Linear independence of rank 1 matrices and the dimension of $*$-products of codes

Hugues Randriambololona

Telecom ParisTech \& LTCI CNRS
ISIT Hong-Kong
2015-06-15

Let V be a finite dimensional vector space, and $X \subseteq V$ an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite $S \subseteq X$,

$$
\operatorname{dim}\langle S\rangle=\min (|S|, \operatorname{dim} V)
$$

This means: no "unexpected" linear relation between elements of X.
Example: $V=\mathbb{F}_{q}^{k}, X \subseteq V, n=|X|, C=[n, k]_{q}$-code with generating matrix whose columns are X. Then: X in general position $\Longleftrightarrow C$ MDS.

Let V be a finite dimensional vector space, and $X \subseteq V$ an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite $S \subseteq X$,

$$
\operatorname{dim}\langle S\rangle=\min (|S|, \operatorname{dim} V)
$$

This means: no "unexpected" linear relation between elements of X.
Example: $V=\mathbb{F}_{q}^{k}, X \subseteq V, n=|X|, C=[n, k]_{q}$-code with generating matrix whose columns are X. Then: X in general position $\Longleftrightarrow C$ MDS.

Weaker variants? Measure of failure?

Let V be a finite dimensional vector space, and $X \subseteq V$ an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite $S \subseteq X$, $\operatorname{dim}\langle S\rangle=\min (|S|, \operatorname{dim} V)$.

This means: no "unexpected" linear relation between elements of X.
Example: $V=\mathbb{F}_{q}^{k}, X \subseteq V, n=|X|, C=[n, k]_{q}$-code with generating matrix whose columns are X. Then: X in general position $\Longleftrightarrow C$ MDS.

Weaker variants? Measure of failure?
Assume X equipped with a probability distribution \mathscr{L}.
Estimate the "error probability"

$$
\mathbb{P}(n)=\mathbb{P}\left[\operatorname{dim}\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\rangle<\min (n, \operatorname{dim} V)\right]
$$

for random $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in X$.

In this work: $V=\mathbb{F}_{q}^{k \times l}$ matrix space, $X \subseteq V$ set of matrices of rank 1 .

In this work: $V=\mathbb{F}_{q}^{k \times l}$ matrix space, $X \subseteq V$ set of matrices of rank 1 .
Linked with the theory of products of codes.
Componentwise multiplication: $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right), \mathbf{c}^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \in \mathbb{F}_{q}^{n}$

$$
\mathbf{c} * \mathbf{c}^{\prime}=\left(c_{1} c_{1}^{\prime}, \ldots, c_{n} c_{n}^{\prime}\right) \in \mathbb{F}_{q}^{n}
$$

Pass to the linear span: $C, C^{\prime} \subseteq \mathbb{F}_{q}^{n}$

$$
C * C^{\prime}=\left\langle\mathbf{c} * \mathbf{c}^{\prime}\right\rangle_{\mathbf{c} \in C, \mathbf{c}^{\prime} \in C^{\prime}} \subseteq \mathbb{F}_{q}^{n}
$$

\rightarrow square $C^{\langle 2\rangle}=C * C$, higher powers $C^{\langle s\rangle}$.

In this work: $V=\mathbb{F}_{q}^{k \times l}$ matrix space, $X \subseteq V$ set of matrices of rank 1 .
Linked with the theory of products of codes.
Componentwise multiplication: $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right), \mathbf{c}^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \in \mathbb{F}_{q}^{n}$

$$
\mathbf{c} * \mathbf{c}^{\prime}=\left(c_{1} c_{1}^{\prime}, \ldots, c_{n} c_{n}^{\prime}\right) \in \mathbb{F}_{q}^{n}
$$

Pass to the linear span: $C, C^{\prime} \subseteq \mathbb{F}_{q}^{n}$

$$
C * C^{\prime}=\left\langle\mathbf{c} * \mathbf{c}^{\prime}\right\rangle_{\mathbf{c} \in C, \mathbf{c}^{\prime} \in C^{\prime}} \subseteq \mathbb{F}_{q}^{n}
$$

\rightarrow square $C^{\langle 2\rangle}=C * C$, higher powers $C^{\langle s\rangle}$.
Many recent (and less recent) applications:

- bilinear algorithms \& arithmetic secret sharing systems
- analysis of McEliece-type cryptosystems
- algebraic decoding (error-correcting pairs, power decoding, ...)
- construction of lattices, oblivious transfer, quantum codes, ...

