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Time-Scale Energy Distributions: A General Class
Extending Wavelet Transforms

Olivier Rioul and Patrick Flandrin, Member, IEEE

Abstract—This paper develops the theory of a new general
class of signal energy representations depending on time and
scale. Time-scale analysis has been introduced recently as a
powerful tool through linear representations called (continu-
ous) wavelet transforms (WT’s), a concept for which we give
an exhaustive bilinear generalization. Although time scale is
presented as an alternative method to time frequency, strong
links relating the two are emphasized, thus combining both de-
scriptions into a unified perspective. We provide a full char-
acterization of the new class: the result is expressed as an affine
smoothing of the Wigner-Ville distribution, on which interest-
ing properties may be further imposed through proper choices
of the smoothing function parameters. Not only do specific
choices allow recovering known definitions, but they also pro-
vide, via separable smoothing, a continuous transition from
Wigner-Ville to either spectrograms or scalograms (squared
modulus of the WT). This property makes time-scale represen-
tations a very flexible tool for nonstationary signal analysis.

I. INTRODUCTION

NEW method for time-varying signal analysis, called

the wavelet transform (WT), has come under inves-
tigation during the past few years. It provides a new de-
scription of spectral decompositions via the scale concept
[33]. The fundamental paper by Goupillaud er al. [16]
was the first which clearly described linear time-scale de-
composition of signals by means of wavelets of constant
shape. This concept is attractive in that it is not another
formulation of time-frequency ideas (where the Fourier
duality is used to introduce the time-varying local fre-
quency parameter), but a new formalism where the basic
operator acting on the signal is of time-scaling nature
rather than making use of the Fourier variable.

Although the first applications were high resolution
seismic analysis and coherent states representations in
quantum mechanics, representations of signals’ charac-
teristics spread over the time-scale plane seem to be use-
ful in a variety of fields: analysis of speech and sound
signals, turbulence flows, to name but a few [33]. By def-
inition, the WT selectively matches, by means of an inner
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product, transient features characterized by unknown lo-
cations and time extents. It is this property that makes it
relevant for many nonstationary signal processing tasks,
and especially for time-varying spectral analysis. Section
I briefly covers the basic properties of the WT in com-
parison with the short-time Fourier transform (STFT).

The mathematics of the WT has been developed by
Grossmann and Morlet, mostly in the language of quan-
tum mechanics [17], which certainly did not look attrac-
tive at first for the signal processing community. Various
degrees of discretization were formalized by several
mathematicians such as Meyer [24], giving rise to new
ideas relating discrete WT’s to quadrature mirror filter
(QMF) filter bank structures [30], [32], relevant for ap-
plications such as image coding. In this context, papers
by Daubechies [7], [8] and Mallat [23] are among the first
that widely caught the attention of the signal processing
community, although there had been substantial prior
work on this approach.

Even in the early stages of the theory, emphasis was
put on the fact that a relevant graphical time-scale repre-
sentations of signals is the squared modulus of the WT,
which is an energetic representation [18], referred to
throughout this paper as scalogram. Although sole infor-
mation on the modulus of the transform is not enough to
reconstruct the general signal (phase information is also
needed), the scalogram provides a graphical picture of the
energy of the signal spread over the time-scale plane, in
a similar way as a spectrogram spreads the energy over
the time-frequency plane. A short comparison is made in
Section III.

The purpose of this paper is to provide a full general-
ization of time-scale energy representation that gives new
insights into time-scale signal analysis and better explains
the relationship between scalograms and spectrograms.
The resulting general framework is mainly theoretical and
is expected to serve as a basis for future developments.

Our approach follows the same lines as the derivation
of the general class of time-frequency energy representa-
tions, referred to as the Cohen’s class [5], [6]. We first
describe the scalogram by means of members of this class
(e.g., Wigner-Ville distributions (WVD’s)) and insist on
similar properties handled by spectrograms. This is done
in Section IIl. We then give in Section IV a complete
characterization of all time-scale energy distributions in-
volving affine smoothing of the WVD. Several equivalent
formulations are considered in Section V, more or less

1053-587X/92$03.00 © 1992 1IEEE



RIOUL AND FLANDRIN: TIME-SCALE ENERGY DISTRIBUTIONS

compatible with additional requirements one may impose
on the representation.

The flexibility of this approach is finally illustrated in
Section VI by recovering several known definitions as
special cases, and by deriving a new subclass of (sepa-
rable) affine smoothed WVD’s. This new class offers a
great versatility to balance time-frequency resolution and
cross-terms reduction from the WVD. A good illustration
of the possibilities of our approach is in Section VII: using
Gaussian windows, we construct a sole class of time-fre-
quency and time-scale representations of which the three
well-known distributions—the WVD, the scalogram, and
the spectrogram—are members. It is then possible to pass
from the WVD to either the spectrogram or the scalogram
by controlled smoothing.

II. THE SHORT-TIME FOURIER TRANSFORM AND THE
WAVELET TRANSFORM

A classical linear time-frequency representation, called
the short-time Fourier transform (STFT), has been heav-
ily used for nonstationary signal analysis since its intro-
duction by Gabor [15]. The idea is to apply the Fourier
transform on a time-varying signal x(7), when x(7) is seen
through a window A(7) of limited extent, centered at time
location 7 [1]:

+ oo

F. f) = g_ x(Dh*(r — e ¥ dr. (1)

This intuitive definition has interesting consequences.
For example, provided that the window is of finite en-
ergy, there is a one-to-one correspondence of the STFT
with the original signal and an exact inversion formula
holds.

