Asymptotically good codes with asymptotically good squares

Hugues Randriambololona

Telecom ParisTech

DIAMANT Symposium
2012.11.30

Definitions

Let $*$ denote coordinatewise multiplication in $\left(\mathbb{F}_{q}\right)^{n}$:

$$
\left(x_{1}, \ldots, x_{n}\right) *\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

Definitions

Let $*$ denote coordinatewise multiplication in $\left(\mathbb{F}_{q}\right)^{n}$:

$$
\left(x_{1}, \ldots, x_{n}\right) *\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

If $C \subset\left(\mathbb{F}_{q}\right)^{n}$ is a k-dimensional linear subspace, i.e. an $[n, k]_{q}$-code, let

$$
C * C=\left\{c * c^{\prime} \mid c, c^{\prime} \in C\right\} \subset\left(\mathbb{F}_{q}\right)^{n}
$$

Definitions

Let $*$ denote coordinatewise multiplication in $\left(\mathbb{F}_{q}\right)^{n}$:

$$
\left(x_{1}, \ldots, x_{n}\right) *\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

If $C \subset\left(\mathbb{F}_{q}\right)^{n}$ is a k-dimensional linear subspace, i.e. an $[n, k]_{q}$-code, let

$$
C * C=\left\{c * c^{\prime} \mid c, c^{\prime} \in C\right\} \subset\left(\mathbb{F}_{q}\right)^{n}
$$

and then ("square" of C):

$$
C^{\langle 2\rangle}=\langle C * C\rangle=\left\{\sum_{c, c^{\prime} \in C} \alpha_{c, c^{\prime}} c * c^{\prime} \mid \alpha_{c, c^{\prime}} \in \mathbb{F}_{q}\right\}
$$

is the linear span of $C * C$.

Definitions

Let $*$ denote coordinatewise multiplication in $\left(\mathbb{F}_{q}\right)^{n}$:

$$
\left(x_{1}, \ldots, x_{n}\right) *\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

If $C \subset\left(\mathbb{F}_{q}\right)^{n}$ is a k-dimensional linear subspace, i.e. an $[n, k]_{q}$-code, let

$$
C * C=\left\{c * c^{\prime} \mid c, c^{\prime} \in C\right\} \subset\left(\mathbb{F}_{q}\right)^{n}
$$

and then ("square" of C):

$$
C^{\langle 2\rangle}=\langle C * C\rangle=\left\{\sum_{c, c^{\prime} \in C} \alpha_{c, c^{\prime}} c * c^{\prime} \mid \alpha_{c, c^{\prime}} \in \mathbb{F}_{q}\right\}
$$

is the linear span of $C * C$. More generally (higher powers):

$$
C^{\langle t+1\rangle}=\left\langle C^{\langle t\rangle} * C\right\rangle .
$$

Geometric interpretation: Veronese embedding.

A possible motivation

Start from a symmetric bilinear form B

$$
V \times V \quad \xrightarrow{B} \quad W
$$

A possible motivation

Start from a symmetric bilinear form B and a diagram

so $B(u, v)=\theta(\phi(u) * \phi(v))$ for $u, v \in V$.

A possible motivation

Start from a symmetric bilinear form B and a diagram

so $B(u, v)=\theta(\phi(u) * \phi(v))$ for $u, v \in V$. More generally

$$
\sum_{i} B\left(u^{(i)}, v^{(i)}\right)=\theta\left(\sum_{i} \phi\left(u^{(i)}\right) * \phi\left(v^{(i)}\right)\right) \in \theta\left(C^{\langle 2\rangle}\right)
$$

where $C=\operatorname{im}(\phi)$.

A possible motivation

Start from a symmetric bilinear form B and a diagram

so $B(u, v)=\theta(\phi(u) * \phi(v))$ for $u, v \in V$. More generally

$$
\sum_{i} B\left(u^{(i)}, v^{(i)}\right)=\theta\left(\sum_{i} \phi\left(u^{(i)}\right) * \phi\left(v^{(i)}\right)\right) \in \theta\left(C^{\langle 2\rangle}\right)
$$

where $C=\operatorname{im}(\phi)$.
Occurs in various contexts:

- algebraic complexity theory
- multi-party computation.

Most often $V=W=\mathbb{F}_{q^{r}}$ and B is field multiplication. We say (ϕ, θ) define a (symmetric) multiplication algorithm of length n for $\mathbb{F}_{q^{r}}$.