Bilinear algorithms

Over \mathbb{F}_{q}, given a bilinear map B (example: $E=E^{\prime}=F=\mathbb{F}_{q^{r}}, B=$ field multiplication)

$$
E \times E^{\prime} \quad \xrightarrow{B} \quad F
$$

Bilinear algorithms

Over \mathbb{F}_{q}, given a bilinear map B (example: $E=E^{\prime}=F=\mathbb{F}_{q^{r}}, B=$ field multiplication) we want linear maps $\varphi, \varphi^{\prime}, \theta$ and a diagram

so $B\left(x, x^{\prime}\right)=\theta\left(\varphi(x) * \varphi^{\prime}\left(x^{\prime}\right)\right)$ for $x \in E, x^{\prime} \in E^{\prime}$.

Bilinear algorithms

Over \mathbb{F}_{q}, given a bilinear map B (example: $E=E^{\prime}=F=\mathbb{F}_{q^{r}}, B=$ field multiplication) we want linear maps $\varphi, \varphi^{\prime}, \theta$ and a diagram

so $B\left(x, x^{\prime}\right)=\theta\left(\varphi(x) * \varphi^{\prime}\left(x^{\prime}\right)\right)$ for $x \in E, x^{\prime} \in E^{\prime}$.
Observe $\varphi(x) * \varphi^{\prime}\left(x^{\prime}\right) \in C * C^{\prime}$ where $C=\varphi(E), C^{\prime}=\varphi^{\prime}\left(E^{\prime}\right)$.
Possible objectives: minimize n, maximize d and/or d^{\perp} of $C, C^{\prime}, C * C^{\prime} \ldots$

Bilinear algorithms

Over \mathbb{F}_{q}, given a bilinear map B (example: $E=E^{\prime}=F=\mathbb{F}_{q^{r}}, B=$ field multiplication) we want linear maps $\varphi, \varphi^{\prime}, \theta$ and a diagram

so $B\left(x, x^{\prime}\right)=\theta\left(\varphi(x) * \varphi^{\prime}\left(x^{\prime}\right)\right)$ for $x \in E, x^{\prime} \in E^{\prime}$.
Observe $\varphi(x) * \varphi^{\prime}\left(x^{\prime}\right) \in C * C^{\prime}$ where $C=\varphi(E), C^{\prime}=\varphi^{\prime}\left(E^{\prime}\right)$.
Possible objectives: minimize n, maximize d and/or d^{\perp} of $C, C^{\prime}, C * C^{\prime} \ldots$
Choose bases, set $k=\operatorname{dim} E, l=\operatorname{dim} E^{\prime}, f=\operatorname{dim} F$.
Then: $B \Longleftrightarrow$ collection of matrices $\mathbf{B}_{1}, \ldots, \mathbf{B}_{f} \in \mathbb{F}_{q}^{k \times l}$,
our diagram $\Longleftrightarrow \mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ of rank 1 whose span contains $\mathbf{B}_{1}, \ldots, \mathbf{B}_{f}$.

McEliece-type cryptosystems

Secret key: \mathbf{G} with an efficient decoding algorithm, \mathbf{S}, \mathbf{P} "masks". Public key: $\widetilde{\mathbf{G}}=\mathbf{S G P}$ hard to decode (NP-hard if $\widetilde{\mathbf{G}}$ were really random).

McEliece-type cryptosystems

Secret key: \mathbf{G} with an efficient decoding algorithm, \mathbf{S}, \mathbf{P} "masks". Public key: $\widetilde{\mathbf{G}}=\mathbf{S G P}$ hard to decode (NP-hard if $\widetilde{\mathbf{G}}$ were really random).

Attacks:

- distinguish $\widetilde{\mathbf{G}}$ from a random matrix
- recover its hidden algebraic structure.

McEliece-type cryptosystems

Secret key: \mathbf{G} with an efficient decoding algorithm, \mathbf{S}, \mathbf{P} "masks". Public key: $\widetilde{\mathbf{G}}=\mathbf{S G P}$ hard to decode (NP-hard if $\widetilde{\mathbf{G}}$ were really random).

Attacks:

- distinguish $\widetilde{\mathbf{G}}$ from a random matrix
- recover its hidden algebraic structure.

