
Contemporary Mathematics

On products and powers of linear codes under
componentwise multiplication

Hugues Randriambololona

Abstract. In this text we develop the formalism of products and powers of
linear codes under componentwise multiplication. As an expanded version of
the author’s talk at AGCT-14, focus is put mostly on basic properties and de-
scriptive statements that could otherwise probably not fit in a regular research
paper. On the other hand, more advanced results and applications are only
quickly mentioned with references to the literature. We also point out a few
open problems.

Our presentation alternates between two points of view, which the theory
intertwines in an essential way: that of combinatorial coding, and that of
algebraic geometry.

In appendices that can be read independently, we investigate topics in
multilinear algebra over finite fields, notably we establish a criterion for a
symmetric multilinear map to admit a symmetric algorithm, or equivalently,
for a symmetric tensor to decompose as a sum of elementary symmetric tensors.

Contents

1. Introduction 5
Basic definitions 5
Link with tensor constructions 7
Rank functions 9
Geometric aspects 11

2. Basic structural results and miscellaneous properties 16
Support 17
Decomposable codes 18
Repeated columns 20
Extension of scalars 22
Monotonicity 25
Stable structure 26
Adjunction properties 28
Symmetries and automorphisms 29

3. Estimates involving the dual distance 32
4. Pure bounds 36

The generalized fundamental functions 36
An upper bound: Singleton 38

c©0000 (copyright holder)

3

4 HUGUES RANDRIAMBOLOLONA

Lower bounds for q large: AG codes 41
Lower bounds for q small: concatenation 43

5. Some applications 46
Multilinear algorithms 46
Construction of lattices from codes 48
Oblivious transfer 50
Decoding algorithms 51
Analysis of McEliece-type cryptosystems 52

Appendix A: A criterion for symmetric tensor decomposition 53
Frobenius symmetric maps 53
Trisymmetric and normalized multiplication algorithms 59

Appendix B: On symmetric multilinearized polynomials 62
Polynomial description of symmetric powers of an extension field 63
Equidistributed beads on a necklace 67

Appendix C: Review of open questions 73
References 75

Notations and conventions. In the first three sections of this text we will
be working over an arbitrary field F, although we will keep in mind the case where
F = Fq is the finite field with q elements.

If V is a vector space over F, we denote by V ∨ its dual, that is, the vector
space of all linear forms V −→ F. If X ⊆ V is an arbitrary subset, we denote by
〈X〉 its linear span in V . We let S·V =

⊕
t≥0 S

tV be the symmetric algebra of V ,
which is the the largest commutative graded quotient algebra of the tensor algebra
of V . In particular, the t-th symmetric power StV is a quotient of V ⊗t, and should
not be confused with Symt V , the space of symmetric tensors of order t, which is
a subspace of V ⊗t. If W is another vector space, we also let Symt(V ;W) be the
space of symmetric t-multilinear maps from V t to W . All these objects are related
by natural identifications such as

Symt(V ∨) = Symt(V ;F) = (StV)∨.

Here it was always understood that we were working over F, but in case of ambiguity
we will use more precise notations such as S·FV , Symt

F(V ;W), etc.
By [n] we denote the standard set with n elements, the precise definition of

which will depend on the context: when doing combinatorics, it will be [n] =
{1, 2, . . . , n}, and when doing algebraic geometry over F, it will be [n] = SpecFn.
We also let Sn be the symmetric group on n elements, which acts naturally on [n].

By a linear code of length n over F we mean a linear subspace C ⊆ Fn; moreover
if dim(C) = k we say C is a [n, k] code. Given a word x ∈ Fn, its support
Supp(x) ⊆ [n] is the set of indices over which x is nonzero, and its Hamming weight
is w(x) = |Supp(x)|. If S ⊆ [n] is a subset we let 1S ∈ Fn be the characteristic
vector of S, that is, the vector with coordinates 1 over S and 0 over [n] \ S. We
also let πS : Fn � FS be the natural linear projection and ιS : FS ↪→ Fn be the
natural linear inclusion of vector spaces.

The dual code C⊥ ⊆ Fn is defined as the orthogonal of C with respect to the
standard scalar product in Fn. One should be careful not to confuse this notion
with that of the dual vector space C∨.

ON PRODUCTS AND POWERS OF LINEAR CODES 5

1. Introduction

Basic definitions.

1.1. — Given a field F and an integer n ≥ 1, we let ∗ denote componentwise
multiplication in Fn, so

(x1, . . . , xn) ∗ (y1, . . . , yn) = (x1y1, . . . , xnyn)

for xi, yj ∈ F.
This makes Fn a commutative F-algebra, with unit element the all-1 vector

1[n] = (1, . . . , 1). Its group of invertible elements is (Fn)× = (F×)n.
This algebra Fn can also be identified with the algebra of diagonal matrices of

size n over F (see 2.37 and 2.48 for more).

1.2. — If S, S′ ⊆ Fn are two subsets, that is, two (nonlinear) codes of the same
length n, we let

S ∗̇S′ = {c ∗ c′ ; (c, c′) ∈ S × S′} ⊆ Fn

be the set of componentwise products of their elements.
This operation ∗̇ is easily seen to be commutative and associative, and distribu-

tive with respect to the union of subsets: S ∗̇ (S′ ∪ S′′) = (S ∗̇S′) ∪ (S ∗̇S′′) for all
S, S′, S′′ ⊆ Fn. This means that the set of (nonlinear) codes over F of some given
length n becomes a commutative semiring under these laws ∪, ∗̇, with zero element
the empty code ∅ and with unit element the singleton {1[n]}.

This semiring is in fact an ordered semiring (under the inclusion relation ⊆),
since these laws are obviously compatible with ⊆.

1.3. — If moreover C,C ′ ⊆ Fn are two linear subspaces, that is, two linear
codes of the same length n, we let

C ∗ C ′ = 〈C ∗̇C ′〉 ⊆ Fn

be the linear span of C ∗̇C ′. (The reader should be careful of the shift in notations
from [43].)

For x ∈ Fn, we also write x ∗ C = 〈x〉 ∗ C = {x ∗ c ; c ∈ C}.
Some authors also call our C ∗ C ′ the Schur product of C and C ′. It is easily

seen that this operation ∗, defined on pairs of linear codes of a given length n, is
commutative and associative. Given linear codes C1, . . . , Ct ⊆ Fn, their product
C1 ∗ · · · ∗ Ct ⊆ Fn is then the linear code spanned by componentwise products
c1 ∗ · · · ∗ ct for ci ∈ Ci.

Also, given three linear codes C,C ′, C ′′ ⊆ Fn, we have the distributivity relation

C ∗ (C ′ + C ′′) = C ∗ C ′ + C ∗ C ′′ ⊆ Fn

where + is the usual sum of subspaces in Fn.
This means that the set of linear codes over F of some given length n becomes

a commutative semiring under these operations +, ∗. The zero element of this
semiring is the zero subspace, and its unit element is the one-dimensional repetition
code 1 (generated by the all-1 vector 1[n]). And as above, this semiring is easily
seen to be an ordered semiring (under inclusion).

The t-th power of an element C in this semiring will be denoted C〈t〉. For
instance, C〈0〉 = 1, C〈1〉 = C, C〈2〉 = C ∗ C, and we have the usual relations
C〈t〉 ∗ C〈t′〉 = C〈t+t

′〉, (C〈t〉)〈t
′〉 = C〈tt

′〉.

6 HUGUES RANDRIAMBOLOLONA

1.4. Definition. Let C ⊆ Fn be a linear code. The sequence of integers

dim(C〈i〉), i ≥ 0

is called the dimension sequence, or the Hilbert sequence, of C.
The sequence of integers

dmin(C〈i〉), i ≥ 0

is called the distance sequence of C.
Occasionally we will also consider the dual distance sequence, d⊥(C〈i〉) =

dmin((C〈i〉)⊥), i ≥ 0.

Probably the more self-describing term “dimension sequence” should be pre-
ferred over “Hilbert sequence,” although two very good reasons for using the latter
would be:

(i) emphasis on the geometric analogy that will be given in Proposition 1.28
(ii) pedantry.

One can show ([43, Prop. 11], or Theorem 2.32 below) that the dimension se-
quence of a nonzero linear code is non-decreasing, so it becomes ultimately constant.
This allows the following:

1.5. Definition. The (Castelnuovo-Mumford) regularity of a nonzero linear
code C ⊆ Fn is the smallest integer r = r(C) ≥ 0 such that

dim(C〈r〉) = dim(C〈r+i〉), ∀i ≥ 0.

1.6. Example. For 2 ≤ k ≤ n ≤ |F|, the [n, k] Reed-Solomon code C obtained
by evaluating polynomials of degree up to k − 1 at n distinct elements of F, has
dimension sequence

1, k, 2k − 1, . . . ,

⌊
n− 1

k − 1

⌋
(k − 1) + 1, n, n, n, . . .

and distance sequence

n, n− k + 1, n− 2k + 2, . . . , n−
⌊
n− 1

k − 1

⌋
(k − 1), 1, 1, 1, . . .

and regularity

r(C) =

⌈
n− 1

k − 1

⌉
.

1.7. Example. More generally, one class of linear codes that behave particu-
larly well with respect to the operation ∗, is that of evaluation codes. For example
if RMF(r,m) is the generalized Reed-Muller code, obtained by evaluating polyno-
mials in m ≥ 2 variables, of total degree up to r ≥ 0, at all points of Fm, then we
have

RMF(r,m) ∗RMF(r′,m) = RMF(r + r′,m).

Likewise for algebraic-geometry codes we have

C(D,G) ∗ C(D′, G) ⊆ C(D +D′, G)

where C(D,G) is the code obtained by evaluating functions from the Riemann-Roch
space L(D), associated with a divisor D, at a set G of F-points out of the support
of D, on an algebraic curve over F. Note that here one can construct examples in
which the inclusion is strict (even when D,D′ are taken effective): indeed L(D+D′)

ON PRODUCTS AND POWERS OF LINEAR CODES 7

contains L(D)L(D′) but need not be spanned by it — see e.g. [37], §§1-2, for a
study of questions of this sort.

1.8. — There is a natural semiring morphism, from the ∪, ∗̇ -semiring of (non-
linear) codes of length n over F, to the +, ∗ -semiring of linear codes of length n
over F, mapping a subset S ⊆ Fn to its linear span 〈S〉 (moreover this map respects
the ordered semiring structures defined by inclusion).

Last, there is another semiring structure, defined by the operations ⊕,⊗ on
the set of all linear codes over F (not of fixed length; see e.g. [54]). One should
not confuse these constructions, although we will see some more relations between
them in 1.10 and 2.8 below.