Most often $V=W=\mathbb{F}_{q^{r}}$ and B is field multiplication. We say (ϕ, θ) define a (symmetric) multiplication algorithm of length n for $\mathbb{F}_{q^{r}}$. Example: multiplication in $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[\alpha]$
$(x+y \alpha)\left(x^{\prime}+y^{\prime} \alpha\right)=$

Most often $V=W=\mathbb{F}_{q^{r}}$ and B is field multiplication. We say (ϕ, θ) define a (symmetric) multiplication algorithm of length n for $\mathbb{F}_{q^{r}}$. Example: multiplication in $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[\alpha]$ with $4 \cdot$ in \mathbb{F}_{q}

$$
(x+y \alpha)\left(x^{\prime}+y^{\prime} \alpha\right)=x \cdot x^{\prime}+\left(x \cdot y^{\prime}+x^{\prime} \cdot y\right) \cdot \alpha+y \cdot y^{\prime} \cdot \alpha^{2} \quad \text { (note: non-symmetric) }
$$

Most often $V=W=\mathbb{F}_{q^{r}}$ and B is field multiplication. We say (ϕ, θ) define a (symmetric) multiplication algorithm of length n for $\mathbb{F}_{q^{r}}$. Example: multiplication in $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[\alpha]$ with $3 \cdot$ in \mathbb{F}_{q}

$$
(x+y \alpha)\left(x^{\prime}+y^{\prime} \alpha\right)=x \cdot x^{\prime} \cdot(1-\alpha)+(x+y) \cdot\left(x^{\prime}+y^{\prime}\right) \cdot \alpha+y \cdot y^{\prime} \cdot\left(\alpha^{2}-\alpha\right)
$$

(Karatsuba; geometric interpretation: evaluate at $0,1, \infty$).

Most often $V=W=\mathbb{F}_{q^{r}}$ and B is field multiplication. We say (ϕ, θ) define a (symmetric) multiplication algorithm of length n for $\mathbb{F}_{q^{r}}$. Example: multiplication in $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}[\alpha]$ with $3 \cdot$ in \mathbb{F}_{q}

$$
(x+y \alpha)\left(x^{\prime}+y^{\prime} \alpha\right)=x \cdot x^{\prime} \cdot(1-\alpha)+(x+y) \cdot\left(x^{\prime}+y^{\prime}\right) \cdot \alpha+y \cdot y^{\prime} \cdot\left(\alpha^{2}-\alpha\right)
$$

(Karatsuba; geometric interpretation: evaluate at $0,1, \infty$).
Could work more generally with symmetric t-linear maps.
Might then ask for:

- resistance to noise (random errors)
- resistance to malicious users (passive or active)
- threshold properties.

All these are governed essentially by the minimum distance of $C^{\langle t\rangle}$.

Parameters:

- dimension $\operatorname{dim}^{\langle t\rangle}(C)=\operatorname{dim}\left(C^{\langle t\rangle}\right)$
- rate $\mathrm{R}^{\langle\mathrm{t}\rangle}(C)=\mathrm{R}\left(C^{\langle t\rangle}\right)$
- minimum distance $\mathrm{d}_{\text {min }}^{\langle t\rangle}(C)=\mathrm{d}_{\text {min }}\left(C^{\langle t\rangle}\right)$
- relative distance $\delta^{\langle t\rangle}(C)=\delta\left(C^{\langle t\rangle}\right)$.

Parameters:

- dimension $\operatorname{dim}^{\langle t\rangle}(C)=\operatorname{dim}\left(C^{\langle t\rangle}\right)$
- rate $\mathrm{R}^{\langle\mathrm{t}\rangle}(C)=\mathrm{R}\left(C^{\langle t\rangle}\right)$
- minimum distance $\mathrm{d}_{\text {min }}^{\langle\mathrm{t}\rangle}(C)=\mathrm{d}_{\text {min }}\left(C^{\langle t\rangle}\right)$
- relative distance $\delta^{\langle t\rangle}(C)=\delta\left(C^{\langle t\rangle}\right)$.

For some given q, we would like to construct C such that all these parameters up to a certain order t are large. We are interested in the asymptotic case $n \rightarrow \infty$. For $q=2$, already $t=2$ is non-trivial.

Parameters:

- dimension $\operatorname{dim}^{\langle t\rangle}(C)=\operatorname{dim}\left(C^{\langle t\rangle}\right)$
- rate $\mathrm{R}^{\langle\mathrm{t}\rangle}(C)=\mathrm{R}\left(C^{\langle t\rangle}\right)$
- minimum distance $\mathrm{d}_{\text {min }}^{\langle\mathrm{t}\rangle}(C)=\mathrm{d}_{\text {min }}\left(C^{\langle t\rangle}\right)$
- relative distance $\delta^{\langle t\rangle}(C)=\delta\left(C^{\langle t\rangle}\right)$.

For some given q, we would like to construct C such that all these parameters up to a certain order t are large. We are interested in the asymptotic case $n \rightarrow \infty$. For $q=2$, already $t=2$ is non-trivial. Easy to show:

Proposition

$$
\begin{aligned}
\operatorname{dim}^{\langle\mathrm{t}+1\rangle}(C) & \geq \operatorname{dim}^{\langle\mathrm{t}\rangle}(C) \\
\mathrm{d}_{\min }^{\langle\mathrm{t}+1\rangle}(C) & \leq \mathrm{d}_{\min }^{\langle\mathrm{t}\rangle}(C)
\end{aligned}
$$

Hence: suffices to give lower bounds on $\operatorname{dim}(C)$ and $\mathrm{d}_{\text {min }}^{\langle\mathrm{t}\rangle}(C)$ (or on $\mathrm{R}(C)$ and $\delta^{\langle t\rangle}(C)$).