Heuristic: for $k=\operatorname{dim} C, l=\operatorname{dim} C^{\prime}$, both of length n,

$$
\operatorname{dim} C * C^{\prime} \leq \min (n, k l)
$$

(proof: $C=\left\langle\mathbf{c}_{i}\right\rangle_{i \in[k]}, C^{\prime}=\left\langle\mathbf{c}_{j}^{\prime}\right\rangle_{j \in[l]} \Longrightarrow C * C^{\prime}=\left\langle\mathbf{c}_{i} * \mathbf{c}_{j}^{\prime}\right\rangle_{i \in[k], j \in[l]}$).
Expects equality for random C, C^{\prime}.
Strict inequality means (bilinear) algebraic relations between C, C^{\prime} (example: $C=[n, k]_{q^{-}}$-RS, $C^{\prime}=[n, l]_{q^{-}}$-RS $\rightarrow C * C^{\prime}=[n, k+l-1]_{q^{-}}$RS).

McEliece-type cryptosystems

Secret key: \mathbf{G} with an efficient decoding algorithm, \mathbf{S}, \mathbf{P} "masks". Public key: $\widetilde{\mathbf{G}}=\mathbf{S G P}$ hard to decode (NP-hard if $\widetilde{\mathbf{G}}$ were really random).

Attacks:

- distinguish $\widetilde{\mathbf{G}}$ from a random matrix
- recover its hidden algebraic structure.

Heuristic: for $k=\operatorname{dim} C, l=\operatorname{dim} C^{\prime}$, both of length n,

$$
\operatorname{dim} C * C^{\prime} \leq \min (n, k l)
$$

(proof: $C=\left\langle\mathbf{c}_{i}\right\rangle_{i \in[k]}, C^{\prime}=\left\langle\mathbf{c}_{j}^{\prime}\right\rangle_{j \in[l]} \Longrightarrow C * C^{\prime}=\left\langle\mathbf{c}_{i} * \mathbf{c}_{j}^{\prime}\right\rangle_{i \in[k], j \in[l]}$).
Expects equality for random C, C^{\prime}.
Strict inequality means (bilinear) algebraic relations between C, C^{\prime} (example: $C=[n, k]_{q^{-}}$-RS, $C^{\prime}=[n, l]_{q^{-}}$-RS $\rightarrow C * C^{\prime}=[n, k+l-1]_{q^{-}}$RS).
\rightarrow Apply this to $C, C^{\prime}=$ subcodes of the row span code of $\widetilde{\mathbf{G}}$.

Row view vs. column view

Let $C=[n, k]_{q}$-code with $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ and $C^{\prime}=[n, l]_{q}$-code with $\mathbf{G}^{\prime} \in \mathbb{F}_{q}^{l \times n}$. From these we deduce a generating matrix $\widetilde{\mathbf{G}}$ for $C * C^{\prime}$ (remark: we allow redundant rows).

Row view vs. column view

Let $C=[n, k]_{q}$-code with $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ and $C^{\prime}=[n, l]_{q}$-code with $\mathbf{G}^{\prime} \in \mathbb{F}_{q}^{l \times n}$. From these we deduce a generating matrix $\widetilde{\mathbf{G}}$ for $C * C^{\prime}$ (remark: we allow redundant rows).

Row view: As we just saw, $\left\{\mathbf{c}_{i}\right\}_{i \in[k]}$ rows of $\mathbf{G},\left\{\mathbf{c}_{j}^{\prime}\right\}_{j \in[l]}$ rows of \mathbf{G}^{\prime}, $\rightarrow\left\{\mathbf{c}_{i} * \mathbf{c}_{j}^{\prime}\right\}_{i \in[k], j \in[l]}$ rows of $\widetilde{\mathbf{G}}$.

Row view vs. column view

Let $C=[n, k]_{q}$-code with $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ and $C^{\prime}=[n, l]_{q}$-code with $\mathbf{G}^{\prime} \in \mathbb{F}_{q}^{l \times n}$. From these we deduce a generating matrix $\widetilde{\mathbf{G}}$ for $C * C^{\prime}$ (remark: we allow redundant rows).