1.9. — Also there are links between products of codes and the theory of inter-
secting codes [12][45], but one should be careful to avoid certain misconceptions.
Given two linear codes C1, C2 ⊆ Fn, we define their intersection number

i(C1, C2) = min
c1∈C1, c2∈C2

c1,c2 6=0

w(c1 ∗ c2).

We say the pair (C1, C2) is intersecting if i(C1, C2) > 0, that is, if any two nonzero
codewords from C1 and C2 have intersecting supports. And given an integer s > 0,
we say (C1, C2) is s-intersecting if i(C1, C2) ≥ s. (We also say a linear code C is
(s-)intersecting if the pair (C,C) is.)

Now the two quantities dmin(C1 ∗ C2) and i(C1, C2) might seem related, but
there are some subtleties:

• Let s > 0 and suppose (C1, C2) is s-intersecting. Then this does not
necessarily imply dmin(C1 ∗ C2) ≥ s. More precisely, what we have is
that any codeword z ∈ C1 ∗C2 of the specific form z = c1 ∗ c2 has weight
w(z) ≥ s. But there are codewords in C1 ∗ C2 that are not of this form
(because C1∗C2 is defined as a linear span), which can make its minimum
distance smaller: see Example 1.22.
• On the other hand, dmin(C1 ∗ C2) ≥ s does not necessarily imply that

(C1, C2) is s-intersecting. In fact it could well be that there are nonzero
c1, c2 such that c1 ∗ c2 = 0, so (C1, C2) is even not intersecting at all!
Indeed note that c1 ∗ c2 = 0 does not contribute to dmin(C1 ∗ C2). The
possibility of such “unexpected zero codewords” is one difficulty in the
estimation of the minimum distance of products of codes; see also the
discussion in 1.32.

However it remains that, if (C1, C2) is intersecting, then it is at least dmin(C1 ∗C2)-
intersecting. Or equivalently, if i(C1, C2) > 0, then i(C1, C2) ≥ dmin(C1 ∗ C2).

Link with tensor constructions.
Here we present algebraic constructions related to products and powers of codes.

Later (in 1.25-1.31) they will be revisited from a geometric point of view.

1.10. — We identify the tensor product Fm⊗Fn with the space Fm×n of m×n
matrices, by identifying the elementary tensor (x1, . . . , xm)⊗ (y1, . . . , yn) with the
matrix with entries (xiyj), and extending by linearity.

Given two linear codes C,C ′ ⊆ Fn of the same length n, their tensor product
C ⊗ C ′ ⊆ Fn×n is then the linear code spanned by elementary tensor codewords
c ⊗ c′, for c ∈ C, c′ ∈ C ′. It then follows from the definitions that C ∗ C ′ is the

8 HUGUES RANDRIAMBOLOLONA

projection of C ⊗ C ′ on the diagonal. In fact this could be taken as an alternative
definition for C ∗ C ′.

So we have an exact sequence

0 −→ I(C,C ′) −→ C ⊗ C ′ π∆−→ C ∗ C ′ −→ 0

where π∆ is the projection on the diagonal, and I(C,C ′) is its kernel in C ⊗ C ′.
One might view I(C,C ′) as the space of formal bilinear expressions in codewords
of C,C ′ that evaluate to zero.

Equivalently, if c1, . . . , ck are the rows of a generator matrix of C, and c′1, . . . , c′k′
are the rows of a generator matrix of C ′, then the products ci ∗ c′j generate C ∗C ′,
but need not be linearly independent: the space of linear relations between these
product generators is precisely I(C,C ′). In particular we have

dim(C ∗ C ′) = kk′ − dim(I(C,C ′)) ≤ min(n, kk′).

It is true, although not entirely obvious from its definition, that C ⊗ C ′ can
also be described as the space of n× n matrices all of whose columns are in C and
all of whose rows are in C ′. Then I(C,C ′) is the subspace made of such matrices
that are zero on the diagonal.

1.11. — Likewise, by the universal property of symmetric powers, there is a
natural surjective map StC � C〈t〉, whose kernel It(C) can be viewed as the space
of formal homogeneous polynomials of degree t in codewords of C that evaluate to
zero.

Equivalently, if c1, . . . , ck are the rows of a generator matrix of C, then the
monomials (c1)i1 ∗ · · · ∗ (ck)ik , for i1 + · · ·+ ik = t, generate C〈t〉, but need not be
linearly independent: the space of linear relations between these monomial gener-
ators is precisely It(C). In particular we have

dim(C〈t〉) =

(
k+t−1

t

)
− dim(It(C)) ≤ min

(
n,

(
k+t−1

t

))
.

For example, let 5 ≤ n ≤ |F|, and C be the [n, 3] Reed-Solomon code obtained
by evaluating polynomials of degree up to 2 in F[x] at n points in F. Denote by
1, x, x2 the canonical basis of C (obtained from the corresponding monomials in
F[x]). Then

1 · x2 − x · x

is nonzero in S2C but it evaluates to zero in C〈2〉, that is, it defines a nonzero
element in I2(C). We have dim(S2C) = 6 and dim(C〈2〉) = 5, so in fact I2(C) has
dimension 1 and admits 1 · x2 − x · x as a generating element.

1.12. — The direct sum
C〈.〉 =

⊕
t≥0

C〈t〉

admits a natural structure of graded F-algebra, which makes it a quotient of the
symmetric algebra S·C under the maps described in the previous entry.

Equivalently, the direct sum

I ·(C) =
⊕
t≥0

It(C)

ON PRODUCTS AND POWERS OF LINEAR CODES 9

is a homogeneous ideal in the symmetric algebra S·C, and we have a natural iden-
tification

C〈.〉 = S·C/I ·(C)

of graded F-algebras.

Rank functions.

1.13. — Let C be a finite dimensional F-vector space, and S ⊆ C a generating
set.

Definition. The rank function associated with S is the function rkS : C −→
Z≥0 defined as follows: the rank rkS(c) of an element c ∈ C is the smallest integer
r ≥ 0 such that there is a decomposition

c = λ1s1 + · · ·+ λrsr, λi ∈ F, si ∈ S

of c as a linear combination of r generators from S.

Conversely we say that rk : C −→ Z≥0 is a rank function on C if rk = rkS
for some generating set S. It is easily seen that a rank function is a norm on C
(relative to the trivial absolute value on F), in particular it satisfies

rk(λx) = rk(x)

and
rk(x+ y) ≤ rk(x) + rk(y)

for all λ ∈ F×, x, y ∈ C. In fact, a generating set S defines a surjective linear map
F(S) � C, and rkS is then the quotient norm on C of the Hamming norm on F(S).

(In some instances we will also make the following abuse: given S ⊆ C that
does not span the whole of C, we define rkS on 〈S〉 as above, and then we let
rkS(c) =∞ for c ∈ C \ 〈S〉.)

1.14. Example. Suppose given a full rank n × (n − k) matrix H, and let
y ∈ Fn be an arbitrary word (in row vector convention), and z = yHT ∈ Fn−k the
corresponding “syndrome”. The set S of columns of H, or equivalently, of rows of
HT , is a generating set in Fn−k, and the rank

rkS(z)

is then equal to the weight of a minimum error vector e such that y − e is in the
code defined by the parity-check matrix H.

1.15. — Given a rank function on C, we let

C(i) = {c ∈ C ; rk(c) = i}, C(≤i) = {c ∈ C ; rk(c) ≤ i}

for all i ≥ 0. Obviously rk(c) ≤ k = dim(C) for all c ∈ C, so

0 = C(≤0) ⊆ C(≤1) ⊆ · · · ⊆ C(≤k) = C.

Two generating sets S, S′ ⊆ C define the same rank function if the sets of lines
{F · s ; s ∈ S, s 6= 0} and {F · s′ ; s′ ∈ S′, s′ 6= 0} are equal. Given a rank function
rk on C, there is a preferred generating set S such that rk = rkS , namely it is
S = C(1).

10 HUGUES RANDRIAMBOLOLONA

1.16. Lemma. Let f : C −→ C ′ be a linear map between two finite dimensional
F-vector spaces. Suppose S ⊆ C, S′ ⊆ C ′ are generating sets with f(S) ⊆ S′. Then
for all c ∈ C we have

rkS(c) ≥ rkS′(f(c)).

Proof. Obvious from the definition. �

1.17. — Now we generalize constructions 1.2-1.3 slightly. Suppose given sets
V1, . . . , Vt,W and a map

Φ : V1 × · · · × Vt −→W.

Then for subsets S1 ⊆ V1, . . . , St ⊆ Vt we define

Φ̇(S1, . . . , St) = {Φ(c1, . . . , ct) ; c1 ∈ S1, . . . , ct ∈ St} ⊆ W.

If moreover V1, . . . , Vt,W are F-vector spaces and C1 ⊆ V1, . . . , Ct ⊆ Vt are F-linear
subspaces, we let

Φ(C1, . . . , Ct) = 〈Φ̇(C1, . . . , Ct)〉 ⊆ W.

In this definition Φ could be an arbitrary map, although in most examples it will
be t-multilinear. In this case, the (F-)linear span is easily seen to reduce to just an
additive span.

Also, we will use analogous notations when Φ is written as a composition law,
for instance if V, V ′ are F-vector spaces and S ⊆ V , S′ ⊆ V ′ arbitrary subsets, then
S⊗̇S′ = {c⊗ c′ ; (c, c′) ∈ S × S′} ⊆ V ⊗ V ′.

1.18. — Let V, V ′,W be F-vector spaces and Φ : V ×V ′ −→W a bilinear map.
Let C ⊆ V and C ′ ⊆ V ′ be linear subspaces, and suppose C,C ′ equipped with rank
functions rk, rk′ respectively. Then Φ̇(C(1), C

′
(1)) ⊆ Φ(C,C ′) is a generating set,

and we define rkΦ as the associated rank function on Φ(C,C ′), also called the
Φ-rank function deduced from rk and rk′.

Alternatively, the rank rkΦ(z) of an element z ∈ Φ(C,C ′) can be computed as
the smallest value of the sum

∑
i rk(ci) rk′(c′i) over all possible decompositions (of

arbitrary length) z =
∑
i Φ(ci, c

′
i), ci ∈ C, c′i ∈ C ′.

Here we considered a bilinear Φ, but these constructions easily generalize to
the t-multilinear case, t ≥ 3.

When Φ = ⊗ is tensor product, or when Φ = ∗ is componentwise multiplication
in Fn, we will often make the following additional assumptions:

1.19. — From now on, unless otherwise specified, when a linear code C̃ is
written as a tensor product C̃ = C1 ⊗ . . . ⊗ Ct, it will be assumed that the Ci
are equipped with the trivial rank function (such that rk(ci) = 1 for all nonzero
ci ∈ Ci), and that C̃ is equipped with the ⊗-rank function from these. A nonzero
c ∈ C̃ is then of rank 1 if it is an elementary tensor c = c1 ⊗ . . .⊗ ct, with ci ∈ Ci.

