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Abstract—We show that with high probability, random rank 1
matrices over a finite field are in (linearly) general position, at
least provided their shape k × l is not excessively unbalanced.
This translates into saying that the dimension of the ∗-product
of two [n, k] and [n, l] random codes is equal to min(n, kl), as
one would have expected. Our work is inspired by a similar result
of Cascudo-Cramer-Mirandola-Zémor [4] dealing with ∗-squares
of codes, which it complements, especially regarding applications
to the analysis of McEliece-type cryptosystems [5][6]. We also
briefly mention the case of higher ∗-powers, which require to
take the Frobenius into account. We then conclude with some
open problems.

Index Terms—Random linear code, Componentwise product,
Matrix analysis, Bilinear complexity, McEliece cryptosystem.

I. INTRODUCTION

Many fundamental problems in information theory and in
theoretical computer science can be expressed in terms of the
structure of linearly independent and generating subsets of a
set in a vector space, as illustrated by [10] and the subsequent
success of matroid theory. In this context the importance of
the following definition is self-evident:

Definition 0. Let V be a finite-dimensional vector space, over
an arbitrary field. We say a set X ⊆ V is in general position if
any finite subset S ⊆ X has its linear span 〈S〉 of dimension

dim〈S〉 = min(|S|,dimV ).

This means that there are no more linear relations than
expected between elements of X: any S ⊆ X of size
|S| ≤ dimV is linearly independent, and any S ⊆ X of
size |S| ≥ dimV is a generating set in V .

This requirement is quite strong, and weaker variants have
been considered. We can cite at least three of them.

The first one is to introduce thresholds. We say X is in
(a, b)-general position if any S ⊆ X of size |S| ≤ a is linearly
independent, and any S ⊆ X of size |S| ≥ b is a generating set
in V . This notion should look very familiar to coding experts.
Indeed one shows easily:

Lemma 1. Let C be a q-ary [n, k] code, with generating
matrix G. Set V = Fkq and let X ⊆ V be the set of
columns of G. Then X is in (a, b)-general position, with
a = dmin(C

⊥)− 1 and b = n− dmin(C) + 1.

A second one is to allow a small gap g from the expected
dimension: we say X is in g-almost general position if for any

S ⊆ X we have

dim〈S〉 ≥ min(|S|,dimV )− g.

This means allowing up to g more linear relations than
expected. There is an obvious link with the previous notion:

Lemma 2. If X ⊆ V is in (a, b)-general position, then it is in
g-almost general position for g = min(dimV −a, b−dimV ).

We leave it to the reader to combine Lemma 1 and Lemma 2
and give a coding-theoretic interpretation of this integer g (or
a geometric interpretation in case C is an AG-code).

Last, our third variant is probabilistic, allowing a small
proportion of S to fail in Definition 0. In fact, rather than
subsets of X , it will be easier to consider sequences of
elements of X , possibly with repetitions. For this we will
assume that X is equipped with a probability distribution L .
A natural choice when X is finite would be to take the uniform
distribution, however more general L will be allowed. Then,
measuring how close X ⊆ V is to being in general position
reduces to the following:

Problem 3. Let n ≥ 1, and u1, . . . ,un random elements of X
(understood: independent, and distributed according to L ).
Give bounds on the “error probability”

P[dim〈u1, . . . ,un〉 < min(n, dimV )].

In this work we address this problem for V = Fk×lq a matrix
space, and X ⊆ V the set of matrices of rank 1.

Understanding the linear span of families of rank 1 matrices
is especially important regarding the theory of bilinear com-
plexity (or equivalently, that of tensor decomposition). Indeed,
computing the complexity of a bilinear map (or the rank of a
3-tensor) reduces to the following [2][3][7][8]: given a linear
subspace W ⊆ Fk×lq , find a family of rank 1 matrices of
minimal cardinality whose linear span contains W .

Another motivation comes from the theory of ∗-products
of codes, and in particular its use in a certain class of
attacks [5][6] against McEliece-type cryptosystems. Given
words c = (c1, . . . , cn), c

′ = (c′1, . . . , c
′
n) ∈ Fnq , we let

c ∗ c′ = (c1c
′
1, . . . , cnc

′
n) ∈ Fnq be their componentwise

product. Then [9] if C,C ′ ⊆ Fnq are two linear codes of the
same length, their product C ∗C ′ ⊆ Fnq is defined as the linear
span of the c ∗ c′ for c ∈ C, c′ ∈ C ′. We can also define the
square C〈2〉 = C ∗ C, and likewise for higher powers C〈j〉.



