Linear independence of rank 1 matrices and the dimension of *-products of codes

Hugues Randriambololona

Telecom ParisTech & LTCI CNRS

ISIT Hong-Kong 2015-06-15

Let V be a finite dimensional vector space, and $X \subseteq V$ an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite $S \subseteq X$, $\dim \langle S \rangle = \min(|S|, \dim V).$

This means: no "unexpected" linear relation between elements of X.

Example: $V = \mathbb{F}_q^k$, $X \subseteq V$, n = |X|, $C = [n, k]_q$ -code with generating matrix whose columns are X. Then: X in general position \iff C MDS. Let V be a finite dimensional vector space, and $X \subseteq V$ an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite $S \subseteq X$, $\dim \langle S \rangle = \min(|S|, \dim V).$

This means: no "unexpected" linear relation between elements of X.

Example: $V = \mathbb{F}_q^k$, $X \subseteq V$, n = |X|, $C = [n, k]_q$ -code with generating matrix whose columns are X. Then: X in general position \iff C MDS.

Weaker variants? Measure of failure?

Let V be a finite dimensional vector space, and $X \subseteq V$ an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite $S \subseteq X$, $\dim \langle S \rangle = \min(|S|, \dim V).$

This means: no "unexpected" linear relation between elements of X.

Example: $V = \mathbb{F}_q^k$, $X \subseteq V$, n = |X|, $C = [n, k]_q$ -code with generating matrix whose columns are X. Then: X in general position \iff C MDS.

Weaker variants? Measure of failure?

Assume X equipped with a probability distribution \mathscr{L} .

Estimate the "error probability"

$$\mathbb{P}(n) = \mathbb{P}[\dim\langle \mathbf{u}_1, \dots, \mathbf{u}_n \rangle < \min(n, \dim V)]$$

for random $\mathbf{u}_1, \dots, \mathbf{u}_n \in X$.

In this work: $V = \mathbb{F}_q^{k \times l}$ matrix space, $X \subseteq V$ set of matrices of rank 1.

Hugues Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015

In this work: $V = \mathbb{F}_a^{k \times l}$ matrix space, $X \subseteq V$ set of matrices of rank 1.

Linked with the theory of products of codes.

Componentwise multiplication: $\mathbf{c} = (c_1, \dots, c_n), \mathbf{c}' = (c'_1, \dots, c'_n) \in \mathbb{F}_q^n$

$$\mathbf{c} * \mathbf{c}' = (c_1 c_1', \dots, c_n c_n') \in \mathbb{F}_q^n.$$

Pass to the linear span: $C, C' \subseteq \mathbb{F}_q^n$

$$C * C' = \langle \mathbf{c} * \mathbf{c}' \rangle_{\mathbf{c} \in C, \mathbf{c}' \in C'} \subseteq \mathbb{F}_q^n$$

 \rightarrow square $C^{\langle 2 \rangle} = C * C$, higher powers $C^{\langle s \rangle}$.

In this work: $V=\mathbb{F}_q^{k\times l}$ matrix space, $X\subseteq V$ set of matrices of rank 1.

Linked with the theory of products of codes.

Componentwise multiplication: $\mathbf{c}=(c_1,\ldots,c_n), \mathbf{c}'=(c'_1,\ldots,c'_n)\in\mathbb{F}_q^n$

$$\mathbf{c} * \mathbf{c}' = (c_1 c_1', \dots, c_n c_n') \in \mathbb{F}_q^n.$$

Pass to the linear span: $C, C' \subseteq \mathbb{F}_q^n$

$$C * C' = \langle \mathbf{c} * \mathbf{c}' \rangle_{\mathbf{c} \in C, \mathbf{c}' \in C'} \subseteq \mathbb{F}_q^n$$

ightarrow square $C^{\langle 2 \rangle} = C * C$, higher powers $C^{\langle s \rangle}$.

Many recent (and less recent) applications:

- bilinear algorithms & arithmetic secret sharing systems
- analysis of McEliece-type cryptosystems
- algebraic decoding (error-correcting pairs, power decoding, ...)
- construction of lattices, oblivious transfer, quantum codes, ...

