
ACM Communications in Computer Algebra, TBA TBA

Lattices of compatibly embedded finite fields

Luca De Feo∗, Hugues Randriambololona†, Édouard Rousseau‡

Finite fields are widely used in mathematics and their applications. They are often the building
block of more complicated algebraic structure used in cryptology or coding theory. As a consequence,
several computer algebra systems or libraries have been written in order to work in arbitrary finite
fields. Among them, we find Magma [1], Sage [5], Flint [6], NTL [10] or PARI [11]. Many problems
require not only to work in a given finite field K, but also in finite extensions of K, as represented
in Figure 1, that are again finite fields, or in the algebraic closure of K. In particular, it is desirable
to be able to freely move from a field to a subfield or an extension.

Given two finite fields E and F with cardinalities #E = pm and #F = pn, we know that E
can be embedded in F if and only if m |n. In other words, E is in that case isomorphic to a
subfield E ′ ⊂ F of F with cardinality #E ′ = pm. There are m = [E : Fp] = # Gal(E/Fp) distinct
embeddings from E to F (the degree of E over Fp will also be denoted by ∂(E)). Indeed, the Galois
group of the extension E over Fp acts on the embeddings and, given two different embeddings φE↪→F

and φ′E↪→F and an element x ∈ E, the images φE↪→F (x) and φ′E↪→F (x) must be conjugate. There is
no canonical embedding from E to F . Furthermore, the proof of the fact that E can be embedded
in F if and only if ∂(E) | ∂(F) does not give an efficient algorithm. Finding such an algorithm is an
interesting problem, and there exists a variety of solutions, see for example the survey paper [3].

Additionaly, we want the embeddings to be compatible. Given three finite fields E, F , and G,
such that ∂(E) | ∂(F) and ∂(F) | ∂(G), and three embeddings φE↪→F , φF ↪→G, and φE↪→G, we say that
the embeddings are compatible if

φE↪→G = φF ↪→G ◦ φE↪→F .

∗Université de Versailles and Inria, Paris Saclay, luca.de-feo@uvsq.fr
†Télécom ParisTech, randriam@telecom-paristech.fr
‡Télécom ParisTech and Université de Versailles, edouard.rousseau@telecom-paristech.fr

Fp

Fp2

Fp4

Fp3

Fp9

Fp5

Fp25

Fp`

Fp`2

Figure 1: Extensions of Fp.

1

luca.de-feo@uvsq.fr
randriam@telecom-paristech.fr
edouard.rousseau@telecom-paristech.fr

Lattices of compatibly embedded finite fields TBA

E

F

G

φE↪→F

φE↪→G

φF ↪→G

Figure 2: Embeddings between finite fields.

In other words, we want the diagram of Figure 2 to commute. In the context of a computer algebra
system, this condition is important in order to give the user coherent answers when performing
operations in different fields. This is the case when computing in the algebraic closure of a finite
field, because the ambient field may change often. There are also applications in isogeny-based [4]
or pairing-based cryptography. We note E ↪→ F if E is explicitly embedded in F , i.e. if we have
computed an embedding φE↪→F .

Compatibility Compatibility can be achieved using Conway polynomials [9, 8], a set {Pd}d∈D of
irreducible polynomials over Fp such that any root βd of Pd is primitive in Fp[X]/(Pd(X)) ∼= Fpd

and such that if d1, d2 ∈ D and d1|d2, then NF
pd2

/F
pd1

(βd2) is a root of Pd1 , where NF
pd2

/F
pd1

denotes

the norm of Fpd2 over Fpd1 . A compatible embedding of Fpd1 in Fpd2 is then obtained by sending
βd1 to βk

d2
, with k = (pd2 − 1)/(pd1 − 1). By adding a minimality condition with respect to some

ordering, this provides a way of constructing standardized finite field extensions. However Conway
polynomials are hard to compute, so in practice this technique can only be used with rather small
fields.

Bosma, Cannon and Steel suggested another scheme [2] in which they give an axiomatic char-
acterization of a lattice of compatibly embedded finite fields. Their method does not require any
precomputation and enables one to work in any user-defined finite field. However, embedding a
new finite field requires polynomial factorization and leads to a cost strictly larger than quadratic
in the extension degree [3]. Following [2], we say that a pair L = (L,Φ), where L is a set of finite
fields and Φ is a set of embeddings between elements of L, is a lattice of compatibly embedded finite
fields if

CE1 (unicity) for each pair (E,F) of elements in L, there exists at most one corresponding em-
bedding φE↪→F ∈ Φ.

CE2 (reflexivity) For each E ∈ L, the identity map IdE = φE↪→E is in Φ.

CE3 (prime subfield) There is exactly one P ∈ L such that ∂(P) = 1, and for all F ∈ L, there
exists φP ↪→F ∈ Φ

CE4 (invertibility) If E ↪→ F and ∂(E) = ∂(F), then F ↪→ E and φF ↪→E = φ−1E↪→F .

CE5 (transitivity) For any triple (E,F,G) of elements in L, if E ↪→ F ↪→ G then E ↪→ G and
φE↪→G = φF ↪→G ◦ φE↪→F .

CE6 (intersections) For each E,F,G ∈ L such that F ↪→ G and E ↪→ G, there exists S ∈ L such
that ∂(S) = gcd(∂(E), ∂(F)) and S ↪→ E, S ↪→ F .

