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Irance.

The new criterion of regularity is of increasing interest in applications involving wavelet de-
composition schemes. In this paper, regularity is fully characterized on filter taps, resulting in
easily implementable, optimal regularity estimates which can be used for any filter.

1. INTRODUCTION

Perhaps the biggest potential of wavelet theory has been
claimed for signal compression schemes [1,5] in which
the signal is decomposed into several resolution levels
using a “discrete wavelet transform (DWT)" [3,8]. In
fact, the DWT was soon recognized (o be equivalent
Lo an octave-band tree filter bank which was proposed
for some time in subband coding of images [9]. In this
particular context, the novelty of wavelet theory comes
down to the choice of fie filters-present in a two-band,
filter bank: “Wavelet™ filters are regular.

In order Lo provide an intuitive feel for what regularity
represents, consider Lhe following iterated interpolations
with low-pass filter impulse response (7(z)} which are
obviously present in DWT’s {8].

Y(2) = X(:4)G(2). (1)
Iterating (1) 7 times yields
¥i(z) = X(2¥)G(2) (2)
where
Gi(z) = G)GEHGEY 662 ()

The sequence g corresponding to {3) is the equiva-
lent impulse response at jth stage of the reconstruc-
tion. Now, for special choices of G{z), the temporal
shape of the gd’s, plotted against n2°7 (i.e., with the
same Lemporad extent), rapidly converges to a “regulas”
limit function (1) as §j — oo (see Fig. 1), However, for
“had” choices of gn, (t) may be highly irregular; the
iterated scheme may even diverge, even though G(z) isa
“good” half-band low-pass filter (8], Note that filters are
assuined FIR here, ¢(1) is compactly supported. A first
definition of the regularity order of () is the number
of times it is continuously differentiable; this is clearly a
smootliness requirement on the temporal waveforing of
the g7's.

The band-pass impulse responses present in a DW'L are
obtained with the same iterated interpolation procedure
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Figure 1. An example of rapidly converging iteration scheme:
The gh's are plotted against n272 for § = 1, 2, 3, 4 and 5 itera
tions, for one of Paubechies “orthoncrmal” filter of length 10 {3].

as {2}, which is initialized with the high-pass filter im-
pulse response hy [B]. The resulting limit function 4 (t)
is the continucus-time wavelet prototype [3,8]. Here we
restrict ourselves Lo the convergence of the gl’s toward
(1), hecause (1) and (1) share the same regularity
properiies [3,6].

Several intuitive arguments have been raised which hint
that this property should be useful in image coding ap-
plications {1,8]. First, requiring that the signal is an-
alyzed by smooth “basis functions” g, and A, ensures
that no artificial discontinuity—not due to the signal
itsell-—appears in the transform coefficients, which are
inner products of the signal with these basis functions.
That is, regularity would lead to a “belter” representa-
tion of the signal by the transform coefficients. Second,
any quantization error made in a coeflicient al some
resolution level results, at reconstruclion, in an error
signal that is proportional to the basis function corre-
sponding to (his resolution level. It is therefore natural
o require that this perturbation be smooth, rather than
discountinuous: A discountinuous perturbation is likely
to strike the eye more than a smooth one for the same
m.s.e. distortion level.

However, understanding the role of regularity in a
DW'T-based compression scheme requires precise eval-
uation of it. QOne difficulty is that it is a mathemat-
ical notion which is expressed on () rather than on
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filters taps ¢,. Thercfore, the characterization of reg-
ularity on any set of cooflicents g, is a difficult prob-
lem, which was first addressed in the wavelet context
by Daubechies {3]. A number of regularity order esti-
mates, most of thein based on the spectrum |G(e™ )2,
have been investigated [2,3,4]. Unfortunately, these es-
timales turn out to be suboptimal in general and some-
times computationally expensive,

This paper presents a complete characterization of reg-
ularity on the filter taps g, in simple terms, restricting
to the one-dimensional case. This method is original in
that all regularity properties of (¢} are translated into
equivalent! properties of the discrete-time sequences 7.

2, CONTINUITY

It can be shown [6] that as long as the resulting limit
function s regular, the type of convergence of the ¢l s
“unilorm,” which is a strong Lype of convergence. Uni-
form convergence of the gl 's is in fact equivalent to the
existence and continuity of (i} [6]. Continuity {or uni-
form convergence) [6] is equivalent to the following in-
tuitive conditions.

G(1) = 32, (4)

. Gi-1) = 0, (5}

i max |gd - gl o= (6)
Jr oo

Condition (4) is siinply a normalization requirement. on
Gi(z), while (5) is crucial for convergence and regutarity,
as explained in section 3.1. The basic requirement {6)
is that the difference between two successive values of
@ tend to zero uniformly in n. Henee, no jumps or
discontinuities should appear anywhere in the iterated
sequences g as j increases, and the limit function is
continuous.