Row view: As we just saw, $\left\{\mathbf{c}_{i}\right\}_{i \in[k]}$ rows of $\mathbf{G},\left\{\mathbf{c}_{j}^{\prime}\right\}_{j \in[l]}$ rows of \mathbf{G}^{\prime}, $\rightarrow\left\{\mathbf{c}_{i} * \mathbf{c}_{j}^{\prime}\right\}_{i \in[k], j \in[l]}$ rows of $\widetilde{\mathbf{G}}$.

Column view: Identify $\mathbb{F}_{q}^{k l}$ with matrix space $\mathbb{F}_{q}^{k \times l}$. Set $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathbb{F}_{q}^{k}$ columns of $\mathbf{G}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{n} \in \mathbb{F}_{q}^{l}$ columns of \mathbf{G}^{\prime},

$$
\longrightarrow \quad \mathbf{u}_{i}=\mathbf{p}_{i} \mathbf{q}_{i}^{T} \in \mathbb{F}_{q}^{k \times l} \text { of } \operatorname{rank}(\leq) 1 .
$$

Then $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are the columns of $\widetilde{\mathbf{G}}$.

Row view vs. column view

Let $C=[n, k]_{q}$-code with $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ and $C^{\prime}=[n, l]_{q}$-code with $\mathbf{G}^{\prime} \in \mathbb{F}_{q}^{l \times n}$. From these we deduce a generating matrix $\widetilde{\mathbf{G}}$ for $C * C^{\prime}$ (remark: we allow redundant rows).

Row view: As we just saw, $\left\{\mathbf{c}_{i}\right\}_{i \in[k]}$ rows of $\mathbf{G},\left\{\mathbf{c}_{j}^{\prime}\right\}_{j \in[l]}$ rows of \mathbf{G}^{\prime}, $\rightarrow\left\{\mathbf{c}_{i} * \mathbf{c}_{j}^{\prime}\right\}_{i \in[k], j \in[l]}$ rows of $\widetilde{\mathbf{G}}$.

Column view: Identify $\mathbb{F}_{q}^{k l}$ with matrix space $\mathbb{F}_{q}^{k \times l}$.
Set $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathbb{F}_{q}^{k}$ columns of $\mathbf{G}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{n} \in \mathbb{F}_{q}^{l}$ columns of \mathbf{G}^{\prime},

$$
\longrightarrow \quad \mathbf{u}_{i}=\mathbf{p}_{i} \mathbf{q}_{i}^{T} \in \mathbb{F}_{q}^{k \times l} \text { of } \operatorname{rank}(\leq) 1
$$

Then $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are the columns of $\widetilde{\mathbf{G}}$.

Row rank = column rank!

$$
\operatorname{dim} C * C^{\prime}=\operatorname{dim}\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\rangle
$$

The setting

- $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}, \mathbf{G}^{\prime} \in \mathbb{F}_{q}^{l \times n}$ random with uniform distribution
- $C, C^{\prime} \subseteq \mathbb{F}_{q}^{n}$ their respective row spans
- $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathbb{F}_{q}^{k}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{n} \in \mathbb{F}_{q}^{l}$ their columns, resp. (\rightarrow uniform)
- $\mathbf{u}_{i}=\mathbf{p}_{i} \mathbf{q}_{i}^{T} \in \mathbb{F}_{q}^{k \times l}$.

The setting

- $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}, \mathbf{G}^{\prime} \in \mathbb{F}_{q}^{l \times n}$ random with uniform distribution
- $C, C^{\prime} \subseteq \mathbb{F}_{q}^{n}$ their respective row spans
- $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathbb{F}_{q}^{k}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{n} \in \mathbb{F}_{q}^{l}$ their columns, resp. (\rightarrow uniform)
- $\mathbf{u}_{i}=\mathbf{p}_{i} \mathbf{q}_{i}^{T} \in \mathbb{F}_{q}^{k \times l}$.

We are interested in

$$
\begin{aligned}
\mathbb{P}(n) & =\mathbb{P}\left[\operatorname{dim} C * C^{\prime}<\min (n, k l)\right] \\
& =\mathbb{P}\left[\operatorname{dim}\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\rangle<\min (n, k l)\right] .
\end{aligned}
$$

The setting

- $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}, \mathbf{G}^{\prime} \in \mathbb{F}_{q}^{l \times n}$ random with uniform distribution
- $C, C^{\prime} \subseteq \mathbb{F}_{q}^{n}$ their respective row spans
- $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathbb{F}_{q}^{k}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{n} \in \mathbb{F}_{q}^{l}$ their columns, resp. (\rightarrow uniform)
- $\mathbf{u}_{i}=\mathbf{p}_{i} \mathbf{q}_{i}^{T} \in \mathbb{F}_{q}^{k \times l}$.

