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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open pr

Let V be a finite dimensional vector space, and X C V' an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite S C X,
dim(S) = min(|S|,dim V).

This means: no “unexpected” linear relation between elements of X.

Example: V =F*, X CV, n=|X|, C = [n, k],~code with generating
matrix whose columns are X. Then: X in general position < C MDS.
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Example: V =F*, X CV, n=|X|, C = [n, k],~code with generating
matrix whose columns are X. Then: X in general position < C MDS.

Weaker variants? Measure of failure?
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Let V be a finite dimensional vector space, and X C V' an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite S C X,
dim(S) = min(|S|,dim V).

This means: no “unexpected” linear relation between elements of X.

Example: V =F*, X CV, n=|X|, C = [n, k],~code with generating
matrix whose columns are X. Then: X in general position <— C MDS.

Weaker variants? Measure of failure?
Assume X equipped with a probability distribution .Z.

Estimate the “error probability”

P(n) = P[dim(uy,...,u,) < min(n,dim V)]
for random uq,...,u, € X.
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Rank 1 matrices and products of codes

In this work: V = F’;Xl matrix space, X C V set of matrices of rank 1.
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs ons and open pr

In this work: V = F’;Xl matrix space, X C V set of matrices of rank 1.

Linked with the theory of products of codes.

Componentwise multiplication: ¢ = (c1,...,¢p), ¢

=(c},...,c,) €Fp
cxc = (ad),...,cncy,) € Fy.

Pass to the linear span: C,C’" C Fy
CxC' = (c*c)eecceecr CFy

— square C'? = C « C, higher powers C(*).
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open pr

In this work: V = F’;Xl matrix space, X C V set of matrices of rank 1.

Linked with the theory of products of codes.
Componentwise multiplication: ¢ = (c1,...,¢n),¢ = (c},...,c,) € Fy

cxc = (ad),...,cncy,) € Fy.
Pass to the linear span: C,C’" C Fy
C*C' = (cxc)cecirecr STy
— square C'? = C « C, higher powers C(*).
Many recent (and less recent) applications:
@ bilinear algorithms & arithmetic secret sharing systems
@ analysis of McEliece-type cryptosystems

@ algebraic decoding (error-correcting pairs, power decoding, ...)

@ construction of lattices, oblivious transfer, quantum codes, ...
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Rank 1 matrices and products of codes

Btilinear algorithms

Over Fy, given a bilinear map B (example: E = E' = F = Fy, B =field
multiplication)

ExE B, F

Hugues Randriam ependence of rank G 7 n of produ s ISIT 2015 3/11



Rank 1 matrices and products of codes

Btilinear algorithms

Over Fy, given a bilinear map B (example: E = E' = F = Fy, B =field
multiplication) we want linear maps ¢, ¢’, 0 and a diagram

ExE B, F

| e

*

(Fg)" x (Fg)® —— (Fg)"

so B(z,2') = 0(p(x) x ¢/ (2')) for x € E 2’ € E'.
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Rank 1 matrices and products of codes

Btilinear algorithms

Over Fy, given a bilinear map B (example: E = E' = F = Fy, B =field
multiplication) we want linear maps ¢, ¢’, 0 and a diagram

ExE B, F

| e

*

(Fg)"™ x (Fg)" —— (Fg)"
so B(z,2') = 0(p(x) x ¢/ (2')) for x € E 2’ € E'.

Observe p(x) * ¢'(2') € C x C" where C = p(E),C' = ¢/(E").
Possible objectives: minimize n, maximize d and/or d* of C,C’,C x C'...
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Rank 1 matrices and products of codes

Btilinear algorithms

Over Fy, given a bilinear map B (example: E = E' = F = Fy, B =field
multiplication) we want linear maps ¢, ¢’, 0 and a diagram

ExE B, F

| e

*

(Fg)™ x (Fg)" —— (Fg)"
so B(z,2') = 0(p(x) x ¢/ (2')) for x € E 2’ € E'.

Observe p(x) * ¢'(2') € C x C" where C = p(E),C' = ¢/(E").
Possible objectives: minimize n, maximize d and/or d* of C,C’,C x C'...
Choose bases, set k =dim E, | = dim E’, f = dim F.

Then: B <= collection of matrices By,...,By € F’;Xl,
our diagram <= ujy,...,u, of rank 1 whose span contains By,...,By.

Hugues Randriam Linear independence of rank 1 matrices € the dimension of products of codes ISIT 2015 3 /11



Rank 1 matrices and products of codes

McEliece-type cryptosystems

Secret key: G with an efficient decoding algorithm, S, P “masks”.
Public key: G = SGP hard to decode (NP-hard if G were really random).
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McEliece-type cryptosystems

Secret key: G with an efficient decoding algorithm, S, P “masks”.
Public key: G = SGP hard to decode (NP-hard if G were really random).