In recent years, an alternative representation, called the
wavelet transform (WT), has been widely addressed in
the literature [28], [33]. The fundamental idea here is to
replace the frequency shifting operation which occurs in
the STFT by a time (or frequency) scaling operation. The
resulting definition is

T.t, a) = ﬁ Lo X(r)h* <TT_’> Q)

where the function A(f) (called the basic wavelet) is lo-
calized in time. This definition depends on a dilation/
compression (or scale) parameter a. Note that, in general,
negative a’s are allowed, just as negative frequencies are
allowed in Fourier analysis.

In contrast with the STFT, this transform is no longer
adapted to modulations (or frequency shifts) but is now
based on scalings by a: this makes the WT a time-scale
representation rather than a time-frequency one [12].

As for the STFT, the WT satisfies then an inversion
formula, provided that the Fourier transform H(f) of h(r)
satisfies the so-called “‘admissibility condition’’ [17]

[

HH]? = = 1. 3
L HDOP T 3)
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This means that A(z) is necessarily the impulse response
of some bandpass filter. In the time domain, its mean
value must be zero, which implies that A(f) oscillates,
hence the name wavelet. Several choices exist for A(z); a
typical choice is the modulated Gaussian [16], [18].

As can be seen in definitions (1) and (2), both the STFT
and the WT analyze signals by means of inner products
with analyzing waveforms depending on two parameters.
In fact, the main difference between the STFT and the WT
is related to the structure of these analyzing waveforms:

1) The STFT uses an analyzing waveform of constant
envelope with an increasing number of oscillations as
higher frequencies are analyzed. This amounts, in the fre-
quency domain, to using modulated versions of a low-
pass filter to explore the spectral content of the analyzed
signal (‘‘uniform filterbank’’). This is clearly evidenced
when rewriting (1), using Parseval equality, as

+ 00

F(t, f) = e,wg [X(w)e V™ H*(» — f) dv.

2) In the WT case, the waveforms, referred to as
wavelets, are of the form 1/|a| h((r — 1)/a). They are
generated from the basic wavelet h(7) by time-shift (r) and
dilation (a) operations: their envelopes are narrowed as
higher frequencies are analyzed, whereas their number of
oscillations, hence their shape, remains constant. The WT
therefore uses dilated or compressed versions of a band-
pass filter, whose relative bandwidths are constant (‘‘con-
stant-Q-filterbank’’). This structure is evidenced when re-
writing (2) as

T.(t, a) = S [X(v)e Y™ V]a| H*(av) dv.

The STFT and the WT share another common property:
they both permit displaying the energy of the signal in the
analysis plane (¢, f) or (¢, a). A precise comparison is
done in the next section. We shall see that the energetic
point of view moreover provides a framework in which
the two time-frequency and time-scale representations are
comparable.

III. SPECTROGRAMS AND SCALOGRAMS AS SMOOTHED
WIGNER-VILLE

Owing to their definition, STFT’s and WT’s are com-
plex-valued functions and they convey both modulus and
phase informations. Both are necessary to reconstruct the
signal, and the phase information is sometimes desirable
for analysis purposes [18]. However, a description based
only on the squared modulus, providing an energy density
distribution, is often preferred.

In this context, the spectrogram, defined as |F, (¢, )|?,
has been widely used for many signal processing tasks
[26]. Since it can be shown that

+ oo

Lo Le \F(t, ) dt df = E, = S_m lx(n)|* dr



1748

the spectrogram distributes the energy E, of the signal all
over the time-frequency plane: it is the energy distribution
associated to the STFT.

A similar quantity, |7, (¢, a)|?, can be defined in the
case of the WT: we propose to refer to it as a scalogram.
One has [17], [18]

+ 00 + o zd[ da
) LG 9 - = E

i.e., the scalogram distributes the energy E, of the signal
all over the time-scale plane: it is the energy distribution
associated to the WT.

In the STFT case, it was soon recognized that the anal-
ysis was faced with a classical time and frequency reso-
lution tradeoff [26]. In fact, the time and frequency res-
olution capabilities of either the STFT or the WT at a
given point in the analysis plane can be measured by
means of the time extent Ar and frequency extent Af of
the corresponding analyzing waveform at this point. The
shorter the time duration Az, the higher the time resolu-
tion, and, by the uncertainty principle [9], the poorer the
frequency resolution.

In a spectrogram, once an analyzing window has been
chosen, the resolution capabilities of the spectrogram re-
main fixed all over the time-frequency plane. Fig. 1
shows that the situation is different for scalograms: owing
to the constant-Q structure described in Section II, reso-
lution capabilities depend on the analyzed frequency. This
follows from the fact that, for a bandpass filter H( f) of
central frequency f, and bandwidth Af, changing the scale
parameter corresponds to explore the frequency axis with
a relative bandwidth Af/f, kept constant.

We have seen how time and frequency resolution trade-
offs underlie the structures of the spectrogram and scalo-
gram. In fact, such structures can be used to compare the
two distributions locally in frequency or scale.

If a pure sine wave is analyzed, scale and frequency are

'The best time-frequency joint resolution which can be achieved by spec-
trograms and scalograms is limited by Heisenberg’s uncertainty principle.
It can be represented by a (time-frequency) resolution cell whose equiva-
lent area is constant but whose shape may vary, depending on the analysis.
The figure is intended to provide a symbolic illustration of this fact by
representing resolution cells as black rectangular domains, at different lo-
cations in the time-frequency plane and for different analysis parameters.