Setting k = dimC and l = dimC ′, it is then easily seen

dimC ∗ C ′ ≤ kl,

dimC〈2〉 ≤ k(k + 1)/2,

and in fact for small k, l and random C,C ′ one expects these
inequalities to be equalities. For the second inequality, this is
proved in [4]. For the first inequality, we will see this reduces
to our solution of Problem 3 for rank 1 matrices.

So, together, [4] and our results support the heuristic at
the heart of the aforementioned attacks against McEliece-type
cryptosystems. Indeed, the very principle of these attacks is to
uncover the hidden algebraic structure of an apparently random
code (which serves as the public key) by identifying subcodes
for which equality fails in these inequalities (for instance,
the dimension of the product behaving additively rather than
multiplicatively).

II. GENERIC APPROACH

Here V is an abstract vector space of dimension m over Fq ,
and X ⊆ V an arbitrary subset with a probability distribution
L . We may assume X spans V . Clearly the function

P(n) = P[dim〈u1, . . . ,un〉 < min(n, dimV )]

(for random u1, . . . ,un ∈ X) is unimodal: more precisely it
is increasing for n ≤ m and decreasing for n ≥ m. Now we
study each of these two cases in more detail.

A. Case n ≥ m.

We have dim〈u1, . . . ,un〉 < m iff u1, . . . ,un are con-
tained in a hyperplane H of V . Using the union bound and
the independence of the ui we get at once:

Proposition 4. We have

P(n) ≤
∑
H

P[u1, . . . ,un ∈ H]

=
∑
H

P[u1 ∈ H]n

where H ranges over hyperplanes of V .

This bound is exponentially small. More precisely, set

ρ = max
H

P[u1 ∈ H]

(for instance ρ = maxH |X ∩ H|/|X| if L is uniform
distribution). We then see immediately:

Corollary 5. For all n ≥ m we have

cρn−m ≤ P(n) ≤ c′ρn−m.

where c = ρm and c′ =
∑
H P[u1 ∈ H]m.

It should be noted that c, c′, ρ depend on V and X . So, part
of the job will be to make these constants more explicit when
V and X will be specified.

Another interesting fact is that the RHS in Proposition 4 is∑
H

P[u1, . . . ,un ∈ H] = E[|{H; u1, . . . ,un ∈ H}|],

the expected value of the number of hyperplanes containing
u1, . . . ,un. However, this number is precisely qd−1

q−1 , where
d = codim〈u1, . . . ,un〉. This allows us to combine our
second and third variants of the notion of general position:

Proposition 6. For 0 ≤ g ≤ min(m,n) we have

P[dim〈u1, . . . ,un〉 < m− g] ≤ c′ρn−m q − 1

qg+1 − 1

(with c′, ρ as above), and also

P[dim〈u1, . . . ,un〉 < m− g] ≤
∑
W

P[u1 ∈W ]n

where W ⊆ V ranges over subspaces of codimension g + 1.

Proof: The first inequality follows from the discussion
above, using Markov’s inequality as in [4, Prop. 5.1]. The
second is a direct approach using the union bound similar to
that of Proposition 4.

Which of these two bounds is stronger, and which is more
tractable, certainly depends on V and X . Note also that the
bounds remain valid even without the assumption m ≤ n.

We illustrate what precedes for X = V = Fmq with
uniform distribution (this will be used later). We introduce
the converging infinite product

Cq =
∏
j≥1

(1− q−j)−1.

Numerically, Cq ≤ C2 ≈ 3.463.

We let
[
m
r

]
q

=
∏

1≤j≤r
qm−r+j−1
qj−1 denote the number of

r-dimensional subspaces in Fmq .

Lemma 7. We have

qr(m−r) ≤
[
m
r

]
q

≤ Cqqr(m−r).

Proof: From qm−r ≤ qm−r+j−1
qj−1 ≤ (1− q−j)−1qm−r.

Proposition 8. For 0 ≤ r ≤ min(m,n) and random
u1, . . . ,un ∈ Fmq uniformly distributed, we have

P[dim〈u1, . . . ,un〉 ≤ r] ≤ Cqq−(n−r)(m−r).

Proof: Follows from what precedes, using P[u1 ∈W ] =
q−(m−r) for dimW = r.