$Bilinear\ algorithms$

Over \mathbb{F}_q , given a bilinear map B (example: $E=E'=F=\mathbb{F}_{q^r}$, B= field multiplication)

$$E \times E' \longrightarrow F$$

Bilinear algorithms

Over \mathbb{F}_q , given a bilinear map B (example: $E=E'=F=\mathbb{F}_{q^r}$, B= field multiplication) we want linear maps $\varphi, \varphi', \theta$ and a diagram

$$E \times E' \xrightarrow{B} F$$

$$\varphi \times \varphi' \downarrow \qquad \qquad \uparrow \theta$$

$$(\mathbb{F}_q)^n \times (\mathbb{F}_q)^n \xrightarrow{*} (\mathbb{F}_q)^n$$

so
$$B(x, x') = \theta(\varphi(x) * \varphi'(x'))$$
 for $x \in E, x' \in E'$.

Bilinear algorithms

Over \mathbb{F}_q , given a bilinear map B (example: $E=E'=F=\mathbb{F}_{q^r}$, B= field multiplication) we want linear maps $\varphi, \varphi', \theta$ and a diagram

$$E \times E' \xrightarrow{B} F$$

$$\varphi \times \varphi' \downarrow \qquad \qquad \uparrow \theta$$

$$(\mathbb{F}_q)^n \times (\mathbb{F}_q)^n \xrightarrow{*} (\mathbb{F}_q)^n$$

so
$$B(x, x') = \theta(\varphi(x) * \varphi'(x'))$$
 for $x \in E, x' \in E'$.

Observe $\varphi(x) * \varphi'(x') \in C * C'$ where $C = \varphi(E), C' = \varphi'(E')$. Possible objectives: minimize n, maximize d and/or d^{\perp} of C, C', C * C'...

Hugues Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015

Bilinear algorithms

Over \mathbb{F}_q , given a bilinear map B (example: $E=E'=F=\mathbb{F}_{q^r}$, B= field multiplication) we want linear maps $\varphi, \varphi', \theta$ and a diagram

$$E \times E' \xrightarrow{B} F$$

$$\varphi \times \varphi' \downarrow \qquad \qquad \uparrow \theta$$

$$(\mathbb{F}_q)^n \times (\mathbb{F}_q)^n \xrightarrow{*} (\mathbb{F}_q)^n$$

so
$$B(x, x') = \theta(\varphi(x) * \varphi'(x'))$$
 for $x \in E, x' \in E'$.

Observe $\varphi(x) * \varphi'(x') \in C * C'$ where $C = \varphi(E), C' = \varphi'(E')$.

Possible objectives: minimize n, maximize d and/or d^{\perp} of $C, C', C * C' \dots$

Choose bases, set $k = \dim E$, $l = \dim E'$, $f = \dim F$.

Then: $B \iff$ collection of matrices $\mathbf{B}_1, \dots, \mathbf{B}_f \in \mathbb{F}_q^{k imes l}$,

our diagram \iff $\mathbf{u}_1,\ldots,\mathbf{u}_n$ of rank 1 whose span contains $\mathbf{B}_1,\ldots,\mathbf{B}_f$.

Secret key: G with an efficient decoding algorithm, S, P "masks".

Public key: $\hat{\mathbf{G}} = \mathbf{SGP}$ hard to decode (NP-hard if $\hat{\mathbf{G}}$ were really random).

Secret key: G with an efficient decoding algorithm, S, P "masks". Public key: $\widetilde{\mathbf{G}} = \mathbf{SGP}$ hard to decode (NP-hard if $\widetilde{\mathbf{G}}$ were really random).

Attacks:

- distinguish G from a random matrix
- recover its hidden algebraic structure.

McEliece-type cryptosystems

Secret key: G with an efficient decoding algorithm, S, P "masks".