We are interested in

$$
\begin{aligned}
\mathbb{P}(n) & =\mathbb{P}\left[\operatorname{dim} C * C^{\prime}<\min (n, k l)\right] \\
& =\mathbb{P}\left[\operatorname{dim}\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\rangle<\min (n, k l)\right]
\end{aligned}
$$

Possible tweaks in the probabilistic model:

- $\mathbf{G}, \mathbf{G}^{\prime}$ may have zero columns, so $\operatorname{rk}\left(\mathbf{u}_{i}\right) \leq 1$ (with 0 allowed) \rightarrow distribution \mathscr{L} on the set X of $\mathrm{rk} \leq 1$ matrices. However $\mathbf{u}_{i}=b_{i} \widetilde{\mathbf{u}}_{i}$ with $b_{i} \in\{0,1\}$ Bernoulli $\left(\left(1-q^{-k}\right)\left(1-q^{-l}\right)\right)$, and rk $\widetilde{\mathbf{u}}_{i}=1$, uniform.
- Likewise $\operatorname{dim} C \leq k, \operatorname{dim} C^{\prime} \leq l$, strict inequality allowed...

Set $C_{q}=\prod_{j \geq 1}\left(1-q^{-j}\right)^{-1} \leq C_{2} \approx 3.463$, and parameter domain

$$
\mathcal{P}(\varepsilon, \kappa)=\left\{(k, l) ; 2 \leq k \leq l \leq \frac{\varepsilon q^{\kappa k}}{(q-1) k}\right\}
$$

$$
(0<\varepsilon<1, \kappa>0) .
$$

Set $C_{q}=\prod_{j \geq 1}\left(1-q^{-j}\right)^{-1} \leq C_{2} \approx 3.463$, and parameter domain

$$
\mathcal{P}(\varepsilon, \kappa)=\left\{(k, l) ; 2 \leq k \leq l \leq \frac{\varepsilon q^{\kappa k}}{(q-1) k}\right\} \quad(0<\varepsilon<1, \kappa>0) .
$$

Theorem 16

Suppose κ small enough, so $q^{(1-\kappa)^{2}} \geq 1+\frac{q-1}{q}($ ex: $\kappa=0.23$).
Then for $(k, l) \in \mathcal{P}(\varepsilon, \kappa)$ and $n \geq k l$, we have

$$
\mathbb{P}(n)=\mathbb{P}\left[\operatorname{dim} C * C^{\prime}<k l\right] \leq c^{\prime \prime} \rho^{n-k l}
$$

with $\rho=\frac{1}{q}\left(1+\frac{q-1}{q}\right)<1$ and $c^{\prime \prime}=\frac{q C_{q}}{(q-1)^{2}}\left(1+\frac{1}{1-\varepsilon}\right)$.

Theorem 17

For $(k, l) \in \mathcal{P}\left(\varepsilon, \frac{1}{2}\right)$ and $n \leq k l$, we have

$$
\mathbb{P}(n)=\mathbb{P}\left[\operatorname{dim} C * C^{\prime}<n\right] \leq \frac{q C_{q}}{(q-1)^{2}}\left(\frac{2 \varepsilon}{1-\varepsilon}+q^{-(k l-n)}\right) .
$$

Proof of Theorem $16(n \geq k l)$: Union bound + independence give

$$
\mathbb{P}(n) \leq \sum_{H} \mathbb{P}\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in H\right]=\sum_{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right]^{n} \leq c^{\prime} \rho^{n-k l}
$$

where $\rho=\max _{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right], c^{\prime}=\sum_{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right]^{k l}$, and H ranges over hyperplanes of $V=\mathbb{F}_{q}^{k \times l}$.
Conclude with estimate on $c^{\prime} \Longleftrightarrow$ count bilinear forms of given rank and the pairs of vectors on which they vanish.