B. Case n ≤ m.

From now on we will suppose (X,L ) is homothety invari-
ant: given any λ ∈ F×q , then for random u ∈ X , we also have
λu ∈ X , with the same distribution L .

We say a vector z = (λ1, . . . , λn) ∈ Fnq is a linear relation
for u1, . . . ,un if λ1u1 + · · ·+ λnun = 0.

Also introduce the random variable

sn = u1 + · · ·+ un ∈ V.

Lemma 9. For any z ∈ Fnq of Hamming weight w, we have

P[z is a linear relation for u1, . . . ,un] = P[sw = 0].



Proof: We may suppose z has support {1, . . . , w}, and we
conclude since ui and λiui have same distribution for λi 6= 0.

Proposition 10. We have

P(n) ≤
∑
w≥1

(
n

w

)
(q − 1)w−1P[sw = 0]

Proof: Union bound, as in Proposition 4 (note that we
may count linear relations only up to proportionality).

Likewise, Markov’s inequality gives, for any g ≥ 0,

P(dim〈u1,. . . ,un〉<n−g) ≤ 1
qg+1−1

∑
w≥1

(
n
w

)
(q−1)wP[sw=0].

In these sums we expect the contribution of linear relations
of large weight should stay under control thanks to:

Proposition 11. As w →∞ we have

P[sw = 0]→ 1

qm
,

except for q = 2 and X contained in the translate of a
hyperplane, in which case we have P[sw = 0] = 0 for odd w,
and P[sw = 0]→ 1

2m−1 for even w →∞.

Proof: We treat first the case q > 2, so there is a λ 6= 0, 1
in Fq . The sw form a random walk on the finite commutative
group V . Seen as a Markov chain, it is irreducible, because
X spans V (as a vector space, but also as a group, since
X is homothety-invariant). Moreover it is aperiodic, because
the zero vector can be written as a sum of 2 elements of X
(e.g. s + (−s)), and also as a sum of 3 elements of X (e.g.
(1−λ)s+(−s)+λs). So it converges to its unique stationnary
distribution, which can only be uniform.

The case q = 2 is similar, with a tweak on aperiodicity.

III. RANK 1 MATRICES

A matrix u ∈ Fk×lq is of rank 1 iff it can be written u =
pqT for column vectors p ∈ Fkq \{0}, q ∈ Flq\{0}. Moreover
these p,q are uniquely determined up to a scalar. This means,
choosing random p ∈ Fkq \ {0}, q ∈ Flq \ {0} uniformly,
and setting u = pqT , gives a random matrix of rank 1 with
uniform distribution.

Actually we will use a slightly different model. Let

Xk×l = {u ∈ Fk×lq ; rku ≤ 1}

be the set of rank 1 matrices together with the zero matrix.
Pick random p ∈ Fkq , q ∈ Flq uniformly (possibly zero), and
set u = pqT . This gives our distribution L on Xk×l.

Note that if u ∈ Xk×l is distributed according to L , then
conditioning on the event u 6= 0 gives back the uniform
distribution on matrices of rank 1. Conversely, if b is a
Bernoulli variable of parameter P[b = 1] = (1−q−k)(1−q−l),
and if u is a random uniformly distributed matrix of rank 1,
then bu ∈ Xk×l is distributed according to L . Moreover,
replacing u1, . . . ,un with b1u1, . . . , bnun can only decrease
the dimension of their linear span. As a consequence, any

upper bound on P(n) for (Xk×l,L ) will also be an upper
bound for uniformly distributed matrices of rank 1.

Lemma 12. (i) Every linear form on Fk×lq is of the form
lB = Tr(BT ·) for a uniquely determined B ∈ Fk×lq .

(ii) The number of B ∈ Fk×lq of rank r is[
k
r

]
q

[
l
r

]
q

|GLr(Fq)| ≤ Cqqr(k+l−r).

(iii) Given B ∈ Fk×lq of rank r, then for random u = pqT

in Xk×l we have P[lB(u) = 0] = 1
q

(
1 + q−1

qr

)
.

Proof: Point (i) is clear. For point (ii) we view B as
a linear map Fkq −→ Flq , and we note that it is entirely
determined by its kernel kerB ⊆ Fkq of codimension r, its
image imB ⊆ Flq of dimension r, and the isomorphism
Fkq/ kerB ' imB it induces. This gives the formula of the
LHS, and the upper bound works as in the proof of Lemma 7.
For (iii) we note lB(u) = 0 means pTBq = 0, which happens
precisely when pTB = 0 (of probability q−r) or when q is
orthogonal to pTB 6= 0 (of probability q−1(1− q−r)).