Public key: $\hat{\mathbf{G}} = \mathbf{SGP}$ hard to decode (NP-hard if $\hat{\mathbf{G}}$ were really random).

Attacks:

- distinguish G from a random matrix
- recover its hidden algebraic structure.

Heuristic: for $k = \dim C$, $l = \dim C'$, both of length n.

$$\dim C * C' \le \min(n, kl)$$

$$(\text{proof: } C = \langle \mathbf{c}_i \rangle_{i \in [k]}, \ C' = \langle \mathbf{c}_j' \rangle_{j \in [l]} \implies C * C' = \langle \mathbf{c}_i * \mathbf{c}_j' \rangle_{i \in [k], j \in [l]}).$$

Expects equality for random C, C'.

Strict inequality means (bilinear) algebraic relations between C, C'

(example: $C = [n, k]_{a}$ -RS, $C' = [n, l]_{a}$ -RS $\to C * C' = [n, k + l - 1]_{a}$ -RS).

\underline{McElie} ce-type cryptosystems

Secret key: G with an efficient decoding algorithm, S, P "masks". Public key: $\widetilde{\mathbf{G}} = \mathbf{SGP}$ hard to decode (NP-hard if $\widetilde{\mathbf{G}}$ were really random).

Attacks:

- distinguish G from a random matrix
- recover its hidden algebraic structure.

Heuristic: for $k = \dim C$, $l = \dim C'$, both of length n,

$$\dim C * C' \le \min(n, kl)$$

(proof:
$$C = \langle \mathbf{c}_i \rangle_{i \in [k]}$$
, $C' = \langle \mathbf{c}'_j \rangle_{j \in [l]} \implies C * C' = \langle \mathbf{c}_i * \mathbf{c}'_j \rangle_{i \in [k], j \in [l]}$).

Expects equality for random \tilde{C}, C' .

Strict inequality means (bilinear) algebraic relations between C, C'(example: $C = [n, k]_{a}$ -RS, $C' = [n, l]_{a}$ -RS $\to C * C' = [n, k + l - 1]_{a}$ -RS).

 \rightarrow Apply this to C, C' = subcodes of the row span code of G.

redundant rows).

Row view vs. column view

Let $C = [n, k]_q$ -code with $\mathbf{G} \in \mathbb{F}_q^{k \times n}$ and $C' = [n, l]_q$ -code with $\mathbf{G}' \in \mathbb{F}_q^{l \times n}$. From these we deduce a generating matrix $\hat{\mathbf{G}}$ for C * C' (remark: we allow Let $C = [n, k]_q$ -code with $\mathbf{G} \in \mathbb{F}_q^{k \times n}$ and $C' = [n, l]_q$ -code with $\mathbf{G}' \in \mathbb{F}_q^{l \times n}$.

From these we deduce a generating matrix $\widetilde{\mathbf{G}}$ for C * C' (remark: we allow redundant rows).

Row view: As we just saw, $\{c_i\}_{i\in[k]}$ rows of G, $\{c'_i\}_{i\in[l]}$ rows of G',

 $\rightarrow \{\mathbf{c}_i * \mathbf{c}'_i\}_{i \in [k], j \in [l]} \text{ rows of } \widetilde{\mathbf{G}}.$

Row view vs. column view

Let $C = [n, k]_q$ -code with $\mathbf{G} \in \mathbb{F}_q^{k \times n}$ and $C' = [n, l]_q$ -code with $\mathbf{G}' \in \mathbb{F}_q^{l \times n}$. From these we deduce a generating matrix $\widetilde{\mathbf{G}}$ for C * C' (remark: we allow

From these we deduce a generating matrix G for C * C' (remark: we allow redundant rows).

Row view: As we just saw, $\{\mathbf{c}_i\}_{i\in[k]}$ rows of \mathbf{G} , $\{\mathbf{c}'_j\}_{j\in[l]}$ rows of \mathbf{G}' , $\rightarrow \{\mathbf{c}_i * \mathbf{c}'_j\}_{i\in[k],j\in[l]}$ rows of $\widetilde{\mathbf{G}}$.