Generalize the fundamental functions of block coding theory:

$$
a_{q}^{\langle t\rangle}(n, d)=\max \left\{k \geq 0 \mid \exists C \subset\left(\mathbb{F}_{q}\right)^{n}, \operatorname{dim}(C)=k, \mathrm{~d}_{\min }^{\langle\mathrm{t}\rangle}(C) \geq d\right\}
$$

Generalize the fundamental functions of block coding theory:

$$
\begin{gathered}
a_{q}^{\langle \rangle\rangle}(n, d)=\max \left\{k \geq 0 \mid \exists C \subset\left(\mathbb{F}_{q}\right)^{n}, \operatorname{dim}(C)=k, \mathrm{~d}_{\min }^{\langle t\rangle}(C) \geq d\right\} \\
\alpha_{q}^{\langle t\rangle}(\delta)=\limsup _{n \rightarrow \infty} \frac{a_{q}^{\langle t\rangle}(n,\lfloor\delta n\rfloor)}{n}
\end{gathered}
$$

Generalize the fundamental functions of block coding theory:

$$
a_{q}^{\langle t\rangle}(n, d)=\max \left\{k \geq 0 \mid \exists C \subset\left(\mathbb{F}_{q}\right)^{n}, \operatorname{dim}(C)=k, \mathrm{~d}_{\min }^{\langle t\rangle}(C) \geq d\right\}
$$

$$
\alpha_{q}^{\langle t\rangle}(\delta)=\limsup _{n \rightarrow \infty} \frac{a_{q}^{\langle t\rangle}(n,\lfloor\delta n\rfloor)}{n}
$$

and then:

$$
\tau(q)=\sup \left\{t \in \mathbb{N} \mid \alpha_{q}^{\langle t\rangle} \not \equiv 0\right\}
$$

the supremum value (possibly $+\infty$?) of t such that there are asymptotically good codes C_{i} over \mathbb{F}_{q} whose t-th powers $C_{i}^{\langle t\rangle}$ are also asymptotically good:

$$
\liminf _{i} \mathrm{R}\left(C_{i}\right)>0 \quad \text { and } \quad \liminf _{i} \delta^{\langle\mathrm{t}\rangle}\left(C_{i}\right)>0 .
$$

Results

Theorem 0

$$
\alpha_{q}^{\langle t\rangle}(\delta) \geq \frac{1-\delta}{t}-\frac{1}{A(q)}
$$

hence

$$
\tau(q) \geq\lceil A(q)\rceil-1
$$

where $A(q)$ is the Ihara function that governs the asymptotic number of points on curves over \mathbb{F}_{q}.

Results

Theorem 0

$$
\alpha_{q}^{\langle t\rangle}(\delta) \geq \frac{1-\delta}{t}-\frac{1}{A(q)}
$$

hence

$$
\tau(q) \geq\lceil A(q)\rceil-1
$$

where $A(q)$ is the Ihara function that governs the asymptotic number of points on curves over \mathbb{F}_{q}.

Theorem 1

$$
\alpha_{2}^{\langle 2\rangle}(\delta) \geq \frac{74}{39525}-\frac{9}{17} \delta \approx 0.001872-0.5294 \delta
$$

hence

$$
\tau(2) \geq 2
$$

(and more generally $\tau(q) \geq 2$ for all q).

Proof of Theorem 0 (quite standard)

X curve of genus g over \mathbb{F}_{q} with n points $P_{1}, \ldots, P_{n}, G=P_{1}+\cdots+P_{n}$, D disjoint from $G, L(D)$ space of functions on X with poles at most D, $l(D)=\operatorname{dim} L(D)$,

$$
C(D, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\} .
$$

Proof of Theorem 0 (quite standard)

X curve of genus g over \mathbb{F}_{q} with n points $P_{1}, \ldots, P_{n}, G=P_{1}+\cdots+P_{n}$, D disjoint from $G, L(D)$ space of functions on X with poles at most D, $l(D)=\operatorname{dim} L(D)$,

$$
C(D, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\} .
$$

Lemma

$$
C(D, G)^{\langle t\rangle} \subset C(t D, G) .
$$

Proof of Theorem 0 (quite standard)

X curve of genus g over \mathbb{F}_{q} with n points $P_{1}, \ldots, P_{n}, G=P_{1}+\cdots+P_{n}$, D disjoint from $G, L(D)$ space of functions on X with poles at most D, $l(D)=\operatorname{dim} L(D)$,

$$
C(D, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\} .
$$

Lemma

$$
C(D, G)^{\langle t\rangle} \subset C(t D, G)
$$

Lemma (Goppa)