In the case of spectrograms (Figs. 1(a) to (c)), the joint resolution is
fixed by the choice of the window length and it is the same at any point in
the time-frequency plane. If the window is neither short nor long (Fig.
1(a)), a medium resolution is achieved in both time and frequency. How-
ever, if a long window is used (Fig. 1(b)) the spectrogram exhibits a low
(respectively, high) resolution in time (respectively, frequency). Con-
versely, if a short window is used (Fig. 1(c)), the spectrogram exhibits a
high (respectively, low) resolution in time (respectively, frequency).

In the case of scalograms (Fig. 1(d)), the joint resolution is frequency
dependent, according to the constant-Q structure of the wavelet transform.
Time (respectively, frequency) resolution is increased at high (respec-
tively, low) frequencies, with a corresponding decrease of the associated
frequency (respectively, time) resolution.

Comparing Figs. 1(a) to (c) on one hand, and Fig. 1(d) on the other
hand, it turns out that, at high (respectively, medium or low) frequencies,
a scalogram behaves approximately as a spectrogram with a short (respec-
tively, medium or large) window.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 7, JULY 1992

(a) .
H

T
Ik

Fig. 1. Compared time-frequency resolution of spectograms and scalo-
grams. (a) Spectrogram with window neither short nor long; (b) Spectro-
gram with long window; (c) Spectrogram with short window. (d) Scalo-
grams.
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are inversely proportional
a=f/f. Q)

It follows that for a general signal, a scalogram ap-
proximatively behaves, around a given analyzed fre-
quency f associated to a via (4), as a spectrogram whose
frequency resolution, hence Af, is fitted to fin such a way
that Af/f is kept constant:

IT.t, a = /I = [F.t, ).

The aim of this paper is to find a deeper relationship
between spectrograms and scalograms. More precisely,
we wish to provide a simple interpretation for both spec-
trograms and scalograms within a wider general class. To
do so, we base our developments on a common property
that both share: a bilinear dependence on the analyzed
signal.

In fact, an inclusive class for bilinear time-frequency
energy distributions has already been defined by Cohen
[5]. This general Cohen’s class includes all bilinear en-
ergy distributions that are covariant under time and fre-
quency shifts, i.e., such that a time (or frequency) delay
in the signal accordingly shifts the representation in the
time-frequency plane [22]. A general formulation can be
written as

™

C.@, 1) = S S W r, wll(z — t, v — f) dr dv

®)

where II(z, ») is some arbitrary time-frequency character-
ization function and where

+0o
w. f) = S x <t + %) x* <t - %) e ¥ gy

is the well-known Wigner-Ville distribution (WVD) [4].
If II(z, f) is a low-pass function in the time-frequency
plane, the general class (5) may be considered as com-
posed of smoothed versions of the WVD. More generally,
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all members of the Cohen’s class result from the WVD
by a correlation operation (we have chosen to write (5) as
a two-dimensional correlation rather than the usual con-
volution notation for reasons to be made clear later).

In fact, the Wigner-Ville distribution is not the only
time-frequency representation which may serve as the
basic distribution from which all others are deduced by
correlation as in (5). Other choices include the Rihaczek’s
distribution [6]

R(t, f) = x()X*(f)e ¥™

and, more generally, any generalized Wigner distribution
[21] parameterized by a real number «

+ 0o

X — (- 3)7)

W, f) = S

X*( = (@ +3)ne ¥ dr. (6)

Both the WVD and the Rihaczek’s distribution are spe-
cial cases associated with the particular values @ = 0 and
a = 1/2, respectively. We have chosen the WVD in (5)
because it has several interesting properties that the others
do not share, such as being real-valued, perfectly local-
ized for chirp signals [13] and maximally concentrated in
the time-frequency plane [21]. Our choice is justified be-
cause whenever IT is low-pass function, (5) is a smoothing
operation: hence it is appropriate to choose the basic dis-
tribution on which smoothing is applied to as maximally
concentrated.

Since the Cohen’s class includes all time-frequency en-
ergy distributions, it should of course include the spectro-
gram as a special case. It turns out [4] that the correspond-
ing characterization function II is the WVD of the
analyzing window itself! This yields the remarkable well-
known formula

F, ) = S_ S_ W.(r, )

s Wy(t — t, v — f) dr dv. )

which can be extended by replacing WVD’s by general-
ized WVD’s (6), or to any member of the Cohen’s class
for which the two-dimensional Fourier transform & (», 7)
of the characterization function II(z; f) is of modulus one

[21] (generalized WVD’s (6) correspond to the choice .

&, (v, 1) = Y™y

if [2(v, 7)|

i

1, then

Il

IF.(t, ) S S . C.(r, vy IDCH(r — 1,

— oo

v — f, II) dr dv. (8

This equation shows that structure constraints of spec-
trograms are such that they can be related to members of
the Cohen’s class. We now show that something similar
happens for scalograms, as a prerequisite for deriving the
time-scale counterpart of the Cohen’s class in the next
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section. The new results, counterparts of (7), (8) for scal-
ograms | T, (¢, a)|*, are provided by the following propo-
sition.

Proposition: The scalogram (squared modulus of the
wavelet transform) results from the ‘‘affine’’ correlation
of the signal WVD by the wavelet WVD:

+oo + 0o
[Tx(t,a)|2=§ S_ W, (r, v)W,,<

T -

t, av> dr dv.