Column view: Identify \mathbb{F}_q^{kl} with matrix space $\mathbb{F}_q^{k imes l}$.

Set $\mathbf{p}_1,\ldots,\mathbf{p}_n\in\mathbb{F}_q^k$ columns of \mathbf{G} , $\mathbf{q}_1,\ldots,\mathbf{q}_n\in\mathbb{F}_q^l$ columns of \mathbf{G}' ,

$$\longrightarrow$$
 $\mathbf{u}_i = \mathbf{p}_i \mathbf{q}_i^T \in \mathbb{F}_q^{k \times l} \text{ of rank } (\leq) 1.$

Then $\mathbf{u}_1, \dots, \mathbf{u}_n$ are the columns of \mathbf{G} .

Row view vs. column view

Let $C = [n, k]_q$ -code with $\mathbf{G} \in \mathbb{F}_q^{k \times n}$ and $C' = [n, l]_q$ -code with $\mathbf{G}' \in \mathbb{F}_q^{l \times n}$.

From these we deduce a generating matrix $\hat{\mathbf{G}}$ for C * C' (remark: we allow redundant rows).

Row view: As we just saw, $\{c_i\}_{i\in[k]}$ rows of G, $\{c'_i\}_{i\in[l]}$ rows of G', $\rightarrow \{\mathbf{c}_i * \mathbf{c}'_i\}_{i \in [k], j \in [l]} \text{ rows of } \mathbf{G}.$

Column view: Identify \mathbb{F}_a^{kl} with matrix space $\mathbb{F}_a^{k \times l}$.

Set $\mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{F}_q^k$ columns of $\mathbf{G}, \mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{F}_q^l$ columns of \mathbf{G}' ,

$$\longrightarrow$$
 $\mathbf{u}_i = \mathbf{p}_i \mathbf{q}_i^T \in \mathbb{F}_q^{k \times l} \text{ of rank } (\leq) 1.$

Then $\mathbf{u}_1, \dots, \mathbf{u}_n$ are the columns of \mathbf{G} .

$Row \ rank = column \ rank!$

$$\dim C * C' = \dim \langle \mathbf{u}_1, \dots, \mathbf{u}_n \rangle$$

The setting

- $oldsymbol{G} \in \mathbb{F}_{q}^{k imes n}$, $\mathbf{G}' \in \mathbb{F}_{q}^{l imes n}$ random with uniform distribution
- ullet $C,C'\subseteq \mathbb{F}_q^n$ their respective row spans
- $\mathbf{p}_1, \dots, \mathbf{p}_n \in \mathbb{F}_q^k$, $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{F}_q^l$ their columns, resp. $(\rightarrow$ uniform)
- $\mathbf{u}_i = \mathbf{p}_i \mathbf{q}_i^T \in \mathbb{F}_q^{k \times l}$.

The setting

- $oldsymbol{\mathbf{G}} \in \mathbb{F}_q^{k imes n}$, $\mathbf{G}' \in \mathbb{F}_q^{l imes n}$ random with uniform distribution
- \bullet $C,C'\subseteq\mathbb{F}_q^n$ their respective row spans
- ullet $\mathbf{p}_1,\ldots,\mathbf{p}_n\in\mathbb{F}_q^k$, $\mathbf{q}_1,\ldots,\mathbf{q}_n\in\mathbb{F}_q^l$ their columns, resp. (o uniform)
- $\bullet \ \mathbf{u}_i = \mathbf{p}_i \mathbf{q}_i^T \in \mathbb{F}_q^{k \times l}.$

We are interested in

$$\mathbb{P}(n) = \mathbb{P}[\dim C * C' < \min(n, kl)]$$
$$= \mathbb{P}[\dim \langle \mathbf{u}_1, \dots, \mathbf{u}_n \rangle < \min(n, kl)].$$