Suppose $g \leq \operatorname{deg}(D)<n$. Then

$$
\begin{gathered}
\operatorname{dim} C(D, G)=l(D) \geq \operatorname{deg}(D)+1-g \\
\mathrm{~d}_{\min }(C(D, G)) \geq n-\operatorname{deg}(D)
\end{gathered}
$$

Concatenation

C an $[n, k]$-code over $\mathbb{F}_{q^{r}}, \phi: \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q}\right)^{m}$ an injective $\mathbb{F}_{q^{-}}$linear map, define $\phi(C)=\left\{\phi(c)=\left(\phi\left(c_{1}\right), \ldots, \phi\left(c_{n}\right)\right) \mid c=\left(c_{1}, \ldots, c_{n}\right) \in C\right\}$. Then $\phi(C)$ is an $[m n, k r]$-code over \mathbb{F}_{q} (identify $\left.\left(\left(\mathbb{F}_{q}\right)^{m}\right)^{n}=\left(\mathbb{F}_{q}\right)^{m n}\right)$.

Other terminology: the outer code is $C_{o u t}=C$, the inner code is $C_{i n}=\operatorname{im}(\phi) \subset\left(\mathbb{F}_{q}\right)^{m}$, the concatenated code is $C_{\text {out }} \circ_{\phi} C_{\text {in }}=\phi(C)$.

Strategy: use Theorem 0 over an extension field $\mathbb{F}_{q^{r}}$, then concatenate to get Theorem 1 over \mathbb{F}_{q}.

Concatenation

C an $[n, k]$-code over $\mathbb{F}_{q^{r}}, \phi: \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q}\right)^{m}$ an injective $\mathbb{F}_{q^{-}}$linear map, define $\phi(C)=\left\{\phi(c)=\left(\phi\left(c_{1}\right), \ldots, \phi\left(c_{n}\right)\right) \mid c=\left(c_{1}, \ldots, c_{n}\right) \in C\right\}$. Then $\phi(C)$ is an $[m n, k r]$-code over \mathbb{F}_{q} (identify $\left.\left(\left(\mathbb{F}_{q}\right)^{m}\right)^{n}=\left(\mathbb{F}_{q}\right)^{m n}\right)$.

Other terminology: the outer code is $C_{o u t}=C$, the inner code is $C_{i n}=\operatorname{im}(\phi) \subset\left(\mathbb{F}_{q}\right)^{m}$, the concatenated code is $C_{\text {out }} \circ_{\phi} C_{\text {in }}=\phi(C)$.

Strategy: use Theorem 0 over an extension field $\mathbb{F}_{q^{r}}$, then concatenate to get Theorem 1 over \mathbb{F}_{q}.

Example: a related problem? C is $\varepsilon-\cap$ if

$$
c_{1}, c_{2} \in C \backslash\{0\} \Longrightarrow \operatorname{wt}\left(c_{1} * c_{2}\right) \geq \varepsilon n .
$$

Easy:

$$
C_{\text {out }} \varepsilon-\cap \& C_{\text {in }} \varepsilon^{\prime}-\cap \Longrightarrow C_{\text {out }} \circ C_{\text {in }} \text { is } \varepsilon \varepsilon^{\prime}-\cap \text {. }
$$

Same flavour but no logical connection between $C \varepsilon-\cap$ and $\delta^{\langle 2\rangle}(C) \geq \varepsilon$.

Start with C over $\mathbb{F}_{q^{r}}$ with control on $\mathrm{d}_{\min }^{(2)}(C)$, concatenate with $\phi: \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q}\right)^{m}$, how can we control d ${ }_{\text {min }}^{22}(\phi(C))$?

$$
\begin{gathered}
C \times C \quad \longrightarrow C^{(2)} \\
\phi \times \phi \downarrow \\
\phi(C) \times \phi(C) \\
\longrightarrow \phi(C)^{(2)}
\end{gathered}
$$

Start with C over $\mathbb{F}_{q^{r}}$ with control on $\mathrm{d}_{\text {min }}^{\langle 2\rangle}(C)$, concatenate with $\phi: \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q}\right)^{m}$, how can we control $\mathrm{d}_{\min }^{2\rangle}(\phi(C))$?

$$
\begin{array}{clc}
C \times C & \longrightarrow & C^{(2)} \\
\phi \times \phi \downarrow \\
& & \uparrow_{\theta} \\
\phi(C) \times \phi(C) & \longrightarrow & \phi(C)^{(2)}
\end{array}
$$

A smart move is to take ϕ from a multiplication algorithm:

and deduce $\mathrm{d}_{\min }^{\langle 2\rangle}(\phi(C)) \geq \mathrm{d}_{\min }^{\langle 2\rangle}(C)$.

Unfortunately, this fails...

Unfortunately, this fails...

... the obstruction is $\operatorname{ker}(\theta)$.