€))

More generally, WVD’s in (9) can be replaced by any
time-frequency energy distribution for which the two-di-
mensional Fourier transform ® (v, 1) of the characteriza-
tion function I (¢, f) is of modulus one and depends on
its variables only through their product:

If® (v, 7) is of the form ¢ (v1) and |@ (v7)| = 1, then

+ oo +x
|Tx(r,a)|2=S S C.(r, v; IHCF

. <T—;t, av; H> dr dv.
a

This shows that scalograms can be characterized from
WVD'’s, or more generally, from members of the Cohen’s
class, in a way similar to what was done for the spectro-
gram. This result was first stated in [29] for WVD’s, and
then generalized by Posch [27] and Flandrin and Rioul
[10]. A simple proof is given in Appendix A.

Note that several distributions C, (7, v; II) satisfy the
two conditions of the proposition, such as the generalized
WVD’s (6), and other distributions whose ® (v, 7) are
complex exponentials depending on »|7| (e.g., Page’s
distribution [6]) or |»| 7.

IV. TiME-SCALE ENERGY DISTRIBUTIONS

The formalism of the Cohen’s class (5) has been widely
used for some time [6], [12], [3]. It is indeed attractive
because of the following:

1) it allows the recovery of all bilinear time-frequency
energy distributions as special cases, through proper
choices of characterization functions II;

2) special properties of a given time-frequency distri-
bution can be handled directly via corresponding
constraints of their associated characterization func-
tions; and

3) new, specific definitions of time-frequency distri-
butions C,(z, v; II) can be derived simply by first
imposing constraints on the distribution, then trans-
lating them into requirements to be fulfilled by the
characterization function II.

We now want to define a time-scale counterpart of the
Cohen’s class, for which the above three points apply.
Consider the proposition of Section III in the restrictive
case where WVD’s are used: mimicking what happens for
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time-frequency distributions (spectrograms (7) can be
generalized to the Cohen’s class (5) by extending W, to
any II), a simple generalization would be

Qa1 = g S

+ oo

W.(r, 11 <

T —1

s av) dr dv.

(10

The basic difference with the definition of the Cohen’s
class (5), of course, is the affine correlation which is used
in (10). We have to justify that (10) indeed provides the
general formulation of time-scale energy distributions. To
do that, consider the affine transformation:

(n

) 1 (7 — t>
X . (1) = X
1. /'a’ a
where the factor 1/+/|a| is introduced for normalization
purposes. The following theorem is the main result of this
paper:

Theorem: Let Q, (t, a) be any bilinear distribution such
that

Q. a) = Q, <ta;0 3) . (12)

a

Such distributions are said to be covariant to affine trans-
Jormations and are called time-scale distributions. Then,
Q. (t, a) is necessarily of the form (10), where 11 (t, f)is
an arbitrary time-frequency function.

The proof is given in Appendix B. This is a powerful
result; it shows that any time-scale energy distribution one
can imagine always falls in the class (10) and therefore
can always be associated to some characterization func-
tion II! This formulation is not only a trivial generaliza-
tion of (9); it truly characterizes all time-scale distribu-
tions.

Also, the formulation (10) clearly reveals the ‘‘affine
smoothing’” concept underlying time-scale distributions.
This will be useful for combining time scale and time fre-
quency into a unified perspective. It can be shown that
(10) describes a correlation in the affine group [17], [29].
and that this correlation cannot be written in the form of
a convolution. This justifies our choice to describe both
general classes (5) and (10) using correlations. Again, the
WVD may be replaced in (10) by any generalized WVD
(6), and we have chosen, as in the Cohen’s class, to re-
strict the description to the WVD.

We should insist on the fact that the key point here is
not to provide a specific new time-scale representation
with special interesting properties; instead, what is im-
portant in this approach is the use of the general formal-
ism which results from the theorem. This new class of
time-scale distributions (10) is as general as the Cohen’s
class of time-frequency distributions (5), and include sev-
eral interesting special examples, which are derived in the
sequel.
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V. IMPOSING PROPERTIES ON TIME-SCALE ENERGY
DISTRIBUTIONS

Similar to Cohen’s class (5), the new class of time-scale
energy distributions (10) has a very important property: a
number of specific requirements imposed on a time-scale
distribution can be translated to a specific constraint on
the characterization function II. This will be very useful
for deriving special examples of time-scale distributions.
We therefore want to list some corresponding pairs of de-
sired properties/constraints on the characterization func-
tions.

However, again similar to Cohen’s class, the con-
straints obtained are sometimes not easily written in terms
of the characterization function II, but rather in terms of
Fourier transforms of II. We therefore first define a few
alternative forms to (10).

Weighting Function: If we want to characterize the
class (10) with the help of the two-dimensional Fourier
transform & (v, 7) of the characterization function II(t, 1),
the equivalent formulation reads
+ o

+ oo
Q. a 1) = S S P <av, f) A, e Y™ dy dr
— o0 a

where @ (v, 7) is referred to as the weighting function, and
where

+ o
A (v, 7) = S*m x <t + %) x* <l — %) ™ dr

is the (narrow-band) ambiguity function, defined as the
inverse 2D Fourier transform of the WVD.

