence for all s: in fact,
it is sufficient that max, >, |f;1_qj-k| = (p/q)™** < 1 for some i, to ensure
that all ¢*(z) are continuous. Moreover, this gives o (0 < a < 1), and as can

be shown from (11'), the ¢°(z) are all Lipschitz of order o.

§4. Holder Regularity Estimates

We say that ¢*(z) is (Holder) regular of order N + o if it is CN and its
Nth derivative is Lipschitz of order «v. The preceding section has given a
condition on g, such that ¢*(x) is regular of order e, where 0 < o < 1. For
higher regularity orders we apply this result to Nth order finite differences
of the gi*. The first-order difference is Agh® = (g5° — g2*,)/(p/q)™7, and
Nth order finite differences are obtained by applying N times the operator
A. First, we relate finite differences to derivatives of limit functions, using
the following theorem proven in [1].

Theorem 3. If AN gl* converges uniformly, then so do AFgi* for 0 <

<k
N, whose respective limit functions are the kth-order derivatives of ¢°(z).
Moreover, ¢*(z) is CN and

_ ypy Nl
(%) divides G(X) (12)

Condition (12) is clearly a generalization of (9). Note that the subdivision
mask associated to AFgi is

pl-X9\*
(El_x,,) a(x),

pl1-X1
ql-Xv?

hence, in some sense, multiplying the subdivision mask polynomial by
amounts to differentiating the limit function [1].

From Theorem 3 and the preceding section it follows that uniform con-
vergence of the Nth-order finite differences AYgl* can be tackled similarly
as that of the g/**. That is, we have the following ‘
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Corollary 4. If G(X) satisfies (9), (12) and
max|ANgn+1 AN gi®| < c(p/q)~i* (13)
for some « < 1, then ¢*(z) is regular of order N + c.

In fact we can show that this result is valid for negative values of ¢ (a
proof for the case p/qg = 2 can be found in [8]), which means that we cay
obtain positive regularity orders N + « by estimating (13) even though t}e
AN g2# diverges. In particular we can still apply this criterion for the maxima]
value of N such that (12) holds. This yields the following Holder regularity
estimate for p/g-adic subdivision schemes:

Theorem 5 (Holder regularity estimate). Assume G(X) satisfies (9) and
(12) and set

1 xa\ N+
G(X).
Fu() = (&) (1_,{?) (x) (1)
Define the Holder regularity estimate N + o), (for a fixed value of j) by
Py —ie) i
Q)= Dgg;jz [CHT (15)

and let o = sup; o:N Then for any j such that N + ozN > 0, ¢*(x) is Hélder

regular of order N + aN, for all s. Moreover aN tends to o as j — oo, and
¢*(z) is Hélder regular of order N + o — € for any € > (.

For p/q = 2 we recover the estimate derived in [8]. Moreover, for any
value of p/q, we can rewrite (15) using p square matrices of small order F,.:

(B)*% = max mp,,, (15')

q 0<r;<p—1
where || - ||, denotes the £! matrix norm and where
f" f7'_q f‘r‘—!q
F,. = .f1"+‘,‘) fr-}-p_q ff‘-i-P—?q W e ) (16)

This matrix is simply a convolution matrix in which one keeps every pth

line and every gth column. For p = 2 and ¢ = 1 we recover Daubechies
and Lagarias estimate [5], which is shown to be optimal under very weak
conditions on g, in [8]. 2

In general, using the matrix form we obtain lower and upper bounds on
regularity as

— m ) 17
N —log,,q 0532{:0 [IF+]| (17)
and
— log 17
N logp,’q Urgf?p p(FT’)r ( )

respectively, where p(A) denotes the spectral radius of matrix A.




Holder Regularity of Wavelets 443

§5. An Example: “Rational B-Splines”

1 f1-xr\NH
G(A)zITN (ﬁ) (18)

for which Fy(X) (14) is obtained by replacing p by ¢ in (18). For p/q = 2,
we recover B-spline functions, whose Holder regularity is N — € (see e.g. [8]).
| Let us derive Holder regularity orders in the case p/q = 3/2 and N = 1, 2,
' and 3.

