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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Let V be a finite dimensional vector space, and X ⊆ V an arbitrary subset.

Definition

Say X is in (linearly) general position if, for any finite S ⊆ X,

dim〈S〉 = min(|S|,dimV ).

This means: no “unexpected” linear relation between elements of X.

Example: V = Fkq , X ⊆ V , n = |X|, C = [n, k]q-code with generating
matrix whose columns are X. Then: X in general position ⇐⇒ C MDS.

Weaker variants? Measure of failure?

Assume X equipped with a probability distribution L .

Estimate the “error probability”

P(n) = P[dim〈u1, . . . ,un〉 < min(n, dimV )]

for random u1, . . . ,un ∈ X.
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

In this work: V = Fk×lq matrix space, X ⊆ V set of matrices of rank 1.

Linked with the theory of products of codes.
Componentwise multiplication: c = (c1, . . . , cn), c

′ = (c′1, . . . , c
′
n) ∈ Fnq

c ∗ c′ = (c1c
′
1, . . . , cnc

′
n) ∈ Fnq .

Pass to the linear span: C,C ′ ⊆ Fnq
C ∗ C ′ = 〈c ∗ c′〉c∈C,c′∈C′ ⊆ Fnq

→ square C〈2〉 = C ∗ C, higher powers C〈s〉.

Many recent (and less recent) applications:

bilinear algorithms & arithmetic secret sharing systems

analysis of McEliece-type cryptosystems

algebraic decoding (error-correcting pairs, power decoding, ...)

construction of lattices, oblivious transfer, quantum codes, ...
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Bilinear algorithms

Over Fq, given a bilinear map B (example: E = E′ = F = Fqr , B = field
multiplication)

we want linear maps ϕ,ϕ′, θ and a diagram

E × E′ B−−−−→ F

ϕ×ϕ′
y xθ

(Fq)n × (Fq)n
∗−−−−→ (Fq)n

so B(x, x′) = θ(ϕ(x) ∗ ϕ′(x′)) for x ∈ E, x′ ∈ E′.

Observe ϕ(x) ∗ ϕ′(x′) ∈ C ∗ C ′ where C = ϕ(E), C ′ = ϕ′(E′).
Possible objectives: minimize n, maximize d and/or d⊥ of C,C ′, C ∗ C ′...

Choose bases, set k = dimE, l = dimE′, f = dimF .
Then: B ⇐⇒ collection of matrices B1, . . . ,Bf ∈ Fk×lq ,
our diagram ⇐⇒ u1, . . . ,un of rank 1 whose span contains B1, . . . ,Bf .

Hugues Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015 3 / 11



Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Bilinear algorithms

Over Fq, given a bilinear map B (example: E = E′ = F = Fqr , B = field
multiplication) we want linear maps ϕ,ϕ′, θ and a diagram

E × E′ B−−−−→ F

ϕ×ϕ′
y xθ

(Fq)n × (Fq)n
∗−−−−→ (Fq)n

so B(x, x′) = θ(ϕ(x) ∗ ϕ′(x′)) for x ∈ E, x′ ∈ E′.

Observe ϕ(x) ∗ ϕ′(x′) ∈ C ∗ C ′ where C = ϕ(E), C ′ = ϕ′(E′).
Possible objectives: minimize n, maximize d and/or d⊥ of C,C ′, C ∗ C ′...

Choose bases, set k = dimE, l = dimE′, f = dimF .
Then: B ⇐⇒ collection of matrices B1, . . . ,Bf ∈ Fk×lq ,
our diagram ⇐⇒ u1, . . . ,un of rank 1 whose span contains B1, . . . ,Bf .

Hugues Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015 3 / 11



Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Bilinear algorithms

Over Fq, given a bilinear map B (example: E = E′ = F = Fqr , B = field
multiplication) we want linear maps ϕ,ϕ′, θ and a diagram

E × E′ B−−−−→ F

ϕ×ϕ′
y xθ

(Fq)n × (Fq)n
∗−−−−→ (Fq)n

so B(x, x′) = θ(ϕ(x) ∗ ϕ′(x′)) for x ∈ E, x′ ∈ E′.

Observe ϕ(x) ∗ ϕ′(x′) ∈ C ∗ C ′ where C = ϕ(E), C ′ = ϕ′(E′).
Possible objectives: minimize n, maximize d and/or d⊥ of C,C ′, C ∗ C ′...

Choose bases, set k = dimE, l = dimE′, f = dimF .
Then: B ⇐⇒ collection of matrices B1, . . . ,Bf ∈ Fk×lq ,
our diagram ⇐⇒ u1, . . . ,un of rank 1 whose span contains B1, . . . ,Bf .