Bifrequency Kernels: Assume the domain in which the
arbitrary function characterizing the distribution is ex-
pressed should correspond to two frequency parameters
in both dimensions, then the equivalent formulation to

1

Q@ a; 1) = —

(10) is
too ptoo 1 V
|a S‘w S_m v, HX <; <f_ 5))

Xk <1 (f + §>> e*2j1r(t/a)v dv df
a

(13)

where the bifrequency characterization function v is de-
fined as
+ o0

0, fe ¥™ dr.

v, f) = S (14)

We now list a few useful pairs of desired properties/
corresponding constraints on the characterization func-
tions II, &, or .

Energy: The term ‘‘energy distribution’” is justified by
the following equality:

i] EX

I f]
(15)

+ o

g S Q.(, a; ID

dt da H*“

5 =
a

¥, f)

=
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with ¢ as in (14). This means that energy is properly
spread over the time-scale plane if the quantity into brack-
ets in the right-hand side of (15) is unity.

Marginal in Frequency: The spectral energy density of
x is recovered from the marginal in frequency, i.e.,

+ o0 f 2
S Q. a; 1) dr = (x <—°>
o a
as long as ®(0, 7) = e "¥™07,
Marginal in Time: Similarly, the instantaneous power
of x is obtained as time marginal, i.e.,

(16)

+ oo da
5 L& a I -5 = |x()|?

+ o
d
S ¢ <av, Z> —[; = 6(7)
—oo a/ a
for any ».

Moyal-Type Formula: Finally, a Moyal-type formula
relating inner products of signals and distributions may be
obtained as

as long as

+00 400
dt d
| ] e amezeamdd
) a

—oo

2
an

= T "\ d
g d <av, —> & * <au, T—> *[;
- a a/a

= 5(7- - T’)9

= ' S x(Oy*(1) dt

if

for any ». (18)

These correspondences between properties of the rep-
resentation and constraints on characterization functions
are used, among others, in the next section which derives
a few examples of time-scale representations.

VI. SoME EXAMPLES OF THE TIME-ScALE ENERGY
DiISTRIBUTIONS

We have just seen that, in a way similar to Cohen’s
class, specific structures of characterization functions (¥,
II, or y) permit obtaining specific properties of the asso-
ciated time-scale distributions. As a result, they allow the
derivation of specific definitions as special cases of time-
scale energy distributions. The design procedure is very
simple: 1) list the different desired properties of the dis-
tribution, 2) look up the corresponding constraints that the
characterization function IT must meet, and 3) deduce the
particular form of the distribution. Note that it may hap-
pen that several constraints, when taken together, admit
no solution. In this case some properties have to be given
up in step 1. We now review several examples of design.

1751

A. Product Kernels Allowing the Identification ‘‘Time-
Scale = Time-Frequency’’

In this section we want to determine the conditions such
that a time-scale distribution can equivalently be seen as
a time-frequency distribution.

Just as the WT uses bandpass filters, the smoothing
function II is preferably chosen to be bandpass as a func-
tion of frequency. Define II, such that

e, f) =My, f — fo) & @, ) = B(v, e Y7

where f; is some nonzero frequency. Using this notation,
an interesting identification between time-scale and time-
frequency distributions may be found, provided that the
weighting function (v, 7) depends only on the product
VT

If &y(v, 7) = o (v7), then

Qx(ta a; H) = Cx <t,§]; HO> (19)
As a special case, it can easily be checked that
IIt, f) = 6() 6(f — f)  implies

0.0 a 1l) = W, <l,%> (20)

which means that the usual WVD can be recovered as the
‘‘no smoothing’’ limit case, with the identification ‘‘fre-
quency = inverse of scale.”’

The condition under which the identification (19) holds
is met by numerous distributions. In addition to the class
of generalized Wigner distributions (6), we can mention
the Choi-Williams’ distribution [6], which has recently
received special attention and which is associated to the
choice &) (v, 7) = ¢ ~*"*/% where o is a positive param-
eter.

B. Scalograms

A simple example of time-scale energy distributions is
the scalogram which, according to (9), can be seen as the
affine smoothing of the WVD of the analyzed signal by
the WVD of the analyzing wavelet [29]

IT.(t, @) = Q(t, a; W),).

Because the smoothing function associated to the scal-
ogram is itself a WVD, it cannot be perfectly concen-
trated in both time and frequency. As a result, several
properties, such as marginals, are lost. We get for in-

stance
- a

where we have noted H( f) = Hy(f — f;) to make ex-
plicit the dependence of the bandpass filter transfer func-
tion on its central frequency f;. This has to be compared
to (16): clearly, a good estimation of the spectral energy
density would be obtained with a highly frequency-selec-

2
|Ho(f = fo)|* df

S IT,(t, @) dt =
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tive analyzing wavelet. This corresponds necessarily to a
large amount of time spreading and, hence, to some loss
in time resolution.

Also note that the admissibility condition for scalo-
grams (3) is easily recovered from the energy condition
(15).

C. Bertrands’ Class and Localized Bifrequency Kernels

Several researchers, some of them working outside the
area of signal processing, have considered time-frequency
energy distributions aimed at ‘‘broad-band’’ signals [2],
[19], [31]. For example, Bertrands’ approach [2] as-
sumes, as in the theorem of Section IV, the basic co-
variance requirement with respect to affine transforma-
tions (12) applied to bilinear forms of the signal, yet the
parameterization they retain is different. Rewritten in
time-scale terms, this latter reads

1 +oo +oo 1
Px(t’ a; KB):HS S‘—m KB(st)X<Z V>

< X* (éf) exp [—2j=(t/a)
“(f=wldvdf 2D

where a bifrequency kernel Kjz(v, f) appears. Conse-
quently, the result (21) is identical to the frequency-do-
main formulation (13) of the general class (10), up to the
change of variables

14 14
\b(mf) KB<f 27f+2>

We believe that our approach, although quite similar to
Bertrands’, allows a more simple interpretation of (21) as
a natural affine counterpart of the Cohen’s class (see (10)).
Moreover, it does not necessitate any a priori distinction
between the ‘‘narrow-band’’ or *‘broad-band’’ nature of
the analyzed signal.