Proof of Theorem $16(n \geq k l)$: Union bound + independence give

$$
\mathbb{P}(n) \leq \sum_{H} \mathbb{P}\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in H\right]=\sum_{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right]^{n} \leq c^{\prime} \rho^{n-k l}
$$

where $\rho=\max _{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right], c^{\prime}=\sum_{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right]^{k l}$, and H ranges over hyperplanes of $V=\mathbb{F}_{q}^{k \times l}$.
Conclude with estimate on $c^{\prime} \Longleftrightarrow$ count bilinear forms of given rank and the pairs of vectors on which they vanish.

Proof of Theorem $17(n \leq k l)$: Set $\mathbf{s}_{j}=\mathbf{u}_{1}+\cdots+\mathbf{u}_{j} \in V$.
Then for $\mathbf{z} \in \mathbb{F}_{q}^{n}, \mathrm{wt}(\mathbf{z})=w$, we have

$$
\mathbb{P}\left[\mathbf{z} \text { is a lin. rel. for } \mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right]=\mathbb{P}\left[\mathbf{s}_{w}=0\right] .
$$

And then

$$
\mathbf{s}_{w}=0 \quad \Longleftrightarrow \quad\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\rangle \perp\left\langle\mathbf{y}_{1}, \ldots, \mathbf{y}_{l}\right\rangle \text { in } \mathbb{F}_{q}^{w}
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{l}$ are the punctured rows of $\mathbf{G}, \mathbf{G}^{\prime}$.

Proof of Theorem $16(n \geq k l)$: Union bound + independence give

$$
\mathbb{P}(n) \leq \sum_{H} \mathbb{P}\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in H\right]=\sum_{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right]^{n} \leq c^{\prime} \rho^{n-k l}
$$

where $\rho=\max _{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right], c^{\prime}=\sum_{H} \mathbb{P}\left[\mathbf{u}_{1} \in H\right]^{k l}$, and H ranges over hyperplanes of $V=\mathbb{F}_{q}^{k \times l}$.
Conclude with estimate on $c^{\prime} \Longleftrightarrow$ count bilinear forms of given rank and the pairs of vectors on which they vanish.

Proof of Theorem $17(n \leq k l)$: Set $\mathbf{s}_{j}=\mathbf{u}_{1}+\cdots+\mathbf{u}_{j} \in V$.
Then for $\mathbf{z} \in \mathbb{F}_{q}^{n}, \mathrm{wt}(\mathbf{z})=w$, we have

$$
\mathbb{P}\left[\mathbf{z} \text { is a lin. rel. for } \mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right]=\mathbb{P}\left[\mathbf{s}_{w}=0\right] .
$$

And then

$$
\mathbf{s}_{w}=0 \quad \Longleftrightarrow \quad\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\rangle \perp\left\langle\mathbf{y}_{1}, \ldots, \mathbf{y}_{l}\right\rangle \text { in } \mathbb{F}_{q}^{w}
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{l}$ are the punctured rows of $\mathbf{G}, \mathbf{G}^{\prime}$.
Note: some of these ingredients are generic and work for arbitrary V, X, \mathscr{L}.

Get rid of the $\mathcal{P}(\varepsilon, \kappa)$ conditions?

- In fact these were introduced only to get explicit constants. E.g. (for $n \geq k l$) by the generic approach, $\mathbb{P}(n) \geq c^{\prime} \rho^{n-k l}$, so case $n \gg k l$ seems tractable, but new ideas needed for n close to $k l$.
- Also perhaps coming from our probabilistic model. Otherwise, restricting $\mathbf{G}, \mathbf{G}^{\prime}$ to have full rank, and/or to have no zero column, should only lead to stronger bounds!

Get rid of the $\mathcal{P}(\varepsilon, \kappa)$ conditions?

- In fact these were introduced only to get explicit constants. E.g. (for $n \geq k l$) by the generic approach, $\mathbb{P}(n) \geq c^{\prime} \rho^{n-k l}$, so case $n \gg k l$ seems tractable, but new ideas needed for n close to $k l$.
- Also perhaps coming from our probabilistic model. Otherwise, restricting $\mathbf{G}, \mathbf{G}^{\prime}$ to have full rank, and/or to have no zero column, should only lead to stronger bounds!

Still in our model we can derive an interesting unconditional result:

Theorem 18

For any (k, l), and $k+l \leq n \leq k l$, we have

$$
\mathbb{P}\left[\mathrm{d}_{\max }\left(C * C^{\prime}\right)^{\perp} \geq k+l\right] \leq \frac{q C_{q}}{(q-1)^{2}} q^{-(k l-n)}
$$

(Proof: included in that of Theorem 17!)
So with high probability $\left(C * C^{\prime}\right)^{\perp}$ has small $\mathrm{d}_{\text {max }}$. This is a very strong restriction. It forces $\left(C * C^{\prime}\right)^{\perp}$ small, hence $C * C^{\prime}$ large, as expected.