First, in the case N = 1, we obtain three 1 x 1 matrices F';., namely (1/2),
(1), and (1/2). Hence it follows from Theorem 5 with (15°) that all ¢*(x) are
Holder regular of order 1 (that is, almost continuously differentiable).

In the case N = 2, we obtain

e 0 meCl ) neCE 3D

Here lower and upper bounds (17) are equal to 2 — log(3/4)/ log(3/2) which
gives 2.709. .. as the regularity order of the ¢*(xz)’s.
For N = 3, we obtain similarly three 3 x 3 matrices

This example is

1/8 0 0 /2 0 0 3/8 1/8 0
12 1/2 0 |,|1/8 3/4 1/8),[ 0 1/2 1/2
0 1/8 3/4 0 0 1/2 0o 0 1/8

whose norms and spectral radii are all equal to 3/4, hence the Holder regularity
order is 3 — log(3/4)/log(3/2) = 3.709. . ..

§6. Achieving Shift Invariance of Regular Pseudo-Wavelets

As pointed out in the introduction, the major difficulty in the rational case
(g > 1) as opposed to the dyadic case is the lack of shift invariance of ¢*(z) #
¢(z — s). In other words, we obtain only a pseudo-wavelet transform (1] in
which wavelet bases are not shifted versions of each other at a given resolution
level. However, it can be shown that shift invariance is “almost” achieved
within an arbitrary small error by taking N in (12) sufficiently large (thereby
increasing the regularity order of the ¢*(x)’s). The following theorem is due
to Th. Blu (a proof is outlined in [2]), and explains a numerical observation
made in [7].

Theorem 6. Let G(X) satisfy the conditions of Theorem 5, where N is given

such that (12) holds. Then, provided that the ¢*(x) are regular for all s,

im sup |¢°(z + s) — qisl(a: + s =0. (19)

N—oco x,8,8'

B S



444 0. Rioul

Acknowledgements. This work was done in part with Thierry Blu of CNET
Paris B.

References

1. T. Blu, Iterated filter banks with rational rate changes. Connection with
discrote wavelet transforms, IEEE Trans. Signal Processing, 41-12 (1993).

9. T. Blu and O. Rioul, Wavelet regularity of iterated filter banks with
rational sampling changes, IEEE Int. Conf. Acoust., Speech, Signal Pro-
cessing, Minneapolis, MN (1993), Vol. 111, 213-216.

3. A. Cohen and 1. Daubechies, Orthonormal bases of compactly supported
wavelets. 11I; Better frequency resolution, SIAM J. Math. Anal., 24-2
(1993), 420-527.

4. 1. Daubechies, Orthonormal bases of compactly supported wavelets, Com.

Pure Applied Math., XLI (1988), 909-996.

. Daubechies and J. Lagarias, Two-scale difference equations. 11. Local

regularity, infinite products of matrices and fractals, SIAM J. Math. Anal.

23 no. 4 (1992), 1031-1079.

6. N. Dyn, Subdivision schemes in CADG, in Advances in Numerical Anal-
ysis. II. Wavelets, Subdivision Algorithms and Radial Functions, W. A.
Light (ed.), Oxford University Press, 1991, 36-104.

7. 7. Kovatevi¢ and M. Vetterli, Perfect reconstruction filter banks with
rational sampling rate changes, in Proc. IBEE Int. Conf. Acoust., Speech,
Signal Processing, Toronto, Canada (1991), 1785-1788.

8. O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J.
Math. Anal, 23-6 (1992), 1544-1576.

(&1

0. Rioul

CNET Paris B

38-40, rue du Général Leclerc

92 131 Issy-Les-Moulineaux, FRANCE
rioul@balsa.issy.cnet. fr