Hugues Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015 3 / 11



Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Bilinear algorithms

Over Fq, given a bilinear map B (example: E = E′ = F = Fqr , B = field
multiplication) we want linear maps ϕ,ϕ′, θ and a diagram

E × E′ B−−−−→ F

ϕ×ϕ′
y xθ

(Fq)n × (Fq)n
∗−−−−→ (Fq)n

so B(x, x′) = θ(ϕ(x) ∗ ϕ′(x′)) for x ∈ E, x′ ∈ E′.

Observe ϕ(x) ∗ ϕ′(x′) ∈ C ∗ C ′ where C = ϕ(E), C ′ = ϕ′(E′).
Possible objectives: minimize n, maximize d and/or d⊥ of C,C ′, C ∗ C ′...

Choose bases, set k = dimE, l = dimE′, f = dimF .
Then: B ⇐⇒ collection of matrices B1, . . . ,Bf ∈ Fk×lq ,
our diagram ⇐⇒ u1, . . . ,un of rank 1 whose span contains B1, . . . ,Bf .

Hugues Randriam Linear independence of rank 1 matrices & the dimension of products of codes ISIT 2015 3 / 11



Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

McEliece-type cryptosystems

Secret key: G with an efficient decoding algorithm, S,P “masks”.
Public key: G̃ = SGP hard to decode (NP-hard if G̃ were really random).

Attacks:

distinguish G̃ from a random matrix

recover its hidden algebraic structure.

Heuristic: for k = dimC, l = dimC ′, both of length n,

dimC ∗ C ′ ≤ min(n, kl)

(proof: C = 〈ci〉i∈[k], C ′ = 〈c′j〉j∈[l] =⇒ C ∗ C ′ = 〈ci ∗ c′j〉i∈[k],j∈[l]).
Expects equality for random C,C ′.
Strict inequality means (bilinear) algebraic relations between C,C ′

(example: C = [n, k]q-RS, C ′ = [n, l]q-RS → C ∗ C ′ = [n, k + l − 1]q-RS).

→ Apply this to C,C ′ = subcodes of the row span code of G̃.
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Row view vs. column view

Let C = [n, k]q-code with G ∈ Fk×nq and C ′ = [n, l]q-code with G′ ∈ Fl×nq .

From these we deduce a generating matrix G̃ for C ∗ C ′ (remark: we allow
redundant rows).

Row view: As we just saw, {ci}i∈[k] rows of G, {c′j}j∈[l] rows of G′,

→ {ci ∗ c′j}i∈[k],j∈[l] rows of G̃.

Column view: Identify Fklq with matrix space Fk×lq .

Set p1, . . . ,pn ∈ Fkq columns of G, q1, . . . ,qn ∈ Flq columns of G′,

−→ ui = piq
T
i ∈ Fk×lq of rank (≤)1.

Then u1, . . . ,un are the columns of G̃.

Row rank = column rank!

dimC ∗ C ′ = dim〈u1, . . . ,un〉
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

The setting

G ∈ Fk×nq , G′ ∈ Fl×nq random with uniform distribution

C,C ′ ⊆ Fnq their respective row spans

p1, . . . ,pn ∈ Fkq , q1, . . . ,qn ∈ Flq their columns, resp. (→ uniform)

ui = piq
T
i ∈ Fk×lq .

We are interested in

P(n) = P[dimC ∗ C ′ < min(n, kl)]

= P[dim〈u1, . . . ,un〉 < min(n, kl)].

Possible tweaks in the probabilistic model:

G,G′ may have zero columns, so rk(ui) ≤ 1 (with 0 allowed) →
distribution L on the set X of rk ≤ 1 matrices.
However ui = biũi with bi ∈ {0, 1} Bernoulli((1− q−k)(1− q−l)), and
rk ũi=1, uniform.

Likewise dimC ≤ k, dimC ′ ≤ l, strict inequality allowed...
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Set Cq =
∏
j≥1(1− q−j)−1 ≤ C2 ≈ 3.463, and parameter domain

P(ε, κ) =
{
(k, l); 2 ≤ k ≤ l ≤ εqκk

(q − 1)k

}
(0 < ε < 1, κ > 0).

Theorem 16

Suppose κ small enough, so q(1−κ)
2 ≥ 1 + q−1

q (ex: κ = 0.23).
Then for (k, l) ∈ P(ε, κ) and n ≥ kl, we have

P(n) = P[dimC ∗ C ′ < kl] ≤ c′′ρn−kl

with ρ = 1
q

(
1 + q−1

q

)
< 1 and c′′ =

qCq

(q−1)2

(
1 + 1

1−ε

)
.