For some of our results we will restrict to matrices whose
long side grows at most exponentially in the short side. More
precisely, for any ε, κ > 0, we introduce the parameter space

P(ε, κ) =
{
(k, l); 2 ≤ k ≤ l ≤ εqκk

(q − 1)k

}
.

Now we fix a κ > 0 small enough so that q(1−κ)
2 ≥ 1+ q−1

q
(for instance κ = 0.23 works for any q), as well as some
0 < ε < 1.

Theorem 13. Let (k, l) ∈ P(ε, κ) and n ≥ kl. Then for
random u1, . . . ,un ∈ Xk×l we have

P(n) = P[u1, . . . ,un don’t span Fk×lq ] ≤ c′′ρn−kl

with ρ = 1
q

(
1 + q−1

q

)
and c′′ = qCq

(q−1)2

(
1 + 1

1−ε

)
.

Proof: We apply Corollary 5, where from Lemma 12 we
get ρ = 1

q

(
1 + q−1

q

)
and

c′ ≤ 1

q − 1

∑
1≤r≤k

Cqq
r(k+l−r)

(
1
q

(
1 + q−1

qr

))kl
=

Cq
q − 1

∑
1≤r≤k

(1+ q−1
qr )

kl

q(k−r)(l−r)
.

We set r0 = bκkc and split this last sum in two.
First, for r ≤ r0 we have (k−r)(l−r) ≥ (1−κ)2kl+(r0−r)

and 1+ q−1
qr ≤ 1+ q−1

q , so, by our condition on κ, (
1+ q−1

qr )
kl

q(k−r)(l−r)
≤

1
qr0−r .

On the other hand, for r > r0 we have
(
1 + q−1

qr

)kl
<(

1 + q−1
qκk

)kl
≤ 1

1− kl(q−1)

qκk

≤ 1
1−ε . We deduce:

c′ <
Cq
q − 1

 ∑
1≤r≤r0

1

qr0−r
+

1

1−ε
∑

r0<r≤k

1

q(k−r)(l−r)

 ≤ c′′.



Given k ≤ l and random ui ∈ Xk×l, recall for all w ≥ 1
we set sw = u1 + · · ·+ uw ∈ Fk×lq .

Theorem 14. (i) For 1 ≤ w < k + l we have

P[sw = 0] ≤ 2qCq/(q − 1)

qkw/2
.

(ii) For w ≥ k + l we have

P[sw = 0] ≤ Cq(1− q−(w−l))−1

qkl
.

Proof: Write ui = piqi
T with pi ∈ Fkq , qi ∈ Flq uniform.

Let G be the k × w matrix whose columns are p1, . . . ,pw,
and let x1, . . . ,xk ∈ Fwq be its rows. Likewise let G′ be
the l × w matrix whose columns are q1, . . . ,qw, and let
y1, . . . ,yl ∈ Fwq be its rows. Note these x’s and y’s are
uniform and independent. Also our key observation is that
sw = 0 iff 〈x1, . . . ,xk〉 ⊥ 〈y1, . . . ,yl〉 in Fwq .

Now we condition on dim〈y1, . . . ,yl〉. By Proposition 8
we have P[dim〈y1, . . . ,yl〉 = e] ≤ Cqq

−(l−e)(w−e). Also,
P[〈x1, . . . ,xk〉⊥〈y1, . . . ,yl〉|dim〈y1, . . . ,yl〉 = e] = q−ke.
This gives

P[sw = 0] ≤ Cq
∑

0≤e≤min(l,w)

q−f(e)

where f(e) = ke+ (l− e)(w− e). This function f attains its
minimum at e0 = (l + w − k)/2, from which we deduce, for
0 ≤ e ≤ min(l, w):

f(e)≥


kw + (w − e) ≥ kw/2 + (w − e) for w ≤ l − k
f(e0)+b|e−e0|c≥kw/2+b|e−e0|c for l−k<w<k+l
kl + (e− k)(w − l) for w ≥ k + l.

The first two cases together give point (i), while the third gives
point (ii).

Theorem 15. Let (k, l) ∈ P(ε, 12 ) and n ≤ kl. Then for
random u1, . . . ,un ∈ Xk×l we have

P(n) = P[u1, . . . ,un lin.dep.] ≤ qCq
(q − 1)2

(
2ε

1− ε
+ q−(kl−n)

)
.