The setting

- $oldsymbol{G} \in \mathbb{F}_q^{k imes n}$, $\mathbf{G}' \in \mathbb{F}_q^{l imes n}$ random with uniform distribution
- \bullet $C,C'\subseteq\mathbb{F}_q^n$ their respective row spans
- ullet $\mathbf{p}_1,\ldots,\mathbf{p}_n\in\mathbb{F}_q^k,\ \mathbf{q}_1,\ldots,\mathbf{q}_n\in\mathbb{F}_q^l$ their columns, resp. (o uniform)
- $\bullet \ \mathbf{u}_i = \mathbf{p}_i \mathbf{q}_i^T \in \mathbb{F}_q^{k \times l}.$

We are interested in

$$\mathbb{P}(n) = \mathbb{P}[\dim C * C' < \min(n, kl)]$$
$$= \mathbb{P}[\dim \langle \mathbf{u}_1, \dots, \mathbf{u}_n \rangle < \min(n, kl)].$$

Possible tweaks in the probabilistic model:

- \mathbf{G}, \mathbf{G}' may have zero columns, so $\mathrm{rk}(\mathbf{u}_i) \leq 1$ (with 0 allowed) \to distribution $\mathscr L$ on the set X of $\mathrm{rk} \leq 1$ matrices. However $\mathbf{u}_i = b_i \widetilde{\mathbf{u}}_i$ with $b_i \in \{0,1\}$ Bernoulli $((1-q^{-k})(1-q^{-l}))$, and $\mathrm{rk} \ \widetilde{\mathbf{u}}_i = 1$, uniform.
- Likewise $\dim C \leq k, \dim C' \leq l$, strict inequality allowed...

Hugues Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015

Set $C_q = \prod_{j>1} (1-q^{-j})^{-1} \le C_2 \approx 3.463$, and parameter domain

$$\mathcal{P}(\varepsilon,\kappa) = \left\{ (k,l); \ 2 \le k \le l \le \frac{\varepsilon q^{\kappa k}}{(q-1)k} \right\} \qquad (0 < \varepsilon < 1, \ \kappa > 0).$$

Huques Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015

$$\mathcal{P}(\varepsilon,\kappa) = \left\{ (k,l); \ 2 \le k \le l \le \frac{\varepsilon q^{\kappa k}}{(q-1)k} \right\} \qquad (0 < \varepsilon < 1, \ \kappa > 0).$$

Theorem 16

Suppose κ small enough, so $q^{(1-\kappa)^2} \geq 1 + \frac{q-1}{q}$ (ex: $\kappa = 0.23$).

Then for $(k,l) \in \mathcal{P}(\varepsilon,\kappa)$ and $n \geq kl$, we have

$$\mathbb{P}(n) = \mathbb{P}[\dim C * C' < kl] \le c'' \rho^{n-kl}$$

with
$$\rho = \frac{1}{q} \left(1 + \frac{q-1}{q} \right) < 1$$
 and $c'' = \frac{qC_q}{(q-1)^2} \left(1 + \frac{1}{1-\varepsilon} \right)$.

Theorem 17

For $(k,l) \in \mathcal{P}(\varepsilon,\frac{1}{2})$ and $n \leq kl$, we have

$$\mathbb{P}(n) = \mathbb{P}[\dim C * C' < n] \le \frac{qC_q}{(q-1)^2} \left(\frac{2\varepsilon}{1-\varepsilon} + q^{-(kl-n)}\right).$$

Proof of Theorem 16 $(n \ge kl)$: Union bound + independence give

$$\mathbb{P}(n) \le \sum_{H} \mathbb{P}[\mathbf{u}_1, \dots, \mathbf{u}_n \in H] = \sum_{H} \mathbb{P}[\mathbf{u}_1 \in H]^n \le c' \rho^{n-kl}$$

where $\rho = \max_{H} \mathbb{P}[\mathbf{u}_1 \in H]$, $c' = \sum_{H} \mathbb{P}[\mathbf{u}_1 \in H]^{kl}$, and H ranges over hyperplanes of $V = \mathbb{F}_q^{k \times l}$.

Conclude with estimate on $c' \iff$ count bilinear forms of given rank and the pairs of vectors on which they vanish.