Some preliminary remarks

Suppose there exists a $\phi: \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q}\right)^{m}$ such that for all C over $\mathbb{F}_{q^{r}}$,

$$
\delta^{\langle 2\rangle}(\phi(C)) \geq \kappa \delta^{\langle 2\rangle}(C)
$$

Write $\phi=\left(\phi_{1}, \ldots, \phi_{m}\right)$ so the ϕ_{i} are the columns of the generating matrix of the inner code. Take $m^{\prime} \geq m$ and put some more columns in to get $\phi^{\prime}: \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q}\right)^{m^{\prime}}$. Then we still have

$$
\delta^{\langle 2\rangle}\left(\phi^{\prime}(C)\right) \geq \kappa^{\prime} \delta^{\langle 2\rangle}(C)
$$

with $\kappa^{\prime}=\frac{m}{m^{\prime}} \kappa$, since $\phi^{\prime}(C)$ is an extension of $\phi(C)$.
The longer ϕ, the more chances we have (if any) to prove such a bound.
Extreme example: $m=\frac{q^{r}-1}{q-1}, \phi=$ all linear forms, $C_{i n}=$ simplex code.

Also, the longer ϕ, the easier to find a θ : indeed θ exists iff multiplication in $\mathbb{F}_{q^{r}}$ factors through $\Phi=\left(\phi_{1}^{\otimes 2}, \ldots, \phi_{r}^{\otimes 2}\right)$.

$$
\begin{array}{ccc}
\mathbb{F}_{q^{r}} \times \mathbb{F}_{q^{r}} & \longrightarrow & \mathbb{F}_{q^{r}} \\
\phi \times \phi \\
& \uparrow_{\theta} \\
\left(\mathbb{F}_{q}\right)^{m} \times\left(\mathbb{F}_{q}\right)^{m} \longrightarrow & \left(\mathbb{F}_{q}\right)^{m}
\end{array}
$$

Recall, if λ is a linear form, $\lambda^{\otimes 2}$ is the symmetric bilinear form

$$
(v, w) \mapsto \lambda(v) \lambda(w)
$$

(or in terms of matrices it is $\lambda \lambda^{T}$).

On the other hand, perhaps we should not take ϕ too long. In particular we could avoid linear dependencies between the $\phi_{i}^{\otimes 2}$. Indeed:

- If we extend ϕ by adding some ϕ_{m+1} to it such that $\phi_{m+1}^{\otimes 2}$ is linearly dependent on the other $\phi_{i}^{\otimes 2}$, then we extend $\phi(C)$ by adding a new coordinate in each block, so that in the squared code, these new coordinates are linearly dependent on the others. So if a codeword in $\phi(C)^{\langle 2\rangle}$ is zero on some block, it is still zero on this block after extending.
- Linear relations between the $\phi_{i}^{\otimes 2}$ make the choice of θ non-unique, hence non-canonical. We want to understand the structure of $\operatorname{ker}(\theta)$. Most often, canonical objects have a more interesting structure than non-canonical ones.

The symmetric square of a space

Let V be a vector space over \mathbb{F}_{q}. Recall:

$$
\begin{aligned}
S_{\mathbb{F}_{q}}^{2} V & =\langle u \cdot v\rangle_{u, v \in V} /(\text { sym. bilin. rel. }) \\
& =V \otimes V /\langle u \otimes v-v \otimes u\rangle_{u, v \in V} \\
& =\operatorname{Sym}\left(V ; \mathbb{F}_{q}\right)^{\vee} .
\end{aligned}
$$

In the last identification, $u \cdot v$ is $\operatorname{Sym}\left(V ; \mathbb{F}_{q}\right) \longrightarrow \mathbb{F}_{q}, \psi \mapsto \psi(u, v)$.
Every symmetric bilinear map $B: V \times V \longrightarrow W$ factorizes uniquely as

$$
\begin{array}{rlclc}
V \times V & \longrightarrow & S_{\mathbb{F}_{q}}^{2} V & \xrightarrow{\widetilde{B}} & W \\
(u, v) & \mapsto & u \cdot v & \mapsto & B(u, v)=\widetilde{B}(u \cdot v)
\end{array}
$$

(proof: compose with linear forms on W to reduce to the case $W=\mathbb{F}_{q}$).

Lemma

Let $\lambda_{1}, \ldots, \lambda_{r}$ be a basis of V^{\vee}. Then the $\frac{r(r+1)}{2}$ elements $\lambda_{i}^{\otimes 2}$ for $1 \leq i \leq r$ and $\left(\lambda_{i}+\lambda_{j}\right)^{\otimes 2}$ for $1 \leq i<j \leq r$ form a basis of $\operatorname{Sym}\left(V ; \mathbb{F}_{q}\right)$.
So we take $\left\{\phi_{1}, \ldots, \phi_{\frac{r(r+1)}{2}}\right\}=\left\{\lambda_{i}\right\}_{1 \leq i \leq r} \cup\left\{\lambda_{i}+\lambda_{j}\right\}_{1 \leq i<j \leq r}$. Here $V=\mathbb{F}_{q^{r}}$. We get a unique θ with