Proof: Split the sum in Proposition 10 in two: for w <
k + l use Theorem 14(i) and

(
n
w

)
≤ (kl)w; for w ≥ k + l use

Theorem 14(ii).

IV. PRODUCTS OF CODES

By a generating matrix for a linear code C we mean any
matrix G whose row span is C. We allow G to have more
than dimC rows.

Consider random G ∈ Fk×nq , G′ ∈ Fl×nq (uniform distri-
bution), generating matrices for C,C ′ ⊆ Fnq , so dimC ≤ k,
dimC ′ ≤ l. Denote by p1, . . . ,pn ∈ Fkq the columns and by
x1, . . . ,xk ∈ Fnq the rows of G. Denote by q1, . . . ,qn ∈ Flq
the columns and by y1, . . . ,yl ∈ Fnq the rows of G′.

Identify the matrix space Fk×lq with Fklq .
The product C ∗C ′ and its generating matrix Ĝ ∈ F(k×l)×n

q

admit the following equivalent descriptions [9]:

(i) Ĝ has as rows all products xi ∗ yj
(ii) C ∗ C ′ is the projection of C ⊗ C ′ on the diagonal

(iii) Ĝ has as columns the rk ≤1 matrices p1q
T
1 , . . . ,pnq

T
n

(iv) C ∗ C ′ is the image of the evaluation map
ev : Bilin(Fkq × Flq) −→ Fnq

B 7→ (B(p1,q1), . . . , B(pn,qn)).
From description (iii) we can translate our Theorems 13

and 15. Recall q(1−κ)
2 ≥ 1 + q−1

q , and 0 < ε < 1.

Theorem 16. For (k, l) ∈ P(ε, κ) and n ≥ kl, we have

P[dimC ∗ C ′ < kl] ≤ c′′ρn−kl

with ρ = 1
q

(
1 + q−1

q

)
and c′′ = qCq

(q−1)2

(
1 + 1

1−ε

)
.

Theorem 17. For (k, l) ∈ P(ε, 12 ) and n ≤ kl, we have

P[dimC ∗ C ′ < n] ≤ qCq
(q − 1)2

(
2ε

1− ε
+ q−(kl−n)

)
.

Note that if k → ∞ and kl/qk/2 → 0 (for instance if l is
polynomial in k), we can set ε = (q − 1)kl/qk/2 → 0.

Still, we can derive an unconditional result, valid for any
(k, l). Recall the maximum distance dmax of a linear code is
the maximum weight of a codeword.

Theorem 18. For any (k, l), and k + l ≤ n ≤ kl, we have

P[dmax(C ∗ C ′)⊥ ≥ k + l] ≤ qCq
(q − 1)2

q−(kl−n).

Proof: Union bound for P[∃lin. rel. of weight ≥ k + l],
which means keep only terms w ≥ k + l in Proposition 10,
and use only part (ii) of Theorem 14.

So, with high probability (C ∗C ′)⊥ has dmax<k+ l. This
is a strong restriction (for instance it also implies dim<k+ l).

V. SQUARES AND HIGHER POWERS

Let C have generating matrix G ∈ Fk×nq , with columns
p1, . . . ,pn ∈ Fkq and rows x1, . . . ,xk ∈ Fnq . As above, the s-
th power C〈s〉 and its generating matrix Ĝ admit the following
equivalent descriptions:

(i) Ĝ has as rows all ∗-monomials of degree s in the xi
(ii) C〈s〉 is the projection of C⊗s on the diagonal

(iii) Ĝ has as columns the elementary tensors p⊗s1 , . . . ,p⊗sn
(iv) C〈s〉 is the image of the evaluation map

ev : Fq[t1, . . . , tk]s −→ Fnq
P 7→ (P (p1), . . . , P (pn)).

(Where Rs denotes the s-th homogeneous component of R.)
We deduce at once dimC〈s〉 ≤ min(n,

(
k+s−1
s

)
). For s = 2

it is shown in [4] that for random such C, with high probability
there is equality: dimC〈2〉 = min(n, k(k+1)

2 ) (which could in
turn be translated into a general position result for rank 1
symmetric matrices). It is interesting to note that not having
to face unbalanced (k, l) made it easier for these authors to
deal with short relations, hence to control dmin(C

〈2〉)⊥ in [4,
Prop. 2.4]. By contrast, in our setting, independence of C and
C ′ made it easier to deal with long relations, hence to control
dmax(C ∗ C ′)⊥ in Theorem 18.
About higher powers, one should bear in mind the following:



Proposition 19. For s > q we always have strict inequality
dimC〈s〉 <

(
k+s−1
s

)
. More precisely, we have

dimC〈s〉 ≤ min(n, χq(k, s))

where [9, App. A]:

χq(k, s) = dimSsFrobFkq = dim(Fq[t1, . . . , tk]/(tqi tj − tit
q
j))s.