As an example, we now derive a design procedure
which can be applied to the definitions occurring in [2],
[19], [31]. Define a subclass of (13) (or (21)) consisting
in characterization functions which are perfectly localized
on some curve f = F(») in their bifrequency representa-
tion:

Y. f) = GO) 6(f — Fv)) & ®(v, 7) = G(r)e ¥07
(22)

where G(») is an arbitrary function. The associated time-
scale distributions, with localized bifrequency kernels

then read
+ o 1
S G X <- [F(») - KD
|a - a 2

1
QX(’? a, H) =17
1
- X% <_ [F(V) + B:’) e—Z/n(r/a)y dv.
a 2

(23)
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Specifying

®/2)

= 2
sinh (v/2)’ F(y) = (v/2) coth (v/2)

Gl = 24

allows recovering a particular distribution which was often
used by the Bertrands [2]

(7T e/ 1<v/2>e“”/2’>
B ar =1 S_w sinh (v/2) X<a sinh (v/2)

v/2
X% 10/9e™? e Ut/ g,
a sinh (v/2)

Other choices [14] yield distributions used in [19], [31].
As an exercise, we have recovered the above specific def-
inition associated to (22)-(24) using the design procedure
mentioned previously: this is detailed in Appendix C
which obtains (24) starting from a localized bifrequency
kernel and imposing several a priori requirements (time-
localization and a Moyal-type formula).

D. Separable Kernels and Affine Smoothed Wigner-
Ville

It is known [11] that the tradeoff underlying the time
and frequency behaviors of the spectrogram can be over-
come if we replace the associated WVD smoothing by a
smoothing function which is separable in time and fre-
quency

Mo, f) = g Hy( ).

The resulting distribution (called the smoothed pseudo-
WVD) reads

+ oo + o0
., f 1) S_ S W, v)g(r — DHy(v — f) dr

- dy 25)

S ho(7) H_ g0 — Hx <0 + %)

- xx <9 - %> d()} e~ gr.

This offers a great versatility for balancing, e.g., time-
frequency resolution and cross-terms reduction [11], al-
though this is necessarily obtained at the expense of the
loss of other properties such as marginals.

We propose a similar approach for time-scale distribu-
tions and define the affine smoothed WVD by taking

0@, f) = ot f — fo) = g Ho(f = fp).

The resulting definition is

Q_X(r,a;m:S S Wx(r,wg(%’)

(26)

—

- Hy(av — vy) dr dv. 27)
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For practical computations, an equivalent form, which
parallels that of (26) may be preferred:

QK(t,a;H)=§j:ﬁho <3T1>H-:ﬁg<9;t>

. x(ﬁ + %) x* <0 - %) dﬁ}
cexp [ —2j7(fy/a)1] dr.

The behavior of affine smoothed WVD’s is illustrated
for particular examples in the next section.

VII. FROM WIGNER-VILLE TO SPECTROGRAMS OR
SCALOGRAMS

We have seen in Section III that on one hand, the spec-
trogram is a time-frequency distribution obtained from the
WVD by smoothing and that on the other hand, the scal-
ogram is a time-scale distribution also obtained from the
WYVD by affine smoothing. The WVD is, therefore, at the
intersection of both classes of time-frequency and time-
scale distributions. Note that we have already determined
this intersection in Section VI-A, and indeed we have seen
that the WVD can be seen as the no-smoothing case of
both classes, allowing the simple identification “‘scale =
inverse of frequency’’ (20).

The aim of this section is to fill the gap between the
“‘unsmoothed”” WVD and the spectrogram or the scalo-
gram through a continuous transition governed by the
characterization functions II acting on the WVD. To do
that, it is convenient to parameterize IT is such a way that
we control separately the smoothing in time and in fre-
quency. As a result, the smoothing functions are separa-
ble, and their equivalent area vary from zero (‘‘un-
smoothed’’” WVD) to the a limit fixed by the Heisenberg’s
uncertainty principle [9] (spectrogram or scalogram). This
choice corresponds to using smoothed-pseudo WVD’s
(25) or affine smoothed WVD’s 27).

The following proposition shows that this can be
achieved exactly only using Gaussian smoothing.

Proposition: A continuous passage from Wigner-Ville
to the spectrogram or scalogram using separable smooth-
ing functions requires the latter 1o be Gaussian:

e, f = Ve e B~ foP
T
where «, B8 and f; are positive parameters.

The proof is given in Appendix D.

The important parameter here is the equivalent area BT
= 27 /~of, which runs from 0 (WVD) to 1 (spectro-
gram/scalogram) and truly controls both transitions. The
role of « and 3 for fixed o8 does not influence the joint
resolution of the analysis but rather modifies the individ-
ual time and frequency resolutions. Fig. 2 illustrates such
transitions by providing several analyses of a synthetic
signal for different values of BT.
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In practical implementations of spectrograms, scalo-
grams, or smoothed WVD’s, the smoothing functions
have no reason to be strictly Gaussian. However, the
proposition gives a good idea of what is happening for
smoothing functions commonly used in signal analysis:
instead of looking at the two extreme representations
(spectrogram and scalogram) separately, a deeper insight
can be gained by considering a whole continuum between
these two extremes, with the WVD as a necessary inter-
mediate step. Moreover, as mentioned in Section VI-D,
the transition permits to trading off joint resolutions and
interferences reduction (see Fig. 2).