$$
\begin{aligned}
& \mathbb{F}_{q^{r}} \times \mathbb{F}_{q^{r}} \quad \longrightarrow \quad \mathbb{F}_{q^{r}} \\
& \phi \times \phi \downarrow \theta \\
& \left(\mathbb{H}_{q}\right)^{\frac{r(r+1)}{2}} \times\left(\mathbb{\pi}_{q}\right)^{\frac{r(r+1)}{2}} \rightarrow\left(\mathbb{R}_{q}\right) \rightarrow \mathbb{R}^{\frac{r(r+1)}{2}} \sim q^{r}
\end{aligned}
$$

and if we use ϕ to concatenate, the inner code has generating matrix

$$
G_{\phi}=\left(\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

Does this help in understanding $\operatorname{ker}(\theta)$? Only a little bit...

Recall

$$
\begin{array}{ccc}
\mathbb{F}_{q^{r}} \otimes \mathbb{F}_{q^{r}} & \xrightarrow{\sim} & \left(\mathbb{F}_{q^{r}}\right)^{r} \\
x \otimes y & \mapsto & \left(x y, x y^{q}, \ldots, x y^{q^{r-1}}\right)
\end{array}
$$

so the composite map

$$
\left(\mathbb{F}_{q^{r}}\right)^{r} \simeq \mathbb{F}_{q^{r}} \otimes \mathbb{F}_{q^{r}} \longrightarrow S_{\mathbb{F}_{q}}^{2} \mathbb{F}_{q^{r}} \xrightarrow{\theta} \mathbb{F}_{q^{r}}
$$

is projection on the first coordinate. But then???

Does this help in understanding $\operatorname{ker}(\theta)$? Only a little bit...

Recall

$$
\begin{array}{ccc}
\mathbb{F}_{q^{r}} \otimes \mathbb{F}_{q^{r}} & \xrightarrow{\sim} & \left(\mathbb{F}_{q^{r}}\right)^{r} \\
x \otimes y & \mapsto & \left(x y, x y^{q}, \ldots, x y^{q^{r-1}}\right)
\end{array}
$$

so the composite map

$$
\left(\mathbb{F}_{q^{r}}\right)^{r} \simeq \mathbb{F}_{q^{r}} \otimes \mathbb{F}_{q^{r}} \longrightarrow S_{\mathbb{F}_{q}}^{2} \mathbb{F}_{q^{r}} \xrightarrow{\theta} \mathbb{F}_{q^{r}}
$$

is projection on the first coordinate. But then???

Does this help in understanding $\operatorname{ker}(\theta)$? Only a little bit...

Recall

$$
\begin{array}{ccc}
\mathbb{F}_{q^{r}} \otimes \mathbb{F}_{q^{r}} & \xrightarrow{\sim} & \left(\mathbb{F}_{q^{r}}\right)^{r} \\
x \otimes y & \mapsto & \left(x y, x y^{q}, \ldots, x y^{q^{r-1}}\right)
\end{array}
$$

so the composite map

$$
\left(\mathbb{F}_{q^{r}}\right)^{r} \simeq \mathbb{F}_{q^{r}} \otimes \mathbb{F}_{q^{r}} \longrightarrow S_{\mathbb{F}_{q}}^{2} \mathbb{F}_{q^{r}} \xrightarrow{\theta} \mathbb{F}_{q^{r}}
$$

is projection on the first coordinate. But then???

(well, not completely...)

Recall $\operatorname{Sym}\left(\mathbb{F}_{q^{r}} ; \mathbb{F}_{q}\right)$ is generated by the $\lambda^{\otimes 2}$ for $\lambda \in \mathbb{F}_{q^{r}}{ }^{\vee}$. And each such λ is of the form $\operatorname{Tr}(a$.$) .$

Now contemplate this formula:

$$
\begin{aligned}
\operatorname{Tr}(a x) \operatorname{Tr}(a y) & =\left(a x+a^{q} x^{q}+\cdots+a^{q^{r-1}} x^{q^{r-1}}\right)\left(a y+a^{q} y^{q}+\cdots+a^{q^{r-1}} y^{q^{r-1}}\right) \\
& =\operatorname{Tr}\left(a^{2} x y\right)+\sum_{1 \leq j \leq\lfloor r / 2\rfloor} \operatorname{Tr}\left(a^{1+q^{j}}\left(x y^{q^{j}}+x^{q^{j}} y\right)\right)
\end{aligned}
$$

(actually if r is even, the very last Tr should not be the trace from $\mathbb{F}_{q^{r}}$ to \mathbb{F}_{q} but from $\mathbb{F}_{q^{r / 2}}$ to \mathbb{F}_{q}).
$\operatorname{Recall} \operatorname{Sym}\left(\mathbb{F}_{q^{r}} ; \mathbb{F}_{q}\right)$ is generated by the $\lambda^{\otimes 2}$ for $\lambda \in \mathbb{F}_{q^{r}}{ }^{\vee}$. And each such λ is of the form $\operatorname{Tr}(a$.$) .$