Theorem 17

For (k, l) ∈ P(ε, 12) and n ≤ kl, we have

P(n) = P[dimC ∗ C ′ < n] ≤ qCq
(q − 1)2

(
2ε

1− ε
+ q−(kl−n)

)
.
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Introduction Rank 1 matrices and products of codes Main results and hints at proofs Extensions and open problems

Proof of Theorem 16 (n ≥ kl): Union bound + independence give

P(n) ≤
∑

H
P[u1, . . . ,un ∈ H] =

∑
H
P[u1 ∈ H]n ≤ c′ρn−kl

where ρ = maxH P[u1 ∈ H], c′ =
∑

H P[u1 ∈ H]kl, and H ranges over
hyperplanes of V = Fk×lq .
Conclude with estimate on c′ ⇐⇒ count bilinear forms of given rank and
the pairs of vectors on which they vanish.

Proof of Theorem 17 (n ≤ kl): Set sj = u1 + · · ·+ uj ∈ V .
Then for z ∈ Fnq , wt(z) = w, we have

P[z is a lin. rel. for u1, . . . ,un] = P[sw = 0].

And then

sw = 0 ⇐⇒ 〈x1, . . . ,xk〉 ⊥ 〈y1, . . . ,yl〉 in Fwq
where x1, . . . ,xk and y1, . . . ,yl are the punctured rows of G,G′.

Note: some of these ingredients are generic and work for arbitrary V,X,L .
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Proof of Theorem 17 (n ≤ kl): Set sj = u1 + · · ·+ uj ∈ V .
Then for z ∈ Fnq , wt(z) = w, we have

P[z is a lin. rel. for u1, . . . ,un] = P[sw = 0].

And then

sw = 0 ⇐⇒ 〈x1, . . . ,xk〉 ⊥ 〈y1, . . . ,yl〉 in Fwq
where x1, . . . ,xk and y1, . . . ,yl are the punctured rows of G,G′.

Note: some of these ingredients are generic and work for arbitrary V,X,L .
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Get rid of the P(ε, κ) conditions?

In fact these were introduced only to get explicit constants.
E.g. (for n ≥ kl) by the generic approach, P(n) ≥ c′ρn−kl, so case
n� kl seems tractable, but new ideas needed for n close to kl.
Also perhaps coming from our probabilistic model.
Otherwise, restricting G,G′ to have full rank, and/or to have no zero
column, should only lead to stronger bounds!

Still in our model we can derive an interesting unconditional result:

Theorem 18

For any (k, l), and k + l ≤ n ≤ kl, we have

P[dmax(C ∗ C ′)⊥ ≥ k + l] ≤ qCq
(q − 1)2

q−(kl−n).

(Proof: included in that of Theorem 17!)

So with high probability (C ∗ C ′)⊥ has small dmax. This is a very strong
restriction. It forces (C ∗ C ′)⊥ small, hence C ∗ C ′ large, as expected.
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Squares and higher powers

For any [n, k]q-code C we have

dimC〈2〉 ≤ min(n, k(k+1)
2 )

(proof: C = 〈ci〉1≤i≤k =⇒ C〈2〉 = 〈ci ∗ cj〉1≤i≤j≤k).
Expects equality for random C.

And indeed, Cascudo-Cramer-Mirandola-Zémor gave an upper bound on
P[dimC〈2〉 < min(n, k(k+1)

2 )].

Likewise for any s ≥ 2,
dimC〈s〉 ≤ min(n,

(
k+s−1
s

)
).

Warning!

For s > q, we have: dimC〈s〉 <
(
k+s−1
s

)
always strict.

Reason: Cs
∗−→ C〈s〉 is Frobenius-symmetric. Hence

dimC〈s〉 ≤ min(n, χq(k, s))

where χq(k, s) = dim(Fq[t1, . . . , tk]/(tqi tj − tit
q
j))s <

(
k+s−1
s

)
.
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Miscellanea

In the proof of Theorem 17, we introduced

sj = u1 + · · ·+ uj .

This defines a random walk in Fk×lq (or Fkq ⊗ Flq) whose steps are rank 1
matrices (or elementary tensors).

Very natural object, with nice algebraic properties.
Same for the associated rj = rk sj , Markov chain with values in [k].
→ Work in progress, joint with D. Madore et al.

So far we considered only dimension of products.
More challenging: consider dimension together with minimum distance.

Do products of random codes, or squares of random codes, typically form
asymptotically good families?

Do they lie on the Gilbert-Varshamov bound?

(Observe the answer is negative if we replace ∗-product with tensor product.)
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