Proof: The map ∗ is Frobenius-symmetric, so in (ii) the
projection C⊗s → C〈s〉 factors through SsFrobC. Alternatively,
in (iv), ker(ev) contains all multiples of the tqi tj − tit

q
j .

VI. OPEN PROBLEMS

In our probabilistic model we considered random matrices
of the form ui = piq

T
i for column vectors pi ∈ Fkq , qi ∈ Flq

possibly zero. However, as already noted, it is perhaps more
natural to restrict these pi,qi to stay nonzero, so the ui
become uniformly distributed rank 1 matrices. Considering
the pi (resp. qi) as the columns of a generating matrix of a
code C (resp. C ′), this translates into considering only codes
with full support—although of dimension possibly less than
k (resp. l). Then, a further model would be to request these
generating matrices having full rank. That means: take C (resp.
C ′) uniformly distributed in the set of [n, k] (resp. [n, l]) codes
with full support. Clearly this could only help get sharper
bounds. In particular:

Problem 20. Do these alternative models allow to relax our
condition P(ε, κ)? Do they give bounds valid without any
restriction on (k, l)?

Proposition 11 suggests that the fate of long relations should
essentially not depend on the probabilistic model. On the other
hand, for short relations, it certainly does. In fact, relations of
weight less than k + l are perhaps less tractable because, for
such a length, C and C ′ necessarily intersect. This leads to the
following, which would encompass both our results (remove
the conditioning) and those of [4] (set i = k = l):

Problem 21. For any n, k, l, i, j, estimate the conditional
probability P[dimC ∗ C ′ = j|dimC ∩ C ′ = i].

We saw the existence of relations of length w is related
to the distribution of sw = u1 + · · · + uw. When the ui are
uniformly distributed matrices of rank 1, this reduces to:

Problem 22. In Fk×lq , what is the number

Nk×l
q (r, w)

of decompositions of a matrix of rank r as an ordered sum of
w matrices of rank 1?

It is easily seen that this number is well defined, which
means, it is the same for all such matrices of rank r. Of special
importance are the Nk×l

q (0, w), which control P[sw = 0]. We
leave it as an exercise to link their computation with that of
the weight distribution of the code (Sk ⊗ Sl)⊥, where Sk is
the [ q

k−1
q−1 , k] q-ary simplex code.

Considering powers of a code leads similarly to count
families of elementary s-th power tensors summing to zero.

Problem 23. For fixed s, and a random [n, k] code C, estimate
the probability P[dimC〈s〉 = min(n, χq(k, s))].

And then, what if we also let s vary?

It is interesting to note that, up to code equivalence, any
[n, k] code C with full support can be obtained from the
simplex code Sk by deleting and repeating columns. Then
C〈s〉 is obtained from S

〈s〉
k by deleting and repeating the

same columns. Some authors also call S〈s〉k the s-th order
projective Reed-Muller code (in k variables); it has dimension
χq(k, s). As above, we can split our Problem in two cases:
for n ≥ χq(k, s), we’re interested in relations between rows
of the generating matrix of C, which is linked to the weight
distribution of S〈s〉k ; while for n ≤ χq(k, s), we’re interested in
relations between columns, which is linked to its dual weight
distribution.

Last, it is the author’s opinion that considering only the
dimension of products is not entirely in the spirit of coding
theory. In fact, it is a purely algebraic problem, where (Fnq , ∗)
could be replaced by any space equipped with a bilinear
inner composition law. See [1] for an example where the
space is an extension field with its natural multiplication.
However, what is genuinely coding-theoretic is to consider
minimum distance beside dimension. It is well known that,
asymptotically, a random code lies on the Gilbert-Varshamov
bound R = 1−H(δ). It is then very natural to ask:

Problem 24. Does the product of two random codes, or the
square or higher powers of a random code, lie on the GV
bound?

Observe that the answer would be negative if the question
were stated with the tensor product instead of the ∗-product.
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