Proof of Theorem 16 $(n \ge kl)$: Union bound + independence give

$$\mathbb{P}(n) \le \sum_{H} \mathbb{P}[\mathbf{u}_1, \dots, \mathbf{u}_n \in H] = \sum_{H} \mathbb{P}[\mathbf{u}_1 \in H]^n \le c' \rho^{n-kl}$$

where $\rho = \max_H \mathbb{P}[\mathbf{u}_1 \in H]$, $c' = \sum_H \mathbb{P}[\mathbf{u}_1 \in H]^{kl}$, and H ranges over hyperplanes of $V = \mathbb{F}_q^{k \times l}$.

Conclude with estimate on $c' \iff$ count bilinear forms of given rank and the pairs of vectors on which they vanish.

Proof of Theorem 17 $(n \le kl)$: Set $\mathbf{s}_j = \mathbf{u}_1 + \cdots + \mathbf{u}_j \in V$.

Then for $\mathbf{z} \in \mathbb{F}_q^n$, $\operatorname{wt}(\mathbf{z}) = w$, we have

$$\mathbb{P}[\mathbf{z} \text{ is a lin. rel. for } \mathbf{u}_1, \dots, \mathbf{u}_n] = \mathbb{P}[\mathbf{s}_w = 0].$$

And then

$$\mathbf{s}_w = 0 \iff \langle \mathbf{x}_1, \dots, \mathbf{x}_k \rangle \perp \langle \mathbf{y}_1, \dots, \mathbf{y}_l \rangle \text{ in } \mathbb{F}_q^w$$

where $\mathbf{x}_1, \dots, \mathbf{x}_k$ and $\mathbf{y}_1, \dots, \mathbf{y}_l$ are the punctured rows of \mathbf{G}, \mathbf{G}' .

Proof of Theorem 16 $(n \ge kl)$: Union bound + independence give

$$\mathbb{P}(n) \le \sum_{H} \mathbb{P}[\mathbf{u}_1, \dots, \mathbf{u}_n \in H] = \sum_{H} \mathbb{P}[\mathbf{u}_1 \in H]^n \le c' \rho^{n-kl}$$

where $\rho = \max_H \mathbb{P}[\mathbf{u}_1 \in H]$, $c' = \sum_H \mathbb{P}[\mathbf{u}_1 \in H]^{kl}$, and H ranges over hyperplanes of $V = \mathbb{F}_q^{k \times l}$.

Conclude with estimate on $c' \iff$ count bilinear forms of given rank and the pairs of vectors on which they vanish.

Proof of Theorem 17 $(n \leq kl)$: Set $\mathbf{s}_j = \mathbf{u}_1 + \cdots + \mathbf{u}_j \in V$.

Then for $\mathbf{z} \in \mathbb{F}_q^n$, $\operatorname{wt}(\mathbf{z}) = w$, we have

$$\mathbb{P}[\mathbf{z} \text{ is a lin. rel. for } \mathbf{u}_1, \dots, \mathbf{u}_n] = \mathbb{P}[\mathbf{s}_w = 0].$$

And then

$$\mathbf{s}_w = 0 \iff \langle \mathbf{x}_1, \dots, \mathbf{x}_k \rangle \perp \langle \mathbf{y}_1, \dots, \mathbf{y}_l \rangle \text{ in } \mathbb{F}_q^w$$

where $\mathbf{x}_1, \dots, \mathbf{x}_k$ and $\mathbf{y}_1, \dots, \mathbf{y}_l$ are the punctured rows of \mathbf{G}, \mathbf{G}' .

Note: some of these ingredients are generic and work for arbitrary V, X, \mathcal{L} .

Get rid of the $\mathcal{P}(\varepsilon, \kappa)$ conditions?

- In fact these were introduced only to get explicit constants. E.g. (for $n \geq kl$) by the generic approach, $\mathbb{P}(n) \geq c' \rho^{n-kl}$, so case $n \gg kl$ seems tractable, but new ideas needed for n close to kl.
- Also perhaps coming from our probabilistic model. Otherwise, restricting G, G' to have full rank, and/or to have no zero column, should only lead to stronger bounds!