Attacks:
@ distinguish G from a random matrix

@ recover its hidden algebraic structure.
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Rank 1 matrices and products of codes
McEliece-type cryptosystems
Secret key: G with an efficient decoding algorithm, S, P “masks”.
Public key: G = SGP hard to decode (NP-hard if G were really random).

Attacks:
@ distinguish G from a random matrix

@ recover its hidden algebraic structure.
Heuristic: for k = dim C, [ = dim C’, both of length n,
dim C * C" < min(n, kl)

(proof: C' = (ci)iey, C' = (c))jey = C*C" = (ci*)icm,jen)-
Expects equality for random C, C".

Strict inequality means (bilinear) algebraic relations between C, C’
(example: C' = [n,k|-RS, C" = [n,l]-RS — C « C" = [n,k + 1 — 1]4-RS).
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Rank 1 matrices and products of codes
McEliece-type cryptosystems
Secret key: G with an efficient decoding algorithm, S, P “masks”.
Public key: G = SGP hard to decode (NP-hard if G were really random).

Attacks:
@ distinguish G from a random matrix
@ recover its hidden algebraic structure.
Heuristic: for k = dim C, [ = dim C’, both of length n,
dim C * C" < min(n, kl)
(proof: C' = (ci)iey, C' = (c))jey = C*C" = (ci*)icm,jen)-
Expects equality for random C, C".

Strict inequality means (bilinear) algebraic relations between C, C’
(example: C' = [n,k|-RS, C" = [n,l]-RS — C « C" = [n,k + 1 — 1]4-RS).

— Apply this to C, C’" =subcodes of the row span code of G.
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Rank 1 matrices and products of codes

Row view vs. column view

Let C = [n, k]4-code with G € IF';X” and C’" = [n,l]4-code with G’ € Féxn.

From these we deduce a generating matrix G for C % C' (remark: we allow
redundant rows).
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From these we deduce a generating matrix G for C % C' (remark: we allow
redundant rows).

Row view: As we just saw, {c;}icjx) rows of G, {c}};cp rows of G/,

— {ei * ¢ ien je rows of G.
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Rank 1 matrices and products of codes

Row view vs. column view

Let C = [n, k]4-code with G € IF';X” and C’" = [n,l]4-code with G’ € Féxn.
From these we deduce a generating matrix G for C % C' (remark: we allow
redundant rows).

Row view: As we just saw, {c;}icjx) rows of G, {c}};cp rows of G/,

— {ei * ¢ ien je rows of G.

Column view: ldentify IF';Z with matrix space IF];XZ.
Set p1,...,Pn € F’qf columns of G, q1,...,q, € Ffl columns of G/,

— w=piq] € FI;XZ of rank (<)1.

Then uy,...,u, are the columns of G.
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Rank 1 matrices and products of codes

Row view vs. column view

Let C = [n, k]4-code with G € IF';X” and C’" = [n,l]4-code with G’ € Fff”.
From these we deduce a generating matrix G for C % C' (remark: we allow
redundant rows).

Row view: As we just saw, {c;}icjx) rows of G, {c}};cp rows of G/,

— {ei * ¢ ien je rows of G.

Column view: ldentify F’;l with matrix space IF];XZ.
Set p1,...,Pn € IF’; columns of G, q1,...,q, € Ffl columns of G/,

— w=piq] € FI;XZ of rank (<)1.

Then uy,...,u, are the columns of G.

Row rank = column rank!
dim C * ¢’ = dim(uy, ..., u,)
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Main results and hints at proofs

The setting

e Ge F’;X", G’ ¢ Ffzxn random with uniform distribution

e C,C'C [ their respective row spans

@ pP1,---,Pn € ]F';, di,---,qn € Ff] their columns, resp. (— uniform)
° u; = piq] € Fg~'.
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Main results and hints at proofs

The setting

G e F’;X", G e Fém, random with uniform distribution
C,C' C [y, their respective row spans
Pl,.-.,Pn € ]F';, di,---,qn € Ff] their columns, resp. (— uniform)

u; = piq; € FixL.
We are interested in

P(n) = P[dim C * C’ < min(n, kl)]
= P[dim(uy,...,u,) < min(n, kl)].
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Main results and hints at proofs

The setting
o
o
o
o

We are interested in

G e F’;X", G e Fff” random with uniform distribution

C,C' C [y, their respective row spans

Pl,.-.,Pn € ]F';, di,---,qn € Ff] their columns, resp. (— uniform)
u; = piq; € FixL.