For example, with these conventions, the rank function on Fm×n = Fm ⊗ Fn is
the rank of matrices in the usual sense. Given two linear codes C ⊆ Fm, C ′ ⊆ Fn,
we have an inclusion C⊗C ′ ⊆ Fm⊗Fn, and by Lemma 1.16 the rank of a codeword
z ∈ C ⊗ C ′ is greater than or equal to its rank as a matrix.

1.20. — Likewise, when a linear code C̃ ⊆ Fn is written as a product C̃ =
C1 ∗ · · · ∗ Ct for some Ci ⊆ Fn, it will be assumed that these Ci are equipped
with the trivial rank function, and that C̃ is equipped with the ∗-rank function

ON PRODUCTS AND POWERS OF LINEAR CODES 11

from these. A nonzero c ∈ C̃ is then of rank 1 if it is an elementary product
c = c1 ∗ · · · ∗ ct, with ci ∈ Ci.

In particular, given a code C and its t-th power C〈t〉, it will be assumed that
C is equipped with the trivial rank function, and C〈t〉 with its t-th power.

As in 1.10 there is a natural projection π∆ : C1 ⊗ · · · ⊗Ct −→ C1 ∗ · · · ∗Ct (or
C⊗t −→ C〈t〉), and by Lemma 1.16 this map can only make the rank decrease.

1.21. Definition. Let C be a nonzero linear code equipped with a rank func-
tion rk. For any i ≥ 1 we then define dmin,i(C) as the minimum weight of a nonzero
element in C(≤i).

If C has dimension k, then obviously

dmin,1(C) ≥ dmin,2(C) ≥ · · · ≥ dmin,k(C) = dmin(C).

1.22. Example. Given two linear codes C ⊆ Fm and C ′ ⊆ Fn, it follows from
the description of C ⊗ C ′ as the space of m × n matrices with columns in C and
rows in C ′, that dmin(C ⊗C ′) = dmin(C) dmin(C ′), and that moreover this value is
attained by an elementary tensor codeword, that is

dmin,1(C ⊗ C ′) = dmin(C ⊗ C ′) = dmin(C) dmin(C ′).

On the other hand, let C,C ′ ⊆ (F2)7 be the linear codes with generator matrices

G =

(
1 0 0 1 1 1 1
0 1 1 1 1 0 0

)
, G′ =

(
1 0 0 1 1 1 1
0 1 1 0 0 1 1

)
respectively, so the nonzero codewords of C are c1 = (1001111), c2 = (0111100),
c1 + c2 = (1110011) and the nonzero codewords of C ′ are c′1 = c1 = (1001111),
c′2 = (0110011), c′1 + c′2 = (1111100). We can then check that c ∗ c′ has weight at
least 2 for all nonzero c ∈ C, c′ ∈ C ′, while C∗C ′ also contains c1∗c′1+c1∗c′2+c2∗c′1 =
(1000000). Hence

dmin,1(C ∗ C ′) = 2 > dmin(C ∗ C ′) = 1,

and in this example, dmin(C ∗ C ′) cannot be attained by an elementary product
codeword.

Geometric aspects.
Part of the discussion here is aimed at readers with a certain working knowledge

of algebraic geometry. Other readers can still read 1.23-1.24, the first halves of 1.30
and 1.31, and also 1.32, which remain elementary, and then skip to the next section
with no harm.

1.23. — Let C ⊆ Fn be a linear code and C⊥ ⊆ Fn its dual. For each integer
i ≥ 0 we have C = C⊥⊥ ⊆ 〈x ∈ C⊥ ; w(x) ≤ i〉⊥, and we denote the dimension of
the latter as

ni = dim〈x ∈ C⊥ ; w(x) ≤ i〉⊥.
Obviously ni ≥ ni+1, and the first values are easily computed (see also 2.3 and 2.19):

• n0 = n is the length of C
• n1 = |Supp(C)| is the support length of C, that is, the number of nonzero

columns of a generator matrix of C
• n2 is the projective length of C, that is, the number of proportionality

classes of nonzero columns of a generator matrix of C.

12 HUGUES RANDRIAMBOLOLONA

The author does not know such a nice interpretation for the subsequent values
n3, n4, . . .

At some point the sequence must stabilize, more precisely, if C⊥ is generated
by its codewords of weight at most i0, then ni0 = ni0+1 = · · · = k = dim(C).
Putting C⊥ in systematic form, one sees one can take i0 ≤ k + 1.

1.24. — Let C ⊆ Fn be a linear code of dimension k, and let G be a generator
matrix for C. We will suppose that C has full support, that is, G has no zero
column, or with the notations of 1.23, n1 = n. In many applications, the properties
of C that are of interest are preserved when a column of G is replaced with a
proportional one, or when columns are permuted. So ([57][58]) these properties
only depend on the projective set ΠC ⊆ Pk−1 of proportionality classes of columns
of G, where possibly elements of ΠC may be affected multiplicities to reflect the
fact that some columns of G may be repeated (up to proportionality).

However, in our context we need to keep track of the ordering of columns, since
the product of codes works coordinatewise. This can be done by considering the
labeling

νC : [n] � ΠC ⊆ Pk−1

where νC maps i ∈ [n] to the proportionality class in Pk−1 of the i-th column of
G. Note that, in particular, the image of νC is ΠC . It has n2 elements (with the
notations of 1.23), and it spans Pk−1 (because G has rank k).

In fact this description can be made slightly more intrinsic. We can view
C ⊆ Fn as an abstract vector space C equipped with n linear forms C −→ F, which
span the dual vector space C∨. That C has full support means that each of these
n linear forms is nonzero, so it defines a line in C∨. Seeing Pk−1 as the projective
space of these lines, we retrieve the definition of νC .

1.25. — Recall [23, §4.1][24, §II.7] that if V is a finite dimensional F-vector
space, then

P(V) = ProjS·V

is the scheme whose points represent lines in V ∨, or equivalently, hyperplanes in
V , or equivalently, invertible quotients of V . If A is a F-algebra, then giving a
map ν : SpecA −→ P(V) is the same as giving an invertible A-module L and a
F-linear map V −→ L whose image generates L over A. The closure of the image
of ν (which will be the full image of ν if A is finite) is then the closed subscheme
of P(V) defined by the homogeneous ideal

⊕
t≥0 ker(StV −→ L⊗t) of S·V .

We apply this with V = C and L = A = Fn. Indeed, that C has full support
means Fn ∗ C = Fn, that is, C generates Fn as a Fn-module. So we deduce a
morphism [n] = SpecFn −→ P(C). This morphism is precisely the νC defined
in 1.24: indeed the n points of [n] correspond to the n projections Fn −→ F,
so their images in P(C) correspond to the n coordinate linear forms C −→ F.
Recalling notations from 1.11-1.12, we then find:

1.26. Proposition. The map νC fits into the commutative diagram

νC : [n] � ΠC ⊆ Pk−1

‖ ‖ ‖
SpecFn � ProjC〈.〉 ⊆ P(C)

where the homogeneous ideal defining ΠC = ProjC〈.〉 in Pk−1 = P(C) is I ·(C).

ON PRODUCTS AND POWERS OF LINEAR CODES 13

Proof. Indeed we have ker(StC −→ Fn) = ker(StC −→ C〈t〉) = It(C). �

Note that the linear span of ProjC〈.〉 is the whole of P(C) since I1(C) = 0.

1.27. — A possible application of what precedes is to the interpolation prob-
lem, where one seeks a subvariety Σ ⊆ Pk−1 passing through ΠC , in order to write
C as an evaluation code on Σ. Viewing StC as the space of homogeneous functions
of degree t on Pk−1, the homogeneous equations defining Σ are then to be found
in I ·(C).

Another consequence is the following, which explains the names in Defini-
tions 1.4-1.5. We define the Hilbert function and the Castelnuovo-Mumford reg-
ularity of a closed subscheme in a projective space, as those of its homogeneous
coordinate ring (see e.g. [19]). Then:

1.28. Proposition. Let C ⊆ Fn be a linear code with full support, and
νC : [n] � ΠC ⊆ Pk−1 the associated projective spanning map. Then:

(i) The dimension sequence of C is equal to the Hilbert function of ΠC .
(ii) The regularity r(C) of C is equal to the Castelnuovo-Mumford regularity

of ΠC .
(iii) The stable value of the dimension sequence is the projective length of C:

dimC〈t〉 = n2

for t ≥ r(C).

Proof. As established during the construction of νC in 1.25, the homogeneous
coordinate ring of ΠC is S·C/I ·(C) = C〈.〉. This gives point (i), and then point (ii)
follows by [19, Th. 4.2(3)] (see also [36, Lect. 14]). To show point (iii), first recall
that if A· is a graded algebra such that the dimension dimAt becomes constant for
t � 0, then this stable value is precisely the length of the finite projective scheme
ProjA·. Now here ΠC is a reduced union of some F-points (as an image of [n]), so
this length is precisely the number n2 of these points. �

Another (perhaps more concrete) proof of point (iii) will be given in Theo-
rem 2.35. For more on the geometric significance of (ii), see the discussion in 3.12.

1.29. Remark. From the short exact sequence of sheaves on P(C)

0 −→ JΠC
OP(C)(t) −→ OP(C)(t) −→ OΠC

(t) −→ 0

one can form a long exact sequence in cohomology, in which the first terms can be
identified as Γ(P(C), JΠC

OP(C)(t)) = It(C) and Γ(P(C),OP(C)(t)) = StC, leading
to a short exact sequence

0 −→ C〈t〉 −→ Γ(ΠC ,OΠC
(t)) −→ H1(P(C), JΠC

OP(C)(t)) −→ 0.

Now Γ(ΠC ,OΠC
(t)) is a vector space of dimension n2 over F, and choosing a subset

S ⊆ [n] of size |S| = n2 mapped bijectively onto ΠC by νC , we can identify this
vector space with FS . From this we finally deduce an identification

H1(P(C), JΠC
OP(C)(t)) ' FS/πS(C〈t〉).

In particular, since C and C〈t〉 have the same projective length for t ≥ 1 (this
should be obvious, but if not see 2.19-2.21), we find that

dimH1(P(C), JΠC
OP(C)(t)) = n2 − dim(C〈t〉)

= dim((C〈t〉)⊥/〈x ∈ (C〈t〉)⊥ ; w(x) ≤ 2〉)

14 HUGUES RANDRIAMBOLOLONA

is the minimum number of parity-check relations of weight at least 3 necessarily
appearing in any set of relations defining C〈t〉.