Get rid of the $\mathcal{P}(\varepsilon, \kappa)$ conditions?

- In fact these were introduced only to get explicit constants. E.g. (for $n \ge kl$) by the generic approach, $\mathbb{P}(n) > c' \rho^{n-kl}$, so case $n \gg kl$ seems tractable, but new ideas needed for n close to kl.
- Also perhaps coming from our probabilistic model. Otherwise, restricting G, G' to have full rank, and/or to have no zero column, should only lead to stronger bounds!

Still in our model we can derive an interesting unconditional result:

Theorem 18

For any (k, l), and $k + l \le n \le kl$, we have

$$\mathbb{P}[d_{\max}(C * C')^{\perp} \ge k + l] \le \frac{qC_q}{(q-1)^2}q^{-(kl-n)}.$$

(Proof: included in that of Theorem 17!)

So with high probability $(C * C')^{\perp}$ has small d_{max} . This is a very strong restriction. It forces $(C * C')^{\perp}$ small, hence C * C' large, as expected.

For any $[n, k]_q$ -code C we have

$$\dim C^{\langle 2 \rangle} \le \min(n, \frac{k(k+1)}{2})$$

(proof:
$$C = \langle \mathbf{c}_i \rangle_{1 \leq i \leq k} \implies C^{\langle 2 \rangle} = \langle \mathbf{c}_i * \mathbf{c}_j \rangle_{1 \leq i \leq j \leq k}$$
).

Expects equality for random C.

For any $[n, k]_q$ -code C we have

$$\dim C^{\langle 2 \rangle} \le \min(n, \frac{k(k+1)}{2})$$

(proof:
$$C = \langle \mathbf{c}_i \rangle_{1 \leq i \leq k} \implies C^{\langle 2 \rangle} = \langle \mathbf{c}_i * \mathbf{c}_j \rangle_{1 \leq i \leq j \leq k}$$
).

Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}[\dim C^{\langle 2 \rangle} < \min(n, \frac{k(k+1)}{2})].$

For any $[n, k]_q$ -code C we have

$$\dim C^{\langle 2 \rangle} \le \min(n, \frac{k(k+1)}{2})$$

(proof:
$$C = \langle \mathbf{c}_i \rangle_{1 \leq i \leq k} \implies C^{\langle 2 \rangle} = \langle \mathbf{c}_i * \mathbf{c}_j \rangle_{1 \leq i \leq j \leq k}$$
).

Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}[\dim C^{\langle 2 \rangle} < \min(n, \frac{k(k+1)}{2})].$

Likewise for any s > 2,

$$\dim C^{\langle s \rangle} \le \min(n, \binom{k+s-1}{s}).$$

For any $[n, k]_q$ -code C we have

$$\dim C^{\langle 2 \rangle} \le \min(n, \frac{k(k+1)}{2})$$

(proof:
$$C = \langle \mathbf{c}_i \rangle_{1 \leq i \leq k} \implies C^{\langle 2 \rangle} = \langle \mathbf{c}_i * \mathbf{c}_j \rangle_{1 \leq i \leq j \leq k}$$
).

Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}[\dim C^{\langle 2 \rangle} < \min(n, \frac{k(k+1)}{2})].$

Likewise for any $s \geq 2$,

$$\dim C^{\langle s \rangle} \le \min(n, \binom{k+s-1}{s}).$$

Warning!

 $\dim C^{\langle s \rangle} < \binom{k+s-1}{s}$ always strict. For s > q, we have:

For any $[n, k]_q$ -code C we have

$$\dim C^{\langle 2 \rangle} \le \min(n, \frac{k(k+1)}{2})$$

$$(\text{proof: } C = \langle \mathbf{c}_i \rangle_{1 \leq i \leq k} \implies C^{\langle 2 \rangle} = \langle \mathbf{c}_i * \mathbf{c}_j \rangle_{1 \leq i \leq j \leq k}).$$

Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}[\dim C^{\langle 2 \rangle} < \min(n, \frac{k(k+1)}{2})].$

Likewise for any s > 2, $\dim C^{\langle s \rangle} \leq \min(n, \binom{k+s-1}{s}).$

Warning!