P(n) = P[dim C * C" < min(n, kl)]
= P[dim(uy,...,u,) < min(n, kl)].

Possible tweaks in the probabilistic model:
e G, G’ may have zero columns, so rk(u;) <1 (with 0 allowed) —
distribution . on the set X of rk < 1 matrices.
However u; = b;u; with b; € {0,1} Bernoulli((1 — ¢ *)(1 — ¢7")), and
rkw;=1, uniform.
o Likewise dim C < k,dim C’ < [, strict inequality allowed...
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Main results and hints at proofs

Set Cy = [[;5,(1 —¢77)7" < Cy ~ 3.463, and parameter domain

Ean

z&irijzg} (0 <e<l1, kK >'0)
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Set Cg =[];51(1— q 7)1 < Cy =~ 3.463, and parameter domain

(q—l)k}} (0<€<1,K)>0).

Theorem 16

Suppose k small enough, so q(l_’i)2 >1+ q%ql (ex: Kk =10.23).
Then for (k,1) € P(e, k) and n > kl, we have

P(n) = Pldim C x C' < k] < &’p"*

withp:%(u%) <1andd’:%(1+ﬁ).

V.

Theorem 17

For (k,1) € P(e,3) and n < ki, we have

P(n) = Pldim ' C' < n] < %( 2 | ~Gin )
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Introduction Rank 1 matrices and product es Main results and hints at proofs xtensions and open prob

Proof of Theorem 16 (n > kl): Union bound + independence give

P(n) < ZHIP’[ul, ou, € H| = ZH Plu; € H" < dp" ™
where p = maxy Plu; € H|, ¢ =Y, Plu; € H|*, and H ranges over
hyperplanes of V = IF’;XZ.

Conclude with estimate on ¢ <= count bilinear forms of given rank and
the pairs of vectors on which they vanish.

8/11
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Proof of Theorem 16 (n > kl): Union bound + independence give
P(n) <y Plui,...,us € Hl =) Pluy € H" < p"

where p = maxy Plu; € H|, ¢ =Y, Plu; € H|*, and H ranges over
hyperplanes of V = IF’;XZ.

Conclude with estimate on ¢ <= count bilinear forms of given rank and
the pairs of vectors on which they vanish.

Proof of Theorem 17 (n < kl): Setsj =u; +---+u; € V.
Then for z € F, wt(z) = w, we have

P[z is a lin. rel. for uy,...,u,] = P[s, =0].
And then
Sw =20 <~ (xl,...,xk>J_(y1,...,yl> inF;U

where x1,...,x; and y1,...,y; are the punctured rows of G, G'.
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Proof of Theorem 16 (n > kl): Union bound + independence give
P(n)<)  Pluy,...,us € Hl =)  Pluy€ H" <p" M

where p = maxy Plu; € H|, ¢ =Y, Plu; € H|*, and H ranges over
hyperplanes of V = IF’;XZ.

Conclude with estimate on ¢ <= count bilinear forms of given rank and
the pairs of vectors on which they vanish.

Proof of Theorem 17 (n < kl): Setsj =u; +---+u; € V.
Then for z € F, wt(z) = w, we have

P[z is a lin. rel. for uy,...,u,] = P[s, =0].
And then
sw=0 <<= (x1,...,%x¢) L(y1,...,y1) in Fy

where x1,...,x; and y1,...,y; are the punctured rows of G, G'.

Note: some of these ingredients are generic and work for arbitrary V, X, .Z.
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Rank 1 matrices and product Main results and hints at proofs

Extensions and open problems

Get rid of the P(e, k) conditions?

@ In fact these were introduced only to get explicit constants.
E.g. (for n > kl) by the generic approach, P(n) > ¢/p" ¥, so case
n > kl seems tractable, but new ideas needed for n close to kl.
@ Also perhaps coming from our probabilistic model.
Otherwise, restricting G, G’ to have full rank, and/or to have no zero
column, should only lead to stronger bounds!

Hugues Randriam
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Get rid of the P(e, k) conditions?
@ In fact these were introduced only to get explicit constants.
E.g. (for n > kl) by the generic approach, P(n) > ¢p" ¥, so case
n > kl seems tractable, but new ideas needed for n close to kl.
@ Also perhaps coming from our probabilistic model.
Otherwise, restricting G, G’ to have full rank, and/or to have no zero

column, should only lead to stronger bounds!