1.30. — Let C,C ′ ⊆ Fn be two linear codes. Choose corresponding generating
matrices G,G′. For 1 ≤ i ≤ n, let pi ∈ Fk be the i-th column of G and p′i ∈ Fk′ the
i-th column of G′. Then C,C ′ are the respective images of the evaluation maps

F[X1, . . . , Xk]1 −→ Fn
L 7→ (L(p1), . . . , L(pn))

and
F[Y1, . . . , Yk′]1 −→ Fn

L′ 7→ (L′(p′1), . . . , L′(p′n))

defined on spaces of linear homogeneous polynomials in k and k′ variables. Then,
C ∗ C ′ is the image of the evaluation map

F[X1, . . . , Xk;Y1, . . . , Yk′]1,1 −→ Fn
B 7→ (B(p1; p′1), . . . , B(pn; p′n))

defined on the space of bilinear homogenous polynomials in k + k′ variables, that
is, on polynomials of the form

B(X1, . . . , Xk;Y1, . . . , Yk′) =
∑
i,j

µi,jXiYj

where µi,j ∈ F, 1 ≤ i ≤ k, 1 ≤ j ≤ k′.
This is just a reformulation of 1.10. Geometrically, it corresponds to the Segre

construction.
Suppose C,C ′ ⊆ Fn have full support, and let νC : [n] � ΠC ⊆ Pk−1 and

νC′ : [n] � ΠC′ ⊆ Pk
′−1 be the associated projective spanning maps. Composing

this pair of maps with the Segre embedding we get

[n]
(νC ,νC′)−−−−−−→ Pk−1 ×Pk

′−1 −→ Pkk
′−1

which should be essentially νC∗C′ , except that its image ΠC∗C′ might not span
Pkk

′−1 as requested, so we have to replace Pkk
′−1 with the linear span of the

image 〈ΠC∗C′〉, which is a Pdim(C∗C′)−1.
More intrinsically, we have Pk−1 = P(C), Pk

′−1 = P(C ′), and Pkk
′−1 =

P(C ⊗ C ′). The linear span 〈ΠC∗C′〉 of ΠC∗C′ is then easily identified: we have
C ∗ C ′ = C ⊗ C ′/I(C,C ′), so

〈ΠC∗C′〉 = P(C ∗ C ′) ⊆ P(C ⊗ C ′)
is the linear subspace cut by I(C,C ′) (where we view elements of I(C,C ′) ⊆ C⊗C ′
as linear homogeneous functions on Pkk

′−1 = P(C ⊗ C ′)).
We summarize this with the commutative diagram

νC∗C′ : [n] � ΠC∗C′ ⊆ 〈ΠC∗C′〉 ⊆ Pkk
′−1

‖ ‖ ‖ ‖
SpecFn � Proj(C ∗ C ′)〈.〉 ⊆ P(C ∗ C ′) ⊆ P(C ⊗ C ′).

1.31. — Keep the same notations as in the previous entry. First, in coordi-
nates, if C is the image of the evaluation map

F[X1, . . . , Xk]1 −→ Fn
L 7→ (L(p1), . . . , L(pn))

ON PRODUCTS AND POWERS OF LINEAR CODES 15

defined on the space of linear homogeneous polynomials in k variables, then C〈t〉 is
the image of the evaluation map

F[X1, . . . , Xk]t −→ Fn
Q 7→ (Q(p1), . . . , Q(pn))

defined on the space of homogeneous polynomials of degree t in k variables.
This is just a reformulation of 1.11. Geometrically, it corresponds to the

Veronese construction.
Suppose C ⊆ Fn has full support, and let νC : [n] � ΠC ⊆ Pk−1 be the associ-

ated projective spanning map. Composing with the t-fold Veronese embedding we
get

[n]
νC−−→ Pk−1 −→ P(k+t−1

t)−1,

the image of which spans the linear subspace

〈ΠC〈t〉〉 = P(C〈t〉) ⊆ P(StC)

cut by It(C) (where now we see elements of It(C) ⊆ StC not as homogeneous
functions of degree t on Pk−1 = P(C), but as linear homogeneous functions on
P(k+t−1

t)−1 = P (StC)).
Again we summarize this with the commutative diagram

νC〈t〉 : [n] � ΠC〈t〉 ⊆ 〈ΠC〈t〉〉 ⊆ P(k+t−1
t)−1

‖ ‖ ‖ ‖
SpecFn � ProjC〈t·〉 ⊆ P(C〈t〉) ⊆ P(StC).

1.32. — This geometric view is especially interesting when one considers the
distance problem. Given C ⊆ Fn with full support, and νC : [n] � ΠC ⊆ Pk−1

the associated projective spanning map, nonzero codewords c ∈ C correspond to
hyperplanes Hc ⊆ Pk−1, and the weight of c is w(c) = n − |ν−1

C (Hc)|. As a
consequence, the minimum distance of C is

dmin(C) = n− max
H⊆Pk−1

hyperplane

|ν−1
C (H)|.

Applying the Veronese construction which identifies hyperplanes in P(k+t−1
t)−1 with

hypersurfaces of degree t in Pk−1, we find likewise

dmin(C〈t〉) = n− max
H⊆Pk−1, H 6⊇ΠC

hypersurface of degree t

|ν−1
C (H)|.

Note that here we have to add the extra condition H 6⊇ ΠC , reflecting the fact that
It(C) could be nonzero. This makes the distance problem slightly more delicate as
soon as t ≥ 2.

In many code constructions, often the very same argument that gives a lower
bound on the minimum distance shows at the same time that the code has “full
dimension”. For example, if C(D,G) = Im(L(D) −→ FG) is the algebraic-geometry
code defined in 1.7, then, provided m = deg(D) < n = |G|, a function in L(D) can
have at most m zeroes in G, from which we get at the same time injectivity of the
evaluation map, so dim(C(D,G)) = dim(L(D)), and dmin(C(D,G)) ≥ n−m.

On the other hand if a code is defined as a power of another code, we have to
deal separately with the fact that it could have dimension smaller than expected.

16 HUGUES RANDRIAMBOLOLONA

Given νC : [n] � ΠC ⊆ Pk−1, to show dmin(C〈t〉) ≥ n −m one has to show that
for any homogenous form of degree t on Pk−1, either:

• ν∗CF has at most m zeroes in [n], or
• ν∗CF vanishes on all of [n].

1.33. — Now the author would like to share some (personal) speculations
about the objects constructed so far.

From Proposition 1.28, we see that the dimension sequence of a linear code
C is a notion that has been already well studied, albeit under a different (but
equivalent) form. In fact, its study can also be reduced to an interpolation problem:
since dimC〈t〉 =

(
k+t−1
t

)
− dim It(C), to estimate the Hilbert function we can

equivalently count the hypersurfaces of degree t passing through ΠC . This problem
is not really of a coding-theoretic nature. We can do the same thing for powers of
a linear subspace in any finite-dimensional algebra A, not only in Fn.

However, things change if one is also interested in the distance sequence of
C. While we’re still doing geometry over F, that is, over a base of dimension 0,
now, following the philosophy of Arakelov theory, the introduction of metric data
(such as defined, here, by the Hamming metric) is very similar to passing to a
base of dimension 1. In this way, the study of the joint dimension and distance
sequences of a code might be viewed as a finite field analogue of the study of the
“arithmetic Hilbert(-Samuel) function” associated in [30] to interpolation matrices
over a number field, and further analyzed in [41]. For example the monotonicity
results that will be given in 2.32-2.33 are very similar in spirit to those of [41, 5.2];
in turn, keeping Remark 1.29 in mind, a natural interpretation is as the size of
some H1 decreasing, as in [36, p. 102].

For another illustration of this principle, to give an upper bound on dmin(C〈t〉)
one has to find a nonzero codeword of small weight in C〈t〉, that is, a function
P ∈ StC whose zero locus intercepts a large part of, but not all, the image of
[n] under νC〈t〉 . This is somehow reminiscent of the situation in transcendental
number theory, where one has to construct an auxiliary function that is small but
nonzero, which often involves a Siegel lemma. Conversely, to give a lower bound
on dmin(C〈t〉), one has to show that for all P ∈ StC, either P vanishes on all the
image (which means P ∈ It(C)), or else it misses a certain part of it, of controlled
size. Perhaps one could see this as a loose analogue of a zero lemma.

2. Basic structural results and miscellaneous properties

In this section we study basic properties of codes with respect to componentwise
product, while aiming at the widest generality. This means including the case of
“degenerated” codes (e.g. not having full support, or having repeated columns, or
also decomposable codes) that are often not of primary interest to coding theorists;
the hurried reader should feel free to skip the corresponding entries.

This said, it turns out these degenerated codes sometimes appear in some natu-
ral situations, which motivates having them treated here for reference. For instance,
even if a code C is indecomposable, its powers C〈t〉 might be decomposable. Also,
to study a code C, it can be useful to filter it by a chain of subcodes Ci (see e.g.
3.10, or [14][35][59]), and even for the nicest C, the Ci under consideration might
very well then be degenerated.

ON PRODUCTS AND POWERS OF LINEAR CODES 17

Support.

2.1. — From now on, by the i-th column of a linear code C ⊆ Fn, we will
mean the i-th coordinate projection πi : C −→ F, which is an element of the dual
vector space C∨.

This name is justified because, given a generator matrix G, which corresponds
to a basis of C over F, the column vector of the coordinates of πi with respect to
this basis is precisely the i-th column of G.

2.2. — A possible definition of the support of words or codes, in terms of our
product ∗, can be given as follows. First, note that for all S, T ⊆ [n], we have
1S ∗ 1T = 1S∩T . In particular, 1S is an idempotent of Fn. In fact, as a linear
endomorphism of Fn, we have

1S ∗ · = ιS ◦ πS
where πS : Fn � FS and ιS : FS ↪→ Fn are the natural linear maps.

Then the support of a word x ∈ Fn can be defined as the smallest, or the
intersection, of all subsets S ⊆ [n] such that

1S ∗ x = x.

Likewise the support of a linear code C ⊆ Fn is the smallest, or the intersection,
of all subsets S ⊆ [n] such that

1S ∗ C = C.

2.3. — Equivalently, for i ∈ [n], we have i ∈ Supp(C) if and only if the i-th
column of C is nonzero. This may be rephrased in terms of vectors of weight 1 in
the dual code:

i 6∈ Supp(C) ⇐⇒ 1{i} ∈ C⊥.
As a consequence we have

〈x ∈ C⊥ ; w(x) ≤ 1〉⊥ = ι(FSupp(C))

(where ι = ιSupp(C) : FSupp(C) ↪→ Fn) and we retrieve the relation

n1 = dim〈x ∈ C⊥ ; w(x) ≤ 1〉⊥ = |Supp(C)|

as stated in 1.23.