For s > q, we have: $\dim C^{\langle s \rangle} < \binom{k+s-1}{s}$ always strict.

Reason: $C^s \stackrel{*}{\longrightarrow} C^{\langle s \rangle}$ is Frobenius-symmetric. Hence $\dim C^{\langle s \rangle} \leq \min(n, \chi_a(k, s))$

where
$$\chi_q(k,s) = \dim(\mathbb{F}_q[t_1,\ldots,t_k]/(t_i^q t_i - t_i t_i^q))_s < \binom{k+s-1}{s}$$
.

In the proof of Theorem 17, we introduced

$$\mathbf{s}_j = \mathbf{u}_1 + \dots + \mathbf{u}_j.$$

This defines a random walk in $\mathbb{F}_q^{k \times l}$ (or $\mathbb{F}_q^k \otimes \mathbb{F}_q^l$) whose steps are rank 1 matrices (or elementary tensors).

In the proof of Theorem 17, we introduced

$$\mathbf{s}_j = \mathbf{u}_1 + \dots + \mathbf{u}_j.$$

This defines a random walk in $\mathbb{F}_q^{k \times l}$ (or $\mathbb{F}_q^k \otimes \mathbb{F}_q^l$) whose steps are rank 1 matrices (or elementary tensors).

Very natural object, with nice algebraic properties.

Same for the associated $r_i = \operatorname{rk} \mathbf{s}_i$, Markov chain with values in [k].

→ Work in progress, joint with D. Madore et al.

In the proof of Theorem 17, we introduced

$$\mathbf{s}_j = \mathbf{u}_1 + \dots + \mathbf{u}_j.$$

This defines a random walk in $\mathbb{F}_q^{k \times l}$ (or $\mathbb{F}_q^k \otimes \mathbb{F}_q^l$) whose steps are rank 1 matrices (or elementary tensors).

Very natural object, with nice algebraic properties.

Same for the associated $r_i = \operatorname{rk} \mathbf{s}_i$, Markov chain with values in [k].

- → Work in progress, joint with D. Madore et al.
- So far we considered only dimension of products. More challenging: consider dimension together with minimum distance.

In the proof of Theorem 17, we introduced

$$\mathbf{s}_j = \mathbf{u}_1 + \dots + \mathbf{u}_j.$$

This defines a random walk in $\mathbb{F}_q^{k \times l}$ (or $\mathbb{F}_q^k \otimes \mathbb{F}_q^l$) whose steps are rank 1 matrices (or elementary tensors).

Very natural object, with nice algebraic properties.

Same for the associated $r_i = \operatorname{rk} \mathbf{s}_i$, Markov chain with values in [k].

- → Work in progress, joint with D. Madore et al.
- So far we considered only dimension of products. More challenging: consider dimension together with minimum distance.

Do products of random codes, or squares of random codes, typically form asymptotically good families?

In the proof of Theorem 17, we introduced

$$\mathbf{s}_j = \mathbf{u}_1 + \dots + \mathbf{u}_j.$$

This defines a random walk in $\mathbb{F}_q^{k \times l}$ (or $\mathbb{F}_q^k \otimes \mathbb{F}_q^l$) whose steps are rank 1 matrices (or elementary tensors).

Very natural object, with nice algebraic properties.

Same for the associated $r_i = \operatorname{rk} \mathbf{s}_i$, Markov chain with values in [k].

- → Work in progress, joint with D. Madore et al.
- So far we considered only dimension of products. More challenging: consider dimension together with minimum distance.

Do products of random codes, or squares of random codes, typically form asymptotically good families?

Do they lie on the Gilbert-Varshamov bound?

(Observe the answer is negative if we replace *-product with tensor product.)