Now contemplate this formula:

$$
\begin{aligned}
\operatorname{Tr}(a x) \operatorname{Tr}(a y) & =\left(a x+a^{q} x^{q}+\cdots+a^{q^{r-1}} x^{q^{r-1}}\right)\left(a y+a^{q} y^{q}+\cdots+a^{q^{r-1}} y^{q^{r-1}}\right) \\
& =\operatorname{Tr}\left(a^{2} x y\right)+\sum_{1 \leq j \leq\lfloor r / 2\rfloor} \operatorname{Tr}\left(a^{1+q^{j}}\left(x y^{q^{j}}+x^{q^{j}} y\right)\right)
\end{aligned}
$$

(actually if r is even, the very last Tr should not be the trace from $\mathbb{F}_{q^{r}}$ to \mathbb{F}_{q} but from $\mathbb{F}_{q^{r / 2}}$ to \mathbb{F}_{q}).

Let

$$
m_{0}(x, y)=x y
$$

and introduce higher twisted multiplication laws

$$
m_{j}(x, y)=x y^{q^{j}}+x^{q^{j}} y
$$

on $\mathbb{F}_{q^{r}}$ (actually if r is even, $m_{r / 2}$ takes values in $\mathbb{F}_{q^{r / 2}}$).

The formula says that any symmetric bilinear form on $\mathbb{F}_{q^{r}}$ can be expressed in terms of traces and of the m_{j}. So in this way we can construct another basis of $\operatorname{Sym}\left(\mathbb{F}_{q^{r}} ; \mathbb{F}_{q}\right)$. Let's sum all this up.

The formula says that any symmetric bilinear form on $\mathbb{F}_{q^{r}}$ can be expressed in terms of traces and of the m_{j}. So in this way we can construct another basis of $\operatorname{Sym}\left(\mathbb{F}_{q^{r}} ; \mathbb{F}_{q}\right)$. Let's sum all this up.

Let

$$
\Psi=\left(m_{0}, \ldots, m_{\lfloor r / 2\rfloor}\right): \mathbb{F}_{q^{r}} \times \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q^{r}}\right)^{\frac{r+1}{2}}
$$

(where by abuse of notation $\left(\mathbb{F}_{q^{r}}\right)^{\frac{r+1}{2}}=\left(\mathbb{F}_{q^{r}}\right)^{r / 2} \times \mathbb{F}_{q^{r / 2}}$ if r is even).
Also recall

$$
\Phi=\left(\phi_{1}^{\otimes 2}, \ldots, \phi_{r}^{\otimes 2}\right): \mathbb{F}_{q^{r}} \times \mathbb{F}_{q^{r}} \longrightarrow\left(\mathbb{F}_{q}\right)^{\frac{r(r+1)}{2}} .
$$

Then Φ and Ψ are two symmetric \mathbb{F}_{q}-bilinear maps that give two representations of $S_{\mathbb{F}_{q}}^{2} \mathbb{F}_{q^{r}}$ with its universal map $(x, y) \mapsto x \cdot y$ (and moreover Ψ is a polynomial map over $\mathbb{F}_{q^{r}}$ of algebraic degree $\left.1+q^{\lfloor r / 2\rfloor}\right)$. By the universal property they are linked by some invertible \mathbb{F}_{q}-linear

$$
\theta:\left(\mathbb{F}_{q}\right)^{\frac{r(r+1)}{2}} \xrightarrow{\sim}\left(\mathbb{F}_{q^{r}}\right)^{\frac{r+1}{2}} .
$$

Now we concatenate:

$$
\begin{array}{ccc}
C \times C \quad \xrightarrow{\Psi} & \langle\Psi(C, C)\rangle \\
\phi \times \phi \downarrow & \simeq \uparrow \theta \\
\phi(C) \times \phi(C) \longrightarrow & \phi(C)^{\langle 2\rangle}
\end{array}
$$

with

$$
\langle\Psi(C, C)\rangle \subset\left\langle m_{0}(C, C)\right\rangle \times \cdots \times\left\langle m_{\lfloor r / 2\rfloor}(C, C)\right\rangle
$$

and

$$
\left\langle m_{j}(C, C)\right\rangle \subset C^{\left\langle 1+q^{j}\right\rangle} .
$$

Now we concatenate:

$$
\begin{array}{ccc}
C \times C \quad & \Psi & \langle\Psi(C, C)\rangle \\
\phi \times \phi \downarrow & \simeq \uparrow \theta \\
\phi(C) \times \phi(C) & \longrightarrow & \phi(C)^{\langle 2\rangle}
\end{array}
$$

with

$$
\langle\Psi(C, C)\rangle \subset\left\langle m_{0}(C, C)\right\rangle \times \cdots \times\left\langle m_{\lfloor r / 2\rfloor}(C, C)\right\rangle
$$

and

$$
\left\langle m_{j}(C, C)\right\rangle \subset C^{\left\langle 1+q^{j}\right\rangle}
$$