2.4. Lemma. If c1, . . . , ct ∈ Fn are words of the same length, then

Supp(c1 ∗ · · · ∗ ct) = Supp(c1) ∩ · · · ∩ Supp(ct).

If C1, . . . , Ct ⊆ Fn are linear codes of the same length, then

Supp(C1 ∗ · · · ∗ Ct) = Supp(C1) ∩ · · · ∩ Supp(Ct).

In particular, for C ⊆ Fn and t ≥ 1 we have

Supp(C〈t〉) = Supp(C).

Proof. Obvious. �

2.5. — In most applications we can discard the 0 columns of a linear code
without affecting its good properties, that is, we can replace C with its projection
on Supp(C) so that it then has full support.

18 HUGUES RANDRIAMBOLOLONA

In particular, given C1, . . . , Ct ⊆ Fn, if we let I = Supp(C1) ∩ · · · ∩ Supp(Ct)
and we replace each Ci with πI(Ci), this replaces C1 ∗ · · · ∗Ct with πI(C1 ∗ · · · ∗Ct),
which does not change its essential parameters (dimension, weight distribution...).
In this way, many results on products of codes can be reduced to statements on
products of codes which all have full support. However, this intersection I may
be strictly smaller than some of the Supp(Ci), so replacing Ci with πI(Ci) might
change some relevant parameter of this code. In some applications, namely when
both the parameters of C1 ∗ · · · ∗ Ct and those of the Ci are relevant, this added
difficulty has to be taken into account carefully.

Decomposable codes.
We recast some classical results of [54] in the light of the ∗ operation, elaborat-

ing from 2.2. Beside reformulating elementary notions in a fancy language, what
is done here will also appear naturally while studying automorphisms in 2.48 and
following.

2.6. Definition. Let C ⊆ Fn be a linear code. The extended stabilizing
algebra of C is

Â(C) = {a ∈ Fn ; a ∗ C ⊆ C},
and the (proper) stabilizing algebra of C is

A(C) = 1Supp(C) ∗ Â(C) = {a ∈ Fn ; Supp(a) ⊆ Supp(C), a ∗ C ⊆ C}.

Clearly Â(C) is a subalgebra of Fn, while projection πSupp(C) identifies A(C)

with a subalgebra of FSupp(C) (the identity element of A(C) is the idempotent
1Supp(C) of Fn). Moreover we have

Â(C) = A(C)⊕ ι(F[n]\Supp(C))

where ι = ι[n]\Supp(C) is the natural inclusion F[n]\Supp(C) ↪→ Fn.

2.7. Proposition. Let C,C ′ ⊆ Fn be two linear codes of the same length.
Then

A(C) ∗ A(C ′) ⊆ A(C ∗ C ′),
and for all t ≥ 1

A(C) = A(C)〈t〉 ⊆ A(C〈t〉).

Also we have
A(A(C)) = A(C).

Proof. If a ∗ C ⊆ C and a′ ∗ C ′ ⊆ C ′, then (a ∗ a′) ∗ C ∗ C ′ ⊆ C ∗ C ′. Using
Lemma 2.4 and passing to the linear span we find A(C) ∗ A(C ′) ⊆ A(C ∗ C ′) as
claimed. Induction then gives A(C)〈t〉 ⊆ A(C〈t〉). Last, we have A(C) = A(C)〈t〉

and A(A(C)) = A(C) because A(C) is an algebra under ∗, with unit 1Supp(C). �

2.8. Definition. Let C ⊆ Fn be a linear code and P = {P1, . . . , Ps} a
partition of Supp(C). We say that C decomposes under P if 1Pi ∈ A(C) for all i.

Equivalently, this means there are linear subcodes C1, . . . , Cs ⊆ C with Supp(Ci) =
Pi such that

C = C1 ⊕ · · · ⊕ Cs.

ON PRODUCTS AND POWERS OF LINEAR CODES 19

To show the equivalence, write Ci = 1Pi
∗ C, so by definition Ci is a subcode

of C if and only if 1Pi ∈ A(C).

2.9. — We recall that the set of partitions of a given set S forms a lattice
under refinement. In particular if P = {P1, . . . , Ps} and Q = {Q1, . . . , Qt} are two
partitions of S, their coarsest common refinement is the partition

P ∧Q = {Pi ∩Qj ; Pi ∩Qj 6= ∅}.

More generally, if S, T are two sets, P is a partition of S, and Q a partition of T ,
then P ∧ Q, formally defined by the very same formula as above, is a partition of
S ∩ T .

2.10. Lemma-definition. If C decomposes under two partitions P,Q of
Supp(C), then it decomposes under P ∧ Q. Hence there is a finest partition P(C)
under which C decomposes.

If P(C) = {A1, . . . , Ar}, we have

C = C1 ⊕ · · · ⊕ Cr

where the Ci = 1Ai
∗C are called the indecomposable components of C. This is the

finest decomposition of C as a direct sum of nonzero subcodes with pairwise disjoint
supports.

Proof. If 1Pi
∈ A(C) and 1Qj

∈ A(C), then 1Pi∩Qj
= 1Pi

∗ 1Qj
∈ A(C). �

2.11. Proposition. We have

dimA(C) = |P(C)|.

More precisely, if P(C) = {A1, . . . , Ar}, then

A(C) = 〈1A1
, . . . , 1Ar

〉 = 〈1A1
〉 ⊕ · · · ⊕ 〈1Ar

〉.

Proof. Let V = 〈1A1 , . . . , 1Ar 〉. Obviously the 1Ai are linearly independent
so dim(V) = r; and by definition we have 1Ai

∈ A(C), so V ⊆ A(C).
Conversely, let x ∈ A(C). We want to show x ∈ V . Let λ1, . . . , λs ∈ F be the

elements that appear at least once as a coordinate of x over Supp(C), and for each
such λj , let Bj ⊆ Supp(C) be the set of indices on which x takes coordinate λj , so
x = λ11B1 + · · ·+ λs1Bs . For each j, there is a Lagrange interpolation polynomial
P such that P (λj) = 1 and P (λj′) = 0 for j′ 6= j. Evaluating P on x in the algebra
A(C) we find 1Bj

= P (x) ∈ A(C). This means C decomposes under the partition
Q = {B1, . . . , Bs}, hence P(C) refines Q. So, for all j, we get that Bj is a union of
some of the Ai, and 1Bj

∈ V . The conclusion follows. �

2.12. Corollary. Let C,C ′ ⊆ Fn be two linear codes of the same length.
Then P(C ∗ C ′) is a (possibly strict) refinement of P(C) ∧ P(C ′). For t ≥ 1,
P(C〈t〉) is a (possibly strict) refinement of P(C).

More generally, if C decomposes under a partition P of Supp(C) as

C = C1 ⊕ · · · ⊕ Cs

and C ′ under a partition P ′ of Supp(C ′) as

C = C ′1 ⊕ · · · ⊕ C ′s′

20 HUGUES RANDRIAMBOLOLONA

then C ∗ C ′ decomposes under P ∧ P ′ (which is a partition of Supp(C ∗ C ′)) as

C ∗ C ′ =
⊕
i,j

Ci ∗ C ′j

where we keep only those of the i, j for which Ci ∗C ′j 6= 0. (However, these Ci ∗C ′j
need not necessarily be indecomposable, even if the Ci and C ′j are.)

And for any t ≥ 1, the t-th power C〈t〉 also decomposes under P as

C〈t〉 = C
〈t〉
1 ⊕ · · · ⊕ C〈t〉s .

(However, these C〈t〉i need not necessarily be indecomposable, even if the Ci are.)

Proof. Everything is clear and can be proved directly. An alternative proof
for the first assertion is as a consequence of Propositions 2.7 and 2.11. �

2.13. Example. Note that the parity [3, 2, 2]2 code C is indecomposable,
while its square is the trivial [3, 3, 1]2 code, which decomposes totally. That is,
this gives an example where P(C〈2〉) = {{1}, {2}, {3}} strictly refines P(C) =
{{1, 2, 3}}, and A(C) = A(C)〈2〉 = 1 (A(C〈2〉) = (F2)3.

2.14. — We gave results only for the proper stabilizing algebra. However,
since Â(C) = A(C) ⊕ ι(F[n]\Supp(C)), one immediately deduces similar statements
for the extended algebra.

For instance, Proposition 2.7 is replaced with Â(C) ∗ Â(C ′) ⊆ Â(C ∗ C ′),
Â(C) = Â(C)〈t〉 ⊆ Â(C〈t〉), and Â(Â(C)) = Â(A(C)) = Â(C).

Instead of Definition 2.8, we say that C weakly decomposes under a partition
Q of [n] if, for each Q ∈ Q, we have 1Q ∈ Â(C). This means there are subcodes
Ci ⊆ C with disjoint supports such that C =

⊕
i Ci, with each Supp(Ci) included

(possibly strictly) in some Qi ∈ Q.
There is a finest partition of [n] under which C weakly decomposes, it is P̂(C) =

P(C) ∪ {{j}; j 6∈ Supp(C)}. Then Proposition 2.11 becomes

Â(C) =
⊕

Q∈P̂(C)

〈1Q〉.

Last, P̂(C ∗ C ′) is a (possibly strict) refinement of P̂(C) ∧ P̂(C ′), and if C
weakly decomposes under Q as C =

⊕
i Ci and C

′ weakly decomposes under Q′ as
C ′ =

⊕
i C
′
i, then C ∗C ′ weakly decomposes under Q∧Q′ as C ∗C ′ =

⊕
i,j Ci ∗C ′j .

Additional properties of Â(C), involving the dual code C⊥, will be given in
2.41 and 2.42.

Repeated columns.

2.15. — We keep the same notations as in 2.1: by the columns of a linear code
C ⊆ Fn we mean the n coordinate projections C −→ F. Then:

Definition. We define an equivalence relation ∼ (or ∼C) on Supp(C) by
setting i ∼ j when the i-th and j-th columns of C are proportional. By abuse of
language we also say these are two repeated columns.

We let
U(C) = Supp(C)/ ∼

be the set of equivalence classes of ∼, which is a partition of Supp(C).

ON PRODUCTS AND POWERS OF LINEAR CODES 21

2.16. Lemma. Let i, j ∈ Supp(C), i 6= j. Then

i ∼ j ⇐⇒ ∃x ∈ C⊥, Supp(x) = {i, j}.

Conversely
i 6∼ j ⇐⇒ ∃c ∈ C, πi(c) = 1, πj(c) = 0

(and then likewise with i, j permuted).