Such a general framework, along with its interpreta-
tion, allows us to think that by suitably controlling only
the BT parameter, we can adapt the analysis tool to var-
ious situations occurring in different applications of signal
analysis.

VIII. CoNcLusION

The material presented in this paper is based on similar
properties of two notions that are both defined by co-
variance requirements: 1) local frequency, covariant un-
der modulations (or Fourier-frequency shifts); 2) time
scaling (or frequency scaling by Fourier duality), co-
variant under dilations or contractions.

This similarity is evidenced by describing general time-
frequency and time-scale energy distributions in a unified
way as a result of some 2D correlation acting on the
WVD. The WVD thus appears to play a central role in
both analyses since it is (among a few other members of
the Cohen’s class, see Section III) covariant under fre-
quency shifts as well as under scale dilations.

We have thereby derived a large class of time-scale and
time-frequency representations, on which many possible
(and sometimes, exclusive) properties may be imposed.
We have studied several specific requirements (such as
energy normalization, time marginal, etc.) and associated
parameterizations of the representation. There is ob-
viously a great versatility for the choice of representa-
tions, which may be appropriate for various applications.
This suggests the analysis tool has to be carefully de-
signed in order to express particular needs: starting from
the most general formulation, one can, for instance, build
a subset of time-scale energy representations, suitable for
a given application, by imposing specific requirements.
Controlling a few parameters on this set of representations
should help in many ways, e.g., for determining which
representation best reveals a given time-scale signature.

This is well illustrated by the last result presented in
this paper: a continuous transition from the WVD to either
spectrograms or scalograms is possible, and permits bal-
ancing time-frequency resolution and cross-terms reduc-
tion in the time-scale representation, in a similar (but dif-
ferent) way as for the corresponding time-frequency
representation. In light of this, we recommend that var-
ious properties of time-frequency and time-scale methods
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Fig. 2. From Wigner-Ville to spectrograms or scalograms. A continuous transition from Wigner-Ville to spectrograms (re-

spectively, scalograms) is possible via smoothed pseudo-Wigner-

tions, when they are based on separable Gaussian functions.

dimensionless parameter BT, which varies from zero (‘*unsmoothed”’

The

Ville (respectively, affine smoothed Wigner-Ville) distribu-
area of the associated resolution cells can be measured by a
Wigner-Ville) to 1 (spectrogram or scalogram). The figure

presents an example of such transitions in the case of a situation resembling the one used symbolically in Fig. 1.
A synthetic signal consisting of three Gaussian wave packets (with different central times and different central frequencies)

has been generated. The time-domain waveform and its spectrum (modulus o

f the Fourier transform) are plotted along the time

and frequency axes of the corresponding Wigner-Ville distribution. Different analyses from the WVD to the spectrogram or the

scalogram (both associated to BT = 1) via smoothed pseudo-Wigner-
0.25 and BT = 0.6) are presented and the corresponding resolution

center of the diagram.

be compared keeping in mind that both result from a
smoothing operation acting on the WVD. The difference
is related to the nature of the smoothing operation used:
time-frequency or affine (time-scale) smoothing.

APPENDIX A
SCALOGRAMS AS AFFINE-SMOOTHED WIGNER-VILLE

It is convenient to introduce 2D Fourier transforma-
tions in (5). Changing variables accordingly yields a dual
characterization

cexp [—2jm (vt + 7)) dv d7

+ oo +oo

G f,1D = S e, DA (v, 7)

— oo

(AD

where @ is the 2D Fourier transform of the characteriza-
tion function II. One has

Ville and affine smoothed Wigner-Ville (both with BT =
cells are represented as black rectangular domains in the

“

T—e,af;H>

e

S, A, (v, T)
cexp [-2jx(v(t — 6)/a + raf)] dv dr

70w () [ (o ) o]

s exp [—2jx (vt + 7f)] dv d7.

+ oo

-

+ oo

— —oo

It can be easily checked that the quantity into brackets
corresponds to the ambiguity function of A(f) after action
of the affine transformation (11). Therefore we obtain

o

provided that ®(av, 7/a) = ® (v, 7) for any a [27], [10].

t—40

) af; H> = Chg_(,(ts,f; H)
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Any weighting function satisfying this is the function
of the product of its variables. On the other hand, Moyal's

formula [4] guarantees that, for any two finite energy sig-
nals,

+o0 2

Hi X(Dy* (1) dr :Si S_ W, HW, (. f) dt df

+oo +oo
= S S A (v, T)A'\*(V, 7) dv dr.

(A2)

Using (A1) and applying Parseval’s relation, we easily
obtain

S S C(te, LIHCE@, f, 1) dr df

—oo

+ o + oo
= S ‘g |® (v, 7)|°A4, (v, A} (v, 7) dv dr

and therefore a generalized Moyal’s formula holds when-
ever the weighting function has modulus one [21]. This
is true especially if y(r) is chosen as A, ,(f) (see (11)). In
such a case, the left-hand side of (A2) identifies to the
scalogram, which completes the proof.