However, even when (1) is required to be continuous,
it may not appear to he smooth at all, as shown in
Fig. 2. 1t is therefore natural to require more, narely
that @(t} possess N > 0 continuous derivatives. This is
done next.

3. DERIVATIVES

The limit function () has regularity order N if its Nth
derivative, d¥p(t)/dtY, is continuous. To characterize
this on ¢, consider Lhe first-order finite difference se-
quence g7, defined as the sequence of the slopes of the

Texcept for very few pathological cases which are never
encountered in practical systems [7]; we here state general re-
sults and refer the interested reader to [8) for further details.
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Figure 2. An example of limit function generated by an or-
thogonal “wavelet" filter. The optimal Sobolev regularity is neg-
ative but the Hélder regularity order is in fact 0.0146.. ., which
implies that this limit function is continuous (sec section 4},

“discrete curve” gl ploited against n2~7,

i g;x - g-rih—l
by = =5 (7)

The correponding z-transform is AGY(z) = 2{1 ~
2"NGI(z). Applying N times the operator é yields
the finite difference of ¢, of order N, 6Mgl, given by
ANGI(z) = N1 — YN G (s).

Since the role of the derivative of w{t) of order N is
played in the diserete-time domain by 6¥ gl | it can be
shown [6} that regularity order N is simply characterized
by wniform convergence of 6% gl .

3.1. The rele of zevoos st 2 = —1 in G(2).

In fact, the Nth derivative of p(2) can obtained from the
same iterated interpolation procedure as (2), where N
zeroes s G(z) have been removed [6}. As a side result
of this and (5}, G(z) should have at least N + 1 2eroes at
# = —1 1o achieve regularity order N. Note that adding
one zero at z = ~1 in ((z) will increase its regularity
ordet by one since removing one amounts te “differen-
tiate.” Thercfore, zeroes at z = ~1 have a favorable
effect for regularity. This was used by Daubechies in [3)]
Lo design regular, orthonormal “wavelet” filters, by im-
posing as many zeroes at z = —1 as possible in G{2)
for a given filter length. Note that imposing such ze-
roes in Gz} amounts to requiring that the frequency
response G(e/*) is “flat” about half the sampling fre-
queney w = 7.

However, the effect of zeroes at z == —1 may be killed by
the other zeroes present in G(z). The rest of this paper
aims al quantifying the “destructive effect” of zeroes in
G{z) that are not located at : = —1 in order to quantify
regularity accurately.



4. HOLDER AND SOBOLEV REGULARITY

We first extend regularily orders to arbitrary, real-
valued numbers. A popular extension [2,3] uses a spec-
tral approach to regularity which regards it as a spec-
tral localization. This definition is typically based on
Sobolev spaces [2,6]. However, it masks the cffect of
regularity on the temporal waveform of ¢{t) and does
not use phese information of G{e/). This may be in-
appropriate: Fig. 2 shows an example of {f} for which
the best Sobolev exponent » is negative, although it can
shown that @{f) s in fact continuous.

These limitations are overcome in the foliowing defini-
tion of Hélder regularity. The function o{t) is regular
of order o, 0 < v < 1, if

ot + h) = sp(8)} < elhl®. ®)

This controls the way infinitesimal slopes of (1),
(b 4 kY — @(O)|/1h], grow as h becomes indefinitely
small. For higher regularity orders r = N 4+, 0 < o <
1, the same definition is used on the Nl derivative of
w(t). This definition is more compatible with continu-
ity and differentiabilily because it can be shown 1hat {6)
il @t} 15 a limit funetion of ¢, then () possess N
continunous derivatives if and only 1f it has some Holder
regularity order » greater than N. We have seen that
this property is not shared by Sobolev regularity. In the
following we therefore concentrate on Hélder regularity.

‘There is a stight irritation in that ¢(t) possess N con-
tinuous derivatives only when its Hélder regularity is
r= N 4e, where ¢ > 0 is arbitrarcily small, To simplify
our presentation, we drop the ¢ in the sequel and regard
regularity orders witl:in an arlatrarily small constant.

4.1. Holder regularity order 0 < e < 1

To characterize Nélder regularity o, 0 < o < 1, on @
we can do an analogy with (8), replacing «(¢) by g, with
t=mn2" and h = 277 This gives

|y31+i - giil; < i (9)

‘This property, along with (4}, (5), is indeed cquiva-
lent to (8) [6]. This gives an intunitive interpreiation
of Holder regularity: The slopes of g plotted against
N2 |ghe = @ 17279, grow less than 20790 ag § — oo,
For example, bounded slopes means that regularity or-
der is 1, i.e., p(f) is almost continuously differentiable.
And less regularity allows slopes to increase indefinitely:
This explains why @(t), although continuous, may some-
times be quite “nasty”™ as in ig. 2.