Proof. Basic manipulation in linear algebra. �

2.17. Proposition. Let C ⊆ Fn be a linear code. Then U(C) is a refinement
of P(C).

Proof. We have to show that if A,B ∈ P(C), A 6= B, and i ∈ A, j ∈ B, then
i 6∼ j. Since i ∈ Supp(C), we can find c ∈ C with πi(c) = 1. Then 1A ∗ c ∈ C
satisfies πi(1A ∗ c) = 1, πj(1A ∗ c) = 0, and we conclude with Lemma 2.16. �

2.18. — An equivalent formulation for Lemma 2.16 is: i 6∼ j if and only if
dim(1{i,j} ∗ C) = 2.

Conversely a subset B ⊆ Supp(C) is contained in an equivalence class for ∼ if
and only if dim(1B ∗ C) = 1. In particular, B ∈ U(C) if and only if B is maximal
for this property.

Definition. We call these 1B ∗ C, for B ∈ U(C), the one-dimensional slices
of C.

If c ∈ C is nonzero over B, then v = 1B ∗ c is a generator of the corresponding
slice: 1B ∗ C = 〈v〉.

Beware that since U(C) might be a strict refinement of P(C), this slice 1B ∗C
need not actually be a subcode of C, or equivalently, v need not actually belong to
C.

2.19. — If U(C) = {B1, . . . , Bs} and v1, . . . , vs are corresponding slice gener-
ators, then 1[Supp(C)] = 1B1

+ · · ·+ 1Bs
from which it follows

C = 1[Supp(C)] ∗ C ⊆ 〈1B1
, . . . , 1Bs

〉 ∗ C = 〈v1〉 ⊕ · · · ⊕ 〈vs〉.

The right hand side is easily identified thanks to 2.3 and Lemma 2.16:

〈v1〉 ⊕ · · · ⊕ 〈vs〉 = 〈x ∈ C⊥ ; w(x) ≤ 2〉⊥.

As a consequence we retrieve the relation

n2 = dim〈x ∈ C⊥ ; w(x) ≤ 2〉⊥ = s = |U(C)|

as stated in 1.23.

2.20. — To restate all this more concretely, choose a set of representatives
S = {j1, . . . , js} ⊆ Supp(C), with ji ∈ Bi, so each nonzero column of C is repeated
from one (and only one) column indexed by S. Then a codeword c ∈ C is entirely
determined over Bi by its value at ji. More precisely, after possibly multiplying by
scalars, we can suppose our slice generators are normalized with respect to S, that
is, vi is 1 at ji for all i. Then for each c ∈ C, the slice of c over Bi is 1Bi

∗c = πji(c)vi.
Said otherwise, πS induces a commutative diagram

22 HUGUES RANDRIAMBOLOLONA

C 〈v1〉 ⊕ · · · ⊕ 〈vs〉

πS(C) FS

⊆

⊆

' '

identifying C with the code πS(C) of length |S| = s = n2, which has full sup-
port in FS and no repeated column (so dual distance d⊥(πS(C)) ≥ 3 by 2.3 and
Lemma 2.16). Each column of C is repeated from one column of πS(C), or more
precisely, each

(λj1 , . . . , λjs) ∈ πS(C)

extends uniquely to
λj1v1 + · · ·+ λjsvs ∈ C.

2.21. Proposition. Let C,C ′ ⊆ Fn be linear codes of the same length, and
let i, j ∈ Supp(C)∩Supp(C ′). Then the i-th and j-th columns are repeated in C ∗C ′
if and only if they are repeated in C and in C ′. Said otherwise,

U(C ∗ C ′) = U(C) ∧ U(C ′).

If v1, . . . , vs are slice generators for C and w1, . . . , ws′ are slice generators for C ′,
then those among the vi ∗wj that are nonzero form a family of slice generators for
C ∗ C ′.

In particular U(C〈t〉) = U(C) for all t ≥ 1, and (v1)t, . . . , (vs)
t are slice genera-

tors for C〈t〉. If S ⊆ Supp(C) is a set of representatives for ∼C , then the dimension
sequences of C and πS(C) are the same:

dim(C〈t〉) = dim(πS(C)〈t〉)

for all t ≥ 0. Hence they also have the same regularity: r(C) = r(πS(C)).

Proof. Suppose πi = λπj on C and πi = λ′πj on C ′, for some λ, λ′ ∈ F×.
Then πi = λλ′πj on C ∗C ′: indeed it is so on elementary product vectors, and this
extends by linearity.

Conversely, suppose for example i 6∼C j, so by Lemma 2.16 we can find c ∈ C
with πi(c) = 1, πj(c) = 0. Since i ∈ Supp(C ′), we can find c′ ∈ C ′ with πi(c′) = 1.
Then πi(c ∗ c′) = 1, πj(c ∗ c′) = 0, hence i 6∼C∗C′ j.

The rest follows easily (note πS(C〈t〉) = πS(C)〈t〉). �

Extension of scalars.

Let F ⊆ K be a field extension. In many applications, one is given a “nice”
linear code over K and one wants to deduce from it a “nice” linear code over F.
Several techniques have been designed for this task, especially when the extension
has finite degree: subfield subcodes, trace codes, and concatenation. How these
operations behave with respect to the product ∗ turns out to be quite difficult to
analyze, although we will give results involving concatenation in 4.15 and following.

In the other direction, base field extension (or extension of scalars) allows to
pass from a linear code C ⊆ Fn over F to a linear code CK ⊆ Kn over K. In general
this operation is less useful for practical applications, however in some cases it
can be of help in order to prove theorems. The definition is simple: we let CK
be the K-linear span of C in Kn (where we implicitly used the chain of inclusions
C ⊆ Fn ⊆ Kn).

ON PRODUCTS AND POWERS OF LINEAR CODES 23

2.22. Lemma. Let C ⊆ Fn be a linear code over F. Then:
(i) The inclusion C⊗FK ⊆ Fn⊗FK = Kn induces the identification C⊗FK =

CK.
(ii) If G is a generator matrix for C over F, then G is a generator matrix

for CK over K.
(iii) If H is a parity-check matrix for C over F, then H is a parity-check

matrix for CK over K.

Proof. Basic manipulation in linear algebra. �

Extension of scalars is compatible with most operations on codes:

2.23. Lemma. (i) If C ⊆ Fn is a linear code, then

(C⊥)K = (CK)⊥ ⊆ Kn.
(ii) If C,C ′ ⊆ Fn are linear codes, then

C ⊆ C ′ ⇐⇒ CK ⊆ C ′K.
(iii) Let C,C ′ ⊆ Fn be linear codes. Then:

(C + C ′)K = CK + C ′K

(C ∩ C ′)K = CK ∩ C ′K
and

(C ∗ C ′)K = CK ∗ C ′K
(where on the left hand side, ∗ denotes product in Fn, and on the right
hand side, in Kn).

(iv) Let C ⊆ Fm, C ′ ⊆ Fn be a linear codes. Then:

(C ⊕ C ′)K = CK ⊕ C ′K ⊆ Km+n

(C ⊗ C ′)K = CK ⊗ C ′K ⊆ Km×n.

Proof. Routine verifications, using Lemma 2.22. �

2.24. Proposition. If C ⊆ Fn is a linear code, then P(CK) = P(C), and
A(CK) = A(C)K in Kn. In particular C is indecomposable if and only if CK is
indecomposable.

Proof. For P ⊆ Supp(C) we have 1P ∗ C ⊆ C ⇐⇒ 1P ∗ CK ⊆ CK by
Lemma 2.23(ii)-(iii). Conclude with Proposition 2.11. �

2.25. Proposition. If C ⊆ Fn is a linear code, then U(CK) = U(C). If
v1, . . . , vs ∈ Fn are slice generators for C, then they are also for CK.

Proof. Obvious: πi = λπj on C ⇐⇒ πi = λπj on CK. �

2.26. — For C ⊆ Fn and S ⊆ [n] we let

CS = ιS(ι−1
S (C)) = C ∩ ιS(FS) = {c ∈ C ; Supp(c) ⊆ S}

be the largest subcode of C with support in S.
Also we recall from [59] that for 1 ≤ i ≤ dim(C), the i-th generalized Hamming

weight wi(C) of C is the smallest integer s such that C admits a linear subcode of
dimension i and support size s. Equivalently:

wi(C) = min{|S| ; S ⊆ [n], dim(CS) ≥ i}.

24 HUGUES RANDRIAMBOLOLONA

In particular w1(C) = dmin(C).

2.27. Proposition. Let F ⊆ K be a field extension, and C ⊆ Fn a linear code
over F. Then for any subset S ⊆ [n] we have

(CS)K = (CK)S .

In particular, dimK((CK)S) = dimF(CS).

Proof. Write CS = C ∩ ιS(FS) and use Lemma 2.23(iii) (for ∩). �

2.28. Corollary. Let F ⊆ K be a field extension, and C ⊆ Fn a linear code
over F. Then we have

dimK(CK) = dimF(C)

and
wi(CK) = wi(C)

for all i. In particular, dmin(CK) = dmin(C).

Proof. The first equality follows from Lemma 2.22(i). The second follows
from Proposition 2.27 and the definition of the generalized Hamming weights. �

2.29. Lemma. Let F ⊆ K be a field extension, and suppose λ1, . . . , λr ∈ K are
linearly independent over F. Let C ⊆ Fn be a linear code, and x1, . . . , xr ∈ Fn be
arbitrary words. Set

x = λ1x1 + · · ·+ λrxr ∈ Kn.
Then we have

Supp(x) =
⋃
i

Supp(xi)

and
x ∈ CK ⇐⇒ ∀i, xi ∈ C.

Proof. The only nontrivial point is the implication x ∈ CK =⇒ xi ∈ C. It is
in fact a consequence of Lemma 2.22(iii). �

Alternative proofs for Propositions 2.24 and 2.27 could also be given using the
following:

2.30. Proposition. Let F ⊆ K be a field extension, C ⊆ Fn a linear code over
F, and C ′ ⊆ CK a linear subcode over K. Then there is a linear subcode C0 ⊆ C
over F of support

Supp(C0) = Supp(C ′)

such that
C ′ ⊆ (C0)K

and
dimK(C ′) ≤ dimF(C0) ≤ min(dimF(C), [K : F] dimK(C ′)).

Moreover, if the extension is finite separable, we can take

C0 = trK/F(C ′)

where we extended the trace map trK/F to a map Kn −→ Fn by letting it act com-
ponentwise.

ON PRODUCTS AND POWERS OF LINEAR CODES 25

Proof. Choose a basis (λi) of K over F, and decompose each element x of a
(K-)basis of C ′ as a finite sum x = λ1x1+· · ·+λrxr for some xi ∈ Fn (after possibly
renumbering the λi). Then apply Lemma 2.29. When the extension is separable
we have xi = trK/F(λ∗i x), where the basis (λ∗i) is dual to (λi) with respect to the
trace bilinear form. �

2.31. Lemma. Let C ⊆ Fn be a linear code of dimension k over F. Then there
exists an extension field K of finite degree [K : F] ≤ k, and a codeword c ∈ CK, such
that

Supp(c) = Supp(C).