Still in our model we can derive an interesting unconditional result:

Theorem 18
For any (k,1), and k + 1 < n < ki, we have

Pldmax(C * C)E > k41] < _4Ca_ -

(Proof: included in that of Theorem 17!)

So with high probability (C C’)L has small dy,.x. This is a very strong
restriction. It forces (C % C')* small, hence C * C’ large, as expected.
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Extensions and open problems

Squares and higher powers

For any [n, k]4-code C' we have

dim C*? < min(n, @)

(proof: C' = (c;)1<ick = C@ = (¢; * ¢;)1<icj<)-
Expects equality for random C.
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Extensions and open problems

Squares and higher powers

For any [n, k]4-code C' we have

dim C*? < min(n, @)
(proof: C' = (c;)1<ick = C@ = (¢; * ¢;)1<icj<)-
Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on

P[dim C? < min(n, k(kTH))]

f codes ISIT 2015 10/11
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Squares and higher powers

For any [n, k]4-code C' we have

dim C*? < min(n, @)
(proof: C' = (c;)1<ick = C@ = (¢; * ¢;)1<icj<)-
Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on

P[dim C? < min(n, k(kTH))]

Likewise for any s > 2,
dim C**) < min(n, (k+§_1)).
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Extensions and open problems

Squares and higher powers

For any [n, k]4-code C' we have
dim C*? < min(n, @)
(proof: C' = (c;)1<ick = C@ = (¢; * ¢;)1<icj<)-
Expects equality for random C.
And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on

P[dim C? < min(n, k(kTH))]

Likewise for any s > 2,
dim C® < min(n, (k+§_1)).

For s > ¢, we have: dimC®) < (k+3_1) always strict.

S
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Extensions and open problems
Squares and higher powers

For any [n, k]4-code C' we have
dim C*? < min(n, —k(kjl))

(proof: C' = (c;)1<ick = C@ = (¢; * ¢;)1<icj<)-
Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on

P[dim C? < min(n, k(kTH))]

Likewise for any s > 2,
dim C® < min(n, (k+§_1)).

For s > ¢, we have: dimC®) < (k+3_1) always strict.

S

Reason: C* — (%) is Frobenius-symmetric. Hence
dim C® < min(n, x4(k, 5))
where xo(k, s) = dim(Fy[t1, ..., tx]/(t0t; — t:it?))s < ("F271).
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Extensions and open problems

Mzscellanea

@ In the proof of Theorem 17, we introduced

Sj =up +---+ujy.
This defines a random walk in F5*! (or F¥ @ ) whose steps are rank 1
matrices (or elementary tensors).
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Extensions and open problems

Mzscellanea

@ In the proof of Theorem 17, we introduced
Sj =up +---+ujy.
This defines a random walk in F5*! (or F¥ @ ) whose steps are rank 1
matrices (or elementary tensors).
Very natural object, with nice algebraic properties.
Same for the associated r; = rks;, Markov chain with values in [£].
— Work in progress, joint with D. Madore et al.
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Extensions and open problems

Mzscellanea

@ In the proof of Theorem 17, we introduced
Sj =up +---+ujy.
This defines a random walk in F5*! (or F¥ @ ) whose steps are rank 1
matrices (or elementary tensors).
Very natural object, with nice algebraic properties.
Same for the associated r; = rks;, Markov chain with values in [£].
— Work in progress, joint with D. Madore et al.

@ So far we considered only dimension of products.
More challenging: consider dimension together with minimum distance.
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Extensions and open problems

Mzscellanea

@ In the proof of Theorem 17, we introduced
Sj =up +---+ujy.
This defines a random walk in F5*! (or F¥ @ ) whose steps are rank 1
matrices (or elementary tensors).
Very natural object, with nice algebraic properties.
Same for the associated r; = rks;, Markov chain with values in [£].
— Work in progress, joint with D. Madore et al.

@ So far we considered only dimension of products.
More challenging: consider dimension together with minimum distance.

Do products of random codes, or squares of random codes, typically form
asymptotically good families? J
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Extensions and open problems

Mzscellanea

@ In the proof of Theorem 17, we introduced
Sj =up +---+ujy.
This defines a random walk in F5*! (or F¥ @ ) whose steps are rank 1
matrices (or elementary tensors).
Very natural object, with nice algebraic properties.
Same for the associated r; = rks;, Markov chain with values in [£].
— Work in progress, joint with D. Madore et al.

@ So far we considered only dimension of products.
More challenging: consider dimension together with minimum distance.

Do products of random codes, or squares of random codes, typically form
asymptotically good families? J

Do they lie on the Gilbert-Varshamov bound? J

(Observe the answer is negative if we replace *-product with tensor product.)
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