Squares and higher powers

For any $[n, k]_{q}$-code C we have

$$
\operatorname{dim} C^{\langle 2\rangle} \leq \min \left(n, \frac{k(k+1)}{2}\right)
$$

(proof: $C=\left\langle\mathbf{c}_{i}\right\rangle_{1 \leq i \leq k} \Longrightarrow C^{2\rangle}=\left\langle\mathbf{c}_{i} * \mathbf{c}_{j}\right\rangle_{1 \leq i \leq j \leq k}$). Expects equality for random C.

Squares and higher powers

For any $[n, k]_{q}$-code C we have

$$
\operatorname{dim} C^{\langle 2\rangle} \leq \min \left(n, \frac{k(k+1)}{2}\right)
$$

(proof: $C=\left\langle\mathbf{c}_{i}\right\rangle_{1 \leq i \leq k} \Longrightarrow C^{\langle 2\rangle}=\left\langle\mathbf{c}_{i} * \mathbf{c}_{j}\right\rangle_{1 \leq i \leq j \leq k}$).
Expects equality for random C.
And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}\left[\operatorname{dim} C^{\langle 2\rangle}<\min \left(n, \frac{k(k+1)}{2}\right)\right]$.

Squares and higher powers

For any $[n, k]_{q}$-code C we have

$$
\operatorname{dim} C^{\langle 2\rangle} \leq \min \left(n, \frac{k(k+1)}{2}\right)
$$

(proof: $C=\left\langle\mathbf{c}_{i}\right\rangle_{1 \leq i \leq k} \Longrightarrow C^{2\rangle}=\left\langle\mathbf{c}_{i} * \mathbf{c}_{j}\right\rangle_{1 \leq i \leq j \leq k}$).
Expects equality for random C.
And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}\left[\operatorname{dim} C^{\langle 2\rangle}<\min \left(n, \frac{k(k+1)}{2}\right)\right]$.

Likewise for any $s \geq 2$,

$$
\operatorname{dim} C^{\langle s\rangle} \leq \min \left(n,\binom{k+s-1}{s}\right)
$$

Squares and higher powers

For any $[n, k]_{q}$-code C we have

$$
\operatorname{dim} C^{\langle 2\rangle} \leq \min \left(n, \frac{k(k+1)}{2}\right)
$$

(proof: $C=\left\langle\mathbf{c}_{i}\right\rangle_{1 \leq i \leq k} \Longrightarrow C^{\langle 2\rangle}=\left\langle\mathbf{c}_{i} * \mathbf{c}_{j}\right\rangle_{1 \leq i \leq j \leq k}$).
Expects equality for random C.
And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}\left[\operatorname{dim} C^{\langle 2\rangle}<\min \left(n, \frac{k(k+1)}{2}\right)\right]$.

Likewise for any $s \geq 2$,

$$
\operatorname{dim} C^{\langle s\rangle} \leq \min \left(n,\binom{k+s-1}{s}\right)
$$

Warning!

For $s>q$, we have: $\quad \operatorname{dim} C^{\langle s\rangle}<\binom{k+s-1}{s} \quad$ always strict.

Squares and higher powers

For any $[n, k]_{q}$-code C we have

$$
\operatorname{dim} C^{\langle 2\rangle} \leq \min \left(n, \frac{k(k+1)}{2}\right)
$$

(proof: $C=\left\langle\mathbf{c}_{i}\right\rangle_{1 \leq i \leq k} \Longrightarrow C^{\langle 2\rangle}=\left\langle\mathbf{c}_{i} * \mathbf{c}_{j}\right\rangle_{1 \leq i \leq j \leq k}$).
Expects equality for random C.
And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on $\mathbb{P}\left[\operatorname{dim} C^{\langle 2\rangle}<\min \left(n, \frac{k(k+1)}{2}\right)\right]$.

Likewise for any $s \geq 2$,

$$
\operatorname{dim} C^{\langle s\rangle} \leq \min \left(n,\binom{k+s-1}{s}\right)
$$

Warning!