APPENDIX B
GENERAL FORMULATION OF TIME-SCALE ENERGY
DISTRIBUTIONS

Assume the affine covariance requirement
t—0 a

th_a' (Iv a) = Q.t < ' 5 —,>
a a

(where hy - is defined as in (11)) is imposed to a bilinear
distribution Q,:

(B

+ + oo
Q.1 a) = S S K, u';t, a)yx(u)x* (') du du’.
This yields the condition

r— 80

a
a/ > a:
for any a', any 6, and any a, or, equivalently,

1 - - -
K(u,u';t,a)=7K<u ’0’14 H’I 0’£>_
a a a’ a a

aKau+6,auw +0,t,a) =K <u, u';

Fix § = tand a’ = a. We obtain

K(u,u’;r,a)=1l(<u—’,u _r;0,1>
a a a
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and the distribution takes the form

T u—1t u —t
Qx(f,a)=j S ;K<a, P ;0,1>

cx(u)x*') du du'.

S“”Sml <0—t T 0 —1
- K + -,

—c0 —oo a a 2a a
_ . N lo-"Naoa
2a’0’ l>x<0+2>x <0 2> de dr

+ oo + oo -t
g S W.(r, nll <
— — a

with the smoothing function II defined as

S av) dr dv

+
na, f) = Lo K (; + % r— %; 0, 1> ¥ dr.

APPENDIX C
DERIVATION OF BERTRANDS’ DISTRIBUTION

Assume our time-scale distributions are characterized
by a kernel function whose bifrequency representation is
localized according to (22). Further specifications of G
and F can be obtained by imposing specific requirements
to the corresponding distribution.

1) Time Localization: Imposing time localization (in
the Bertrands’ sense [2])

e I = Q(t, a; ILy) = |a| 8(t — 1)

1
X(f) =
VI f]
yields
+ 00
Glav)
Q.(, a; II;) = S —_—
(1 a; T1;) = |l —e NF(av) — (av/2)
and, hence, the condition
G*w) = F*(») — (v/2)%

2) Moyal-Type Formula: If we impose the condition
(18) for the Moyal-type formula (17) to hold, we obtain

e T 7'\ da
Lot d)r (o5

e ) . Flavy) ,}d_a
SmG(au)exp[2j7r p; (r—1") .

ermz(tfto) dv

(CD)

_ SMD G (av)
e Zi

F(av)
. da( a >

F(av) (r — T,)} d <F(au)>.
a a

Therefore, (18) is satisfied if

© exp {Zjﬂ'

2 dF
G (v) =FQ) —» o (v). (C2)
v
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The simultaneous requirements of time localization

(C1) and Moyal-type formula (C2) lead to the differential
equation

Fv) — » Z—f(y) =F'(») — v/2)

which is written, using the auxiliary functions U(») = F(»)
- /2), V») = F(») + (»/2), and W(») = U/ V),
as U(y) (dV /dv) (v) — V(») @dU/dv)y(v) = Up) V(»), i.e..
as (dW/dv)(v) = W(p). The solution is

_Fm -/
F) + (v/2) )
From this it follows that W(0) = 1. This implies ¢ = 1

which, in turn, implies F(») = (»/2) coth (v/2). Substi-
tuting this into (C2) yields

W(v)

G = <<»/2> - (v/2>>
e’ + 1 vle’
((v/Z) S+ (v/2)> -

hence G(v) = (v/2)/(sinh (v/2)), which completes the
proof.

APPENDIX D
FROM SPECTROGRAMS TO SCALOGRAMS VIA WIGNER-
VILLE, USING GAUSSIAN SMOOTHING

For a sake of convenience, introduce the notation

H(f) = Ho(f - fy)

which allows us to consider (25) and (27) in a common
framework, with either H,, for the smoothed pseudo-WVD
or H for the affine smoothed WVD. If both spectrograms
and scalograms are supposed to be attainable through sep-
arable kernels, then their associated smoothing function,
which is a WVD, must necessarily be itself a separable
function of time and frequency. However, if we impose
to a WVD to be separable, e.g.,

Wx(t? f) = g(t)HO(f)

we readily obtain

(V)

1X( )

1l

§ W.(t, f) dt

= GO)Hy( f)

and

I

EO L Wt ) df = g(®hy(0).

Therefore, a separable WVD is necessarily of the form

_ P IxH?
Wt D) = =G0 ht0)

From (D1), it follows that

(D2)

3

G0)ho(0) = S_ S W@, fydidf = E =0
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and, hence (D2) is a nonnegative quantity:
.t f) = 0.

This means that, if separable WVD’s exist, they are
necessarily everywhere nonnegative [25]. The nonnega-
tivity condition being imposed, we know from Hudson’s
theorem [20] that the only signals which are admissible
are exponentials of quadratic forms in 7 (with possibly
complex-valued coefficients) such that

Re {a} > 0.

However, since separability is imposed too, no cou-
pling between time and frequency is allowed, which re-
stricts the class of solutions to

x(t) = (2a/7r)'/4e‘°":e‘2”§’e"“ = W.(, f)
=2¢ 7 exp [~ 27’ /o) (f — 0]

where « and { are real-valued, ¢ is a pure phase factor,
and the normalization has been chosen for ensuring en-
ergy conservation. Therefore, a suitable choice of sepa-
rable smoothing functions which allows a continuous pas-
sage from Wigner-Ville to spectrograms or spectrograms
is of the form of a (normalized) product of Gaussians,
ie.,

.X(t) - e—(a12+6r+7)’

- — — 2
e~ TRUI-R0P

VoB
II(, f) =

This completes the proof.
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