4.2. Arbitrary regularity orders

Since derivatives of (1) correspond to finite differences
of g, a natural discrete-time characterization [6) of reg-
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alarity order r = N 4+ o, 0 < o < 1, is (4), (5), and (9)
written for 6V gl ie.,

(68 gty — 8N g | < c2™i®, ()

A remarkable fact is that (10) can be extended to neg-
ative values of o [6). That is, even if (10) “fails” i.c.,
gives a negative regularity order for 6™ gl | it can be used
to prove that g} has some (positive) regularity if N > «.
It is therefore worthwhile to cansider negative regular-
ity orders. In particufar, assume that G(z) has exactly
N zeroes at z = —1. The maximum number o € 0
for which (10} holds is then the exact amount of reg-
ularity lost due to the destructive effect—discussed in
section J.1——of the zeroes in GG(z} that are not located

at z = —1 [T}
4.3. Regularity and rate of convergence

In practical systems involving a discrete implementation
of the DW'T, the number of iterations j is Himited. 1t
is therefore questionable to study the limit function as
J =+ oo, However, the rate of convergence of ¢ to (1)
is faster as regularity is high (the difference tends to 0
as 271 [6}). The convergence is even faster for higer
regularity orders (sec Fig. 1).

5. OPTIMAL REGULARITY ESTIMATES

A regularity estimate r is here said to be opfimal if (1)
is at least regular of order r — ¢ and is nof regular of
order r + ¢, where £ > 0 i3 arbitrarily small.

A simple algorithin (6], which was independently de-
nived using the “Littlewood- Paley theory” by Cohen and
Daubechies {2], gives the optimal Sobolev regularity or-
der. However this is not optimal for Holder regular-
ity in general: Holder regularity is always greater than
Sobalev regularity by at most 1/2 {6]. This gives subop-
timal Sobolev lower and upper bounds for Holder reg-
ufarity. Sobolev regularity depends on the modulus of
the spectrm while two filters that differ only by their
phase have Holder regularity orders that differ by at
most 1/2, In the following we provide sharp lower and
upper bound estimates based on characterization (10).

5.1. Lower bound

Since (10) must be satisfied for infinitely many j's and
with an unknown constand ¢, this is impossible to check
in practice, Tortunately, this task can be reduced to a
finite-time computer search [6,7):

Algorithm 1 (Lower bound on Hélder regularity). Let
N > 0 be the exact number of zeroes at z = —1 in low-
pass interpolation FIR filter G(£), normalized such that
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G(1) = 2. I G{z) only has zeroes at z = -1, stop. The
Halder regularity order is . To estimate the amount.
of regularity lost due to the other zeroes, compute F(2),
defined as

Glz) = 27N+ 29 R, (11)

Let j be any positive integer. Compute the (positive)
nther

1 ; .
By = < logy wnax, ;u,’,_g,u. (12)

where f1 is given by

Fi(zy= F(2)F2) R (13
The Holder regularity order of Gz} is at least N - ;.

A matrix formulation can be shown {6] to be equiva-
lent to a Hélder regularity estimate which was derived
by Daubechies and Lagarias [2,4] using a very differ-
enl approach, While the method they deseribe in [4] is
only managable for very short filters G(z), Algorithm
1 gives nearly optimal results (as 7 increases) for any
filler: In fact, N — g tends (at most as 1/7) to the
optimal Hojder regularity order as j — oo [6]. In prac-
tice, the exact (optimal) regularity order r is generally
obtained to two decimal places after 7 = 20 iterations.
This algorithm can be eastly implemented by recursive
calls to the same small subroutine [7].

5.2, Upper bound

One possible drawback of Algorithm 1 is its exponen-
tially increasing numerical complexity [7). Now, assume
that one retains only the values n = 0 and 2 — 1 in the
computation of the maximum in (12): This results of
course in a much faster algorithm. The obtained esti-
mate clearly gives an upper bound of Holder regularity
as j — oo since f; is under-estimated. We give here the
matrix formulation of this algorithm, whick simpiifies Lo
the computation of a spectral radius of one matrix [6]:

Algovithm & {(Sharp Hélder regularily upper bound). Let
Glz), F(2), N > 0 be as in Algorithm 1 and let & > 1
be the length of F(z). Form the matrix F = (F, ),
0<i,j <K — 2, defined by

Fij = faioj (14)

and compute its spectral radius p. The Holder regulari-
ty order of ((z) is bounded by N —max{(ifo}, |fx-1]. ).

The resulting estimales are very close Lo the optimal
Holder regularity order, as seen in Fig, 3.

FILTER LENGTH

Figure 3. Comparison of regularity estimates: Soboley lower
and upper bound {dashed), Hoélder upper and lower bounds
{sodid} for Daubechies filters given in [3].

6. Couclusion

The method presented here, which characterizes regu-
larity on discrete-time sequences, was found to be pow-
erful: We have provided regularity estimates that are, in
contrast with earlier ones [2,3 4], casily implementable,
optimal, and of general applicability. Local regular-
ity [4) can also be studied as alternatives to global reg-
ularity using this method. {7).
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