Proof. Let G be a generator matrix for C. Let F0 ⊆ F be the prime subfield
of F (that is, F0 = Q is char(F) = 0, and F0 = Z/pZ if char(F) = p > 0), and let
F1 = F0(G) ⊆ F be the field generated over F0 by the entries of G.

So F1 is finitely generated over a prime field, and as such we contend it admits
finite extensions of any degree (this is clear if F, and thus also F1, is a finite field,
which is the case in most applications; and for completeness a proof of the general
case will be given five lines below).

Let then K1 be an extension of F1 of degree k, and let K be a compositum of
F and K1. Now if c1, . . . , ck ∈ Fn are the rows of G, and if λ1, . . . , λk ∈ K1 are
linearly independent over F1, we set c = λ1c1 + · · ·+ λkck ∈ CK and conclude with
Lemma 2.29. �

Concerning the general case of the claim made in the middle of this proof, it
can be established as follows: write F1 as a finite extension (say of degree d) of a
purely transcendental extension of F0, and let F1,c be its constant field, that is, the
algebraic closure of F0 in F1; proceeding as in [56] Prop. 3.6.1 and Lemma 3.6.2,
one then gets (a) that F1,c is finite over F0 (more precisely, of degree at most d),
and (b) that any algebraic extension of F1,c is linearly disjoint from F1. Now (a)
means F1,c is either a number field or a finite field, and as such it admits finite
extensions of any degree, for instance cyclotomic extensions do the job; and then
by (b), such an extension of F1,c induces an extension of F1 of the same degree. (An
alternative, more geometric proof, would be to consider F1 as the field of functions
of a projective variety over F0, and then get properties (a) and (b) of F1,c from
finiteness of cohomology and its properties under base field extension.)

Monotonicity.

2.32. Theorem. Let C ⊆ Fn be a linear code. Then for t ≥ 1 we have

dim(C〈t+1〉) ≥ dim(C〈t〉).

Also the generalized Hamming weights satisfy

wi(C
〈t+1〉) ≤ wi(C〈t〉)

for 1 ≤ i ≤ dim(C〈t〉), and

wi((C
〈t+1〉)⊥) ≥ wi((C〈t〉)⊥)

for 1 ≤ i ≤ dim((C〈t+1〉)⊥).
In particular, the minimum distances satisfy dmin(C〈t+1〉) ≤ dmin(C〈t〉), and

the dual distances, d⊥(C〈t+1〉) ≥ d⊥(C〈t〉).

26 HUGUES RANDRIAMBOLOLONA

Proof. Thanks to Lemmas 2.23(i),(iii) and 2.31, and Corollary 2.28, it suffices
to treat the case where there is c ∈ C with Supp(c) = Supp(C).

The multiplication map c ∗ · is then injective from C〈t〉 into C〈t+1〉, so

dim(C〈t〉) = dim(c ∗ C〈t〉) ≤ dim(C〈t+1〉).

Likewise if C ′ ⊆ C〈t〉 has dimension i and support weight wi(C〈t〉), we have dim(c∗
C ′) = dim(C ′) = i and

wi(C
〈t+1〉) ≤ |Supp(c ∗ C ′)| = |Supp(C ′)| = wi(C

〈t〉).

Now extend c to c̃ ∈ (Fn)× by setting it equal to 1 out of Supp(C), that is,
formally,

c̃ = c+ 1[n]\Supp(C).

The multiplication map c̃ ∗ · is then injective as a linear endomorphism of Fn, and
on C〈t〉 it coincides with the multiplication map c ∗ · as above. So c̃ ∗ · sends C〈t〉
into C〈t+1〉, which implies that it sends (C〈t+1〉)⊥ into (C〈t〉)⊥ (here this is easily
checked, but see Corollary 2.39 to put it in a more general context).

Then if C ′ ⊆ (C〈t+1〉)⊥ has dimension i and support weight wi((C〈t+1〉)⊥), we
have dim(c̃ ∗ C ′) = dim(C ′) = i and

wi((C
〈t〉)⊥) ≤ |Supp(c̃ ∗ C ′)| = |Supp(C ′)| = wi((C

〈t+1〉)⊥).

�

This shows that the regularity r(C) is well defined (in 1.5). One can then give
a slightly stronger monotonicity result for the dimension sequence:

2.33. Corollary. For 1 ≤ t < r(C), we have

dim(C〈t+1〉) > dim(C〈t〉).

Proof. Again it suffices to treat the case where there is c ∈ C with Supp(c) =
Supp(C). Let t ≥ 1, and suppose dim(C〈t+1〉) = dim(C〈t〉). Then necessarily

C〈t+1〉 = c ∗ C〈t〉

so
C〈t+2〉 = C ∗ C〈t+1〉 = C ∗ (c ∗ C〈t〉) = c ∗ C〈t+1〉 = c2 ∗ C〈t〉.

We continue in the same way and, for all i ≥ 0, we find C〈t+i〉 = ci ∗ C〈t〉, hence
dim(C〈t+i〉) = dim(C〈t〉). This means precisely t ≥ r(C). �

An alternative proof can be given using Proposition 2.21 to reduce to the case
where C has dual distance at least 3, and then concluding with Proposition 3.5
below.

Stable structure.

2.34. — In what follows we use the same notations as in 2.19-2.20. So C ⊆ Fn
is a linear code and

|U(C)| = dim〈x ∈ C⊥ ; w(x) ≤ 2〉⊥ = n2

is its projective length. We choose a set of representatives S = {j1, . . . , jn2} ⊆
Supp(C), and associated normalized slice generators v1, . . . , vn2

for C, that is, vi ∈
Fn with pairwise disjoint supports such that

C ⊆ 〈v1〉 ⊕ · · · ⊕ 〈vn2
〉

ON PRODUCTS AND POWERS OF LINEAR CODES 27

and πji(vi) = 1, so we have an isomorphism

ϕ : πS(C)
'−→ C

(λj1 , . . . , λjn2
) 7→ λj1v1 + · · ·+ λjn2

vn2

inverse to πS . Here πS(C) ⊆ FS has full support and no repeated column.
Then by Proposition 2.21 for all t ≥ 1, we have an inclusion

C〈t〉 ⊆ 〈(v1)t〉 ⊕ · · · ⊕ 〈(vn2
)t〉

and an isomorphism

ϕt : πS(C)〈t〉
'−→ C〈t〉

(λj1 , . . . , λjn2
) 7→ λj1(v1)t + · · ·+ λjn2

(vn2
)t

inverse to πS (observe πS(C)〈t〉 = πS(C〈t〉)).

2.35. Theorem. Let C ⊆ Fn be a linear code of dimension k. Then, with the
notations of 2.34, the code C has regularity r(C) ≤ n2 − k + 1, and we have

C〈t〉 = 〈(v1)t〉 ⊕ · · · ⊕ 〈(vn2
)t〉

for all t ≥ r(C).
In particular the stable value of the dimension sequence of C is its projective

length: dim(C〈t〉) = n2 for t ≥ r(C).

Proof. Because of the inclusion C〈t〉 ⊆ 〈(v1)t〉⊕· · ·⊕〈(vn2
)t〉 we have dim(C〈t〉) ≤

n2 for all t. However for t = 1 we have dim(C) = k. So the dimension sequence can
increase at most n2 − k times, which, joint with Corollary 2.33, implies the bound
on r(C).

To conclude it suffices to show that there exists one t with dim(C〈t〉) = n2.
Since S is a set of representatives for ∼, Lemma 2.16 gives, for all i, i′ ∈ S,

i 6= i′, a word xi,i′ ∈ πS(C) which is 1 at i and 0 at i′. Fixing i and letting i′ 6= i
vary we find

1{i} =
∏

i′∈S\{i}

xi,i′ ∈ πS(C)〈n2−1〉 ⊆ FS .

Now this holds for all i ∈ S, so dim(πS(C)〈n2−1〉) = n2. Then applying ϕn2−1 we
find dim(C〈n2−1〉) = n2 as claimed. �

2.36. Corollary. Let C ⊆ Fn be a linear code and t ≥ 0 an integer. The
following are equivalent:

(i) t ≥ r(C)
(ii) dim(C〈t〉) = dim(C〈t+1〉)
(iii) dim(C〈t〉) = n2 the projective length of C
(iv) C〈t〉 is generated by some codewords with pairwise disjoint supports
(v) (C〈t〉)⊥ is generated by its codewords of weight at most 2
(vi) there is a subset S ⊆ [n] such that πS : C〈t〉 � FS is onto, and every

nonzero column of C〈t〉 is repeated from a column indexed by S.

Proof. The first equivalence (i)⇐⇒(ii) is essentially Corollary 2.33. Also
(iv)⇐⇒(v)⇐⇒(vi) is clear. Now Theorem 2.35 gives (i)⇐⇒(iii)=⇒(iv). Conversely
suppose (iv), so C〈t〉 is generated by r = dim(C〈t〉) codewords c1, . . . , cr with pair-
wise disjoint supports. Then necessarily these codewords are slice generators for
C〈t〉, so r = |U(C〈t〉)| = |U(C)|, where for the last equality we used Proposition 2.21.
But by 2.19 we have |U(C)| = n2, so (iii) holds. �

28 HUGUES RANDRIAMBOLOLONA

Adjunction properties.

2.37. — If A is a finite dimensional algebra over F (with unit), then letting A
act on itself by multiplication (on the left) allows to identify A with a subalgebra
of the algebra of linear endomorphisms End(A). We then define the trace linear
form on A as the linear form inherited from the usual trace in End(A), so formally
tr(a) = tr(x 7→ ax) for a ∈ A. We also define the trace bilinear form 〈·|·〉 on A,
by the formula 〈x|y〉 = tr(xy) for x, y ∈ A. Moreover the identity tr(xy) = tr(yx)
then shows that 〈·|·〉 is in fact a symmetric bilinear form, and that for any a, the
left-multiplication-by-a map a· and the right-multiplication-by-a map ·a, which are
elements of End(A), are adjoint to each other with respect to 〈·|·〉.

In the particular case A = Fn, this construction identifies Fn with the algebra
of diagonal matrices of size n over F. The trace function is the linear map tr(x) =
x1 + · · · + xn and the trace bilinear form is the standard scalar product 〈x|y〉 =
x1y1 + · · ·+ xnyn, where x = (x1, . . . , xn), y = (y1, . . . , yn), xi, yj ∈ F.