Hence:

Proposition

$$
\mathrm{d}_{\min }^{\langle 2\rangle}(\phi(C)) \geq \mathrm{d}_{\min }^{\left\langle 1+\mathrm{q}^{\lfloor r / 2\rfloor}\right\rangle}(C)
$$

Let's say $q=p$ is prime, for instance $q=2$.
To conclude:

- $\mathrm{d}_{\min }^{\langle 2\rangle}(\phi(C)) \geq \mathrm{d}_{\min }^{\left\langle 1+\mathrm{q}^{\lfloor\mathrm{r} / 2\rfloor}\right\rangle}(C)$
- take C over $\mathbb{F}_{q^{r}}$ whose powers up to order $1+q^{\lfloor r / 2\rfloor}$ are asymptotically good.
Theorem 0: possible up to order $\tau\left(q^{r}\right) \geq\left\lceil A\left(q^{r}\right)\right\rceil-1$. Drinfeld-Vladut bound: $A\left(q^{r}\right) \leq q^{r / 2}-1$ with equality for r even. Of course we take r even since we want $\tau\left(q^{r}\right)$ as big as possible.

Let's say $q=p$ is prime, for instance $q=2$.
To conclude:

- $\mathrm{d}_{\min }^{\langle 2\rangle}(\phi(C)) \geq \mathrm{d}_{\min }^{\left\langle 1+\mathrm{q}^{\lfloor\mathrm{r} / 2\rfloor}\right\rangle}(C)$
- take C over $\mathbb{F}_{q^{r}}$ whose powers up to order $1+q^{\lfloor r / 2\rfloor}$ are asymptotically good.
Theorem 0: possible up to order $\tau\left(q^{r}\right) \geq\left\lceil A\left(q^{r}\right)\right\rceil-1$. Drinfeld-Vladut bound: $A\left(q^{r}\right) \leq q^{r / 2}-1$ with equality for r even. Of course we take r even since we want $\tau\left(q^{r}\right)$ as big as possible. So we need powers up to order $1+q^{r / 2}$ and we have the estimate $q^{r / 2}-2$ for $\tau\left(q^{r}\right)$.

Let's say $q=p$ is prime, for instance $q=2$.
To conclude:

- $\mathrm{d}_{\min }^{\langle 2\rangle}(\phi(C)) \geq \mathrm{d}_{\min }^{\left\langle 1+\mathrm{q}^{\lfloor\mathrm{r} / 2\rfloor}\right\rangle}(C)$
- take C over $\mathbb{F}_{q^{r}}$ whose powers up to order $1+q^{\lfloor r / 2\rfloor}$ are asymptotically good.
Theorem 0: possible up to order $\tau\left(q^{r}\right) \geq\left\lceil A\left(q^{r}\right)\right\rceil-1$. Drinfeld-Vladut bound: $A\left(q^{r}\right) \leq q^{r / 2}-1$ with equality for r even. Of course we take r even since we want $\tau\left(q^{r}\right)$ as big as possible. So we need powers up to order $1+q^{r / 2}$ and we have the estimate $q^{r / 2}-2$ for $\tau\left(q^{r}\right)$.... Not enough!

Why not try something stupid? Take r odd.
Then $1+q^{\lfloor r / 2\rfloor}<\left\lceil q^{r / 2}-1\right\rceil-1$ so there is some (little) room below Drinfeld-Vladut. But does $A\left(q^{r}\right)$ fit in between?
Yes: for q prime, a recent construction of Garcia-Stichtenoth-Bassa-Beleen gives

$$
A\left(q^{r}\right) \geq\left(\frac{2 q}{q+1}+o(1)\right) q^{\lfloor r / 2\rfloor}
$$

when $r \rightarrow \infty$ odd.

Why not try something stupid? Take r odd.
Then $1+q^{\lfloor r / 2\rfloor}<\left\lceil q^{r / 2}-1\right\rceil-1$ so there is some (little) room below
Drinfeld-Vladut. But does $A\left(q^{r}\right)$ fit in between?
Yes: for q prime, a recent construction of Garcia-Stichtenoth-Bassa-Beleen gives

$$
A\left(q^{r}\right) \geq\left(\frac{2 q}{q+1}+o(1)\right) q^{\lfloor r / 2\rfloor}
$$

when $r \rightarrow \infty$ odd.
Actually for $q=2$ we take $r=9$. GSBB gives $A(512) \geq 465 / 23 \approx 20.217$.
Theorem 0: $\alpha_{512}^{\langle 17\rangle}(\delta) \geq \frac{1-\delta}{17}-\frac{1}{A(512)}$.
The concatenation map ϕ has parameters [45, 9] hence

$$
\alpha_{2}^{\langle 2\rangle}(\delta) \geq \frac{1}{5} \alpha_{512}^{\langle 17\rangle}(45 \delta)
$$

which is Theorem 1.