For $s>q$, we have: $\quad \operatorname{dim} C^{\langle s\rangle}<\binom{k+s-1}{s} \quad$ always strict.
Reason: $C^{s} \xrightarrow{*} C^{\langle s\rangle}$ is Frobenius-symmetric. Hence

$$
\operatorname{dim} C^{\langle s\rangle} \leq \min \left(n, \chi_{q}(k, s)\right)
$$

where $\chi_{q}(k, s)=\operatorname{dim}\left(\mathbb{F}_{q}\left[t_{1}, \ldots, t_{k}\right] /\left(t_{i}^{q} t_{j}-t_{i} t_{j}^{q}\right)\right)_{s}<\binom{k+s-1}{s}$.

Miscellanea

- In the proof of Theorem 17, we introduced

$$
\mathbf{s}_{j}=\mathbf{u}_{1}+\cdots+\mathbf{u}_{j}
$$

This defines a random walk in $\mathbb{F}_{q}^{k \times l}\left(\right.$ or $\left.\mathbb{F}_{q}^{k} \otimes \mathbb{F}_{q}^{l}\right)$ whose steps are rank 1 matrices (or elementary tensors).

Miscellanea

- In the proof of Theorem 17, we introduced

$$
\mathbf{s}_{j}=\mathbf{u}_{1}+\cdots+\mathbf{u}_{j}
$$

This defines a random walk in $\mathbb{F}_{q}^{k \times l}\left(\right.$ or $\left.\mathbb{F}_{q}^{k} \otimes \mathbb{F}_{q}^{l}\right)$ whose steps are rank 1 matrices (or elementary tensors).
Very natural object, with nice algebraic properties.
Same for the associated $r_{j}=\operatorname{rks}_{j}$, Markov chain with values in $[k]$.
\rightarrow Work in progress, joint with D. Madore et al.

Miscellanea

- In the proof of Theorem 17, we introduced

$$
\mathbf{s}_{j}=\mathbf{u}_{1}+\cdots+\mathbf{u}_{j}
$$

This defines a random walk in $\mathbb{F}_{q}^{k \times l}\left(\right.$ or $\left.\mathbb{F}_{q}^{k} \otimes \mathbb{F}_{q}^{l}\right)$ whose steps are rank 1 matrices (or elementary tensors).
Very natural object, with nice algebraic properties. Same for the associated $r_{j}=\mathrm{rks}_{j}$, Markov chain with values in $[k]$.
\rightarrow Work in progress, joint with D. Madore et al.

- So far we considered only dimension of products.

More challenging: consider dimension together with minimum distance.

Miscellanea

- In the proof of Theorem 17, we introduced

$$
\mathbf{s}_{j}=\mathbf{u}_{1}+\cdots+\mathbf{u}_{j}
$$

This defines a random walk in $\mathbb{F}_{q}^{k \times l}\left(\right.$ or $\left.\mathbb{F}_{q}^{k} \otimes \mathbb{F}_{q}^{l}\right)$ whose steps are rank 1 matrices (or elementary tensors).
Very natural object, with nice algebraic properties.
Same for the associated $r_{j}=\operatorname{rks}_{j}$, Markov chain with values in $[k]$.
\rightarrow Work in progress, joint with D. Madore et al.

- So far we considered only dimension of products.

More challenging: consider dimension together with minimum distance.
Do products of random codes, or squares of random codes, typically form asymptotically good families?

Miscellanea

- In the proof of Theorem 17, we introduced

$$
\mathbf{s}_{j}=\mathbf{u}_{1}+\cdots+\mathbf{u}_{j}
$$

This defines a random walk in $\mathbb{F}_{q}^{k \times l}\left(\right.$ or $\left.\mathbb{F}_{q}^{k} \otimes \mathbb{F}_{q}^{l}\right)$ whose steps are rank 1 matrices (or elementary tensors).
Very natural object, with nice algebraic properties. Same for the associated $r_{j}=\operatorname{rks}_{j}$, Markov chain with values in $[k]$.
\rightarrow Work in progress, joint with D. Madore et al.

- So far we considered only dimension of products. More challenging: consider dimension together with minimum distance.

Do products of random codes, or squares of random codes, typically form asymptotically good families?

Do they lie on the Gilbert-Varshamov bound?
(Observe the answer is negative if we replace $*$-product with tensor product.)