2.38. Proposition. For any c ∈ Fn, the multiplication-by-c map c ∗ · acting
on Fn is autoadjoint with respect to the standard scalar product:

〈c ∗ x|y〉 = 〈x|c ∗ y〉
for all x, y ∈ Fn.

Proof. This can be checked directly, or seen as a special case of the discus-
sion 2.37. �

2.39. Corollary. Let C1, C2 ⊆ Fn be two linear codes. Then for any c ∈ Fn
we have

c ∗ C1 ⊆ C2 ⇐⇒ c ∗ C⊥2 ⊆ C⊥1
and for any linear code C ⊆ Fn we have

C ∗ C1 ⊆ C2 ⇐⇒ C ∗ C⊥2 ⊆ C⊥1 .

Proof. The first assertion is a consequence of Proposition 2.38, and the second
follows after passing to the linear span. �

2.40. Corollary. For any two linear codes C,C ′ ⊆ Fn we have

C ∗ (C ∗ C ′)⊥ ⊆ C ′⊥.
Given two integers t′ ≥ t ≥ 0 we have

C〈t〉 ∗ (C〈t
′〉)⊥ ⊆ (C〈t

′−t〉)⊥.

(Note: it is easy to construct examples where the inclusion is strict.)

Proof. Apply the second equivalence in Corollary 2.39. �

Recall from 2.6, 2.11, and 2.14 we described the extended stabilizing algebra

Â(C) = {a ∈ Fn ; a ∗ C ⊆ C}
of a linear code C as

Â(C) =
⊕

Q∈P̂(C)

〈1Q〉,

where P̂(C) = P(C) ∪ {{j}; j 6∈ Supp(C)} is the partition of [n] associated with
the decomposition of C into indecomposable components.

ON PRODUCTS AND POWERS OF LINEAR CODES 29

2.41. Corollary. For any linear code C we have Â(C) = Â(C⊥), hence
also P̂(C) = P̂(C⊥).

In particular, a linear code C of length n ≥ 2 is indecomposable with full support
if and only if C⊥ is.

Proof. Apply the first equivalence in Corollary 2.39. �

The following interesting characterization of Â(C) was apparently first noticed
by Couvreur and Tillich:

2.42. Corollary. For any linear code C we have

Â(C) = (C ∗ C⊥)⊥,

or equivalently, C ∗ C⊥ is the space of words orthogonal to the 1Q for Q ∈ P̂(C).
In particular, if C is indecomposable with full support, of length n ≥ 2, then

C ∗ C⊥ = 1⊥

is the [n, n− 1, 2] parity code.

Proof. The first inclusion in Corollary 2.40, applied with C ′ = C⊥, shows
that (C ∗ C⊥)⊥ stabilizes C, hence

(C ∗ C⊥)⊥ ⊆ Â(C).

By duality, to get the converse inclusion, it suffices now to show

C ∗ C⊥ ⊆ Â(C)⊥,

i.e. we have to show C ∗ C⊥ orthogonal to the 1Q, for Q ∈ P̂(C). Now if Q = {j}
for j out of Supp(C) this is clear. Otherwise we have Q ∈ P(C), and projecting
onto Q we can now suppose that C is indecomposable with full support, in which
case we have to show C ∗ C⊥ orthogonal to 1, which is obvious (this can also be
seen as the second inclusion in Corollary 2.40 applied with t = t′ = 1).

�

Symmetries and automorphisms.

2.43. — For any integer n, we let the symmetric group Sn act on the right on
Fn by the formula

(x1, . . . , xn)σ = (xσ(1), . . . , xσ(n))

where σ ∈ Sn, xi ∈ F.
Equivalently, if x ∈ Fn is a row vector, then

xσ = xPσ

where Pσ is the permutation matrix with entries (Pσ)i,j = 1{i=σ(j)}.
For σ, τ ∈ Sn we have (xσ)τ = xστ .

2.44. Lemma. For x, y ∈ Fn and σ ∈ Sn we have xσ ∗ yσ = (x ∗ y)σ.

Proof. Obvious. �

2.45. Definition. If C ⊆ Fn is a linear code, its group of symmetries is

S(C) = {σ ∈ Sn ; Cσ = C} = {σ ∈ Sn ; ∀c ∈ C, cσ ∈ C}.

30 HUGUES RANDRIAMBOLOLONA

2.46. Proposition. Let C,C ′ ⊆ Fn be two linear codes. Then we have

S(C) ∩S(C ′) ⊆ S(C ∗ C ′).
Given two integers t, t′ ≥ 1, then

t|t′ =⇒ S(C〈t〉) ⊆ S(C〈t
′〉).

Proof. Direct consequence of Lemma 2.44. �

2.47. Example. Let C be the one-dimensional code of length 2 over F5

generated by the row vector (1, 2). ThenS(C〈t〉) = {1} for t odd, andS(C〈t〉) = S2

for t even.

2.48. — We define Aut(Fn) as the group with elements the pairs (σ, a) with
σ ∈ Sn and a ∈ (Fn)×, and composition law given by (σ, a)(τ, b) = (στ, aτ ∗ b) for
σ, τ ∈ Sn and a, b ∈ (Fn)×. This is a semidirect product of Sn and (Fn)×, with
(Fn)× normal. We let Aut(Fn) act on the right on Fn, where (σ, a) acts as

x 7→ xσ ∗ a.
For a ∈ (Fn)×, let D(a) ∈ Fn×n be the associated diagonal matrix. Then the

map
(σ, a) 7→ PσD(a)

is an isomorphism of Aut(Fn) with the group of n × n monomial matrices (note
D(aτ) = P−1

τ D(a)Pτ). The latter acts on the right on Fn, seen as a space of row
vectors, and this isomorphism preserves the actions.

2.49. Lemma. For x, y ∈ Fn, σ ∈ Sn, and a, b ∈ (Fn)×, we have (xσ ∗ a) ∗
(yσ ∗ b) = (x ∗ y)σ ∗ (a ∗ b).

Proof. Obvious. �

2.50. — By the definition of Aut(Fn) as a semidirect product, we have a split
exact sequence

1 −→ (Fn)× −→ Aut(Fn)
π−→ Sn −→ 1.

Definition. Given two subgroups H,H ′ of Aut(Fn), we write

H ⊆̂ H ′

when π(H) ⊆ π(H ′) and H ∩ (Fn)× ⊆ H ′ ∩ (Fn)×. If H ′ is finite (for example if F
is finite) this implies that |H| divides |H ′|.

We also set H ∼̂ H ′ when H ⊆̂ H ′ and H ′ ⊆̂ H. This implies |H| = |H ′|.

2.51. Definition. Let C ⊆ Fn be a linear code. Then the group of linear
automorphisms of C in Fn is

Aut(C) = {(σ, a) ∈ Aut(Fn) ; Cσ ∗ a = C}.

We also let

Ŝ(C) = π(Aut(C)) = {σ ∈ Sn ; ∃a ∈ (Fn)×, Cσ ∗ a = C}
be the group of projective symmetries of C, and we note that

Aut(C) ∩ (Fn)× = Â(C)×

ON PRODUCTS AND POWERS OF LINEAR CODES 31

by Definition 2.6, so we get an exact sequence

1 −→ Â(C)× −→ Aut(C)
π−→ Ŝ(C) −→ 1.

2.52. Proposition. Let C,C ′ ⊆ Fn be two linear codes. Then we have

Ŝ(C) ∩ Ŝ(C ′) ⊆ Ŝ(C ∗ C ′)

and
Â(C)×Â(C ′)× ⊆ Â(C ∗ C ′)×.

Given two integers t, t′ ≥ 1, then

t|t′ =⇒ Aut(C〈t〉) ⊆̂ Aut(C〈t
′〉).

Proof. The first inclusion is a direct consequence of Lemma 2.49. The second
follows from Proposition 2.7 (and 2.14). Then together they imply the last assertion.

�

2.53. — Given a subset S ⊆ [n] and a partition U of S, we define

S(U) = {σ ∈ Sn ; ∀U ∈ U , σ(U) ∈ U}

and
Â(U) =

⊕
U∈U
〈1U 〉 ⊕

⊕
j 6∈S

〈1{j}〉

which is a subalgebra of Fn.

2.54. Proposition. Let v1, . . . , vs ∈ Fn, vi 6= 0, be vectors with pairwise
disjoint supports, and let

C = 〈v1〉 ⊕ · · · ⊕ 〈vs〉 ⊆ Fn

be the linear code they generate. Let Bi = Supp(vi), so U = {B1, . . . , Bs} is a
partition of Supp(C). Then we have Ŝ(C) = S(U) and Â(C) = Â(U).

Proof. Obviously the 〈vi〉 are the indecomposable components of C, and an
automorphism of a code must map indecomposable components to indecomposable
components. This implies Ŝ(C) ⊆ S(U). Conversely, let σ ∈ S(U). We have to
construct a ∈ (Fn)× such that Cσ ∗ a = C. First, we set the coordinates of a equal
to 1 out of Supp(C). Now σ determines a permutation j 7→ j′ of [s], such that
σ(Bj) = Bj′ (so |Bj′ | = |Bj |). Then, for i ∈ Supp(C), we have i ∈ Bj for some j,
and we can just set πi(a) = πi(vj)/πσ(i)(vj′). This gives vσj′ ∗ a = vj , hence, letting
j′ vary, Cσ ∗ a = C as claimed.

Last, Â(C) = Â(U) follows from Proposition 2.7 (and 2.14). �

2.55. — Given a subset S ⊆ [n] and a partition U of S, we define C(U) =⊕
U∈U 〈1U 〉.

Corollary. Let C ⊆ Fn be a linear code. Then for all t ≥ r(C) we have
Aut(C〈t〉) ∼̂ Aut(C(U)).

Proof. Consequence of Theorem 2.35 and Proposition 2.54. �

32 HUGUES RANDRIAMBOLOLONA

Said otherwise, up to ∼̂, the sequence Aut(C〈t〉) becomes ultimately constant.
For all t, t′ ≥ r(C) we have Aut(C〈t〉) ∼̂ Aut(C〈t

′〉).

2.56. — Here are three open problems that, by lack of time, the author did
not try to address.

First, considering Example 2.47, Proposition 2.52, and Corollary 2.55, it might
be interesting to compare Aut(C〈t〉) and Aut(C〈t

′〉) for all t, t′, not only for t|t′ or
for t, t′ ≥ r(C). By Proposition 2.7 (and 2.14) we have Â(C〈t〉) ⊆ Â(C〈t+1〉) for all
t ≥ 1, so a key point would be to compare Ŝ(C〈t〉) and Ŝ(C〈t+1〉).

Second, note that, as defined, Aut(C) is a subgroup of Aut(Fn), and its action
on C need not be faithful. Another perhaps equally interesting object is the group
Autin(C) of invertible linear endomorphisms of C (seen