2

Luca De Feo, Hugues Randriambololona and Édouard Rousseau

Under those conditions, we can prove [2] that we are able to add a finite field in L or an
embedding that is not yet in Φ without altering the compatibility of the lattice L.

Our contribution We implemented Bosma, Canon and Steel framework using Nemo/Flint [7, 6]
and following conditions CE1 to CE6. These conditions are, for most of them, very natural. The
condition CE3 is technical and does not imply any work in our implementation because finite fields
elements in Nemo/Flint are represented by polynomials over Fp, so the embedding of Fp into an
extension is trivial. Finally, condition CE6 ensures that the implicit isomorphisms between subfields
are made explicit. In order to meet this last condition, when embedding a finite field F in G, for
each subfield S of G, we check that the finite field S ∩ F is embedded in S and F , and if not, we
embed it. If there is not any finite field of degree d = gcd(∂(S), ∂(F)), we compute an arbitrary
finite field I of degree d using Flint and we embed I in S and F , resulting in a recursive call to our
embedding algorithm.

Our code is available as an experimental branch of Nemo1, that is itself based on an experimental
branch of Flint2. Critical routines (e.g. polynomial factorization, matrix computations) are written
in C and computed by Flint, whereas high level tasks (e.g. checking conditions CE5 and CE6) are
written in Julia using Nemo. Our goal is to first include the C code inside the standard Flint library
and then the Julia code in Nemo. With our experimental code, it is possible to define arbitrary
finite fields and to compute compatible embeddings between them, it is also possible to compute
a section of a field to a subfield: i.e. a map that sends an element to its inverse image when the
element is in the subfield, and throw an error otherwise. All these computations are automatic
and tranparent to the user, except if he or she wants to work with the maps themselves. All the
computed embeddings are kept in memory so that the same work is not done twice. Together with
conditions CE5 and CE6, this leads to many embeddings being stored behind the scenes. Here is
an example of a minimal session using our code3.

In: p = 5

We create k2 = GF(25) = GF(5)[x2]

k2, x2 = FiniteField(p, 2, ‘‘x2’’)

k4, x4 = FiniteField(p, 4, ‘‘x4’’)

k8, x8 = FiniteField(p, 8, ‘‘x8’’)

We compute the embedding k2->k4

f2_4 = embed(k2, k4)

y = f2_4(x2)

Out: x4^3+x4^2+x4+3

In: # We check that y is in GF(25)

y^(p^2) == y

Out: true

In: f2_8 = embed(k2, k8)

f4_8 = embed(k4, k8)

We check the compatibility

f2_8(x2) == f4_8(f2_4(x2))

Out: true

In: # We can directly see x4^2+1

as an element of k8

z = k8(x4^2+1)

Out: 3*x8^6+4*x8^5+3*x8^3+4*x8+2

In: k4(z)

Out: x4^2+1

Future work The code has yet to be optimised: condition CE5 could be fulfilled lazily by com-
puting the embeddings only when needed by the user. This would prevent the storage of useless

1https://github.com/erou/Nemo.jl/tree/embeddings
2https://github.com/defeo/flint2/tree/embeddings
3A longer and interactive one is available at https://mybinder.org/v2/gh/defeo/Nemo-embeddings-demo/

master?filepath=demo.ipynb.

3

https://github.com/erou/Nemo.jl/tree/embeddings
https://github.com/defeo/flint2/tree/embeddings
https://mybinder.org/v2/gh/defeo/Nemo-embeddings-demo/master?filepath=demo.ipynb
https://mybinder.org/v2/gh/defeo/Nemo-embeddings-demo/master?filepath=demo.ipynb

Lattices of compatibly embedded finite fields TBA

embeddings. Some technical computations inside the framework could also be optimised using
non-naive algorithms or by being written in C instead of Julia. Finally, the embedding algorithm
used by Bosma, Canon and Steel (the naive algorithm) is not optimal either. Replacing the naive
algorithm by a more sophisticated algorithm requires both theoretical work and some new imple-
mentations. An important question is whether a “standardized” construction can be found for these
algorithms, similar to the one obtained using Conway polynomials. Contrary to Bosma, Canon and
Steel framework, Conway polynomials also permit to simply obtain the generator of a field from
the generator of another field using norms. We aim to be able to do the same thing, by memorizing
a little more than the generators of our finite fields.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993).

[2] Wieb Bosma, John Cannon, and Allan Steel. Lattices of compatibly embedded finite fields.
Journal of Symbolic Computation, 24(3-4):351–369, 1997.

[3] Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori, and Éric Schost. Computing
isomorphisms and embeddings of finite fields. arXiv preprint arXiv:1705.01221, 2017.

[4] Luca De Feo. Mathematics of isogeny based cryptography. arXiv preprint arXiv:1711.04062,
2017.

[5] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.1), 2017.
http://www.sagemath.org.

[6] William Hart. Fast library for number theory: an introduction. Mathematical Software-ICMS
2010, pages 88–91, 2010.

[7] William Hart et al. Nemo Package (Version 0.5.0). http://nemocas.org, 2016.

[8] Lenwood S Heath and Nicholas A Loehr. New algorithms for generating Conway polynomials
over finite fields. 1998.

[9] Richard Parker. Finite fields and Conway polynomials. 1990. Vortrag am IBM Scientific Center
Heidelberg.

[10] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl.

[11] The PARI Group, Univ. Bordeaux. PARI/GP version 2.9.4, 2018. available from http:

//pari.math.u-bordeaux.fr/.

4

http://nemocas.org
http://www.shoup.net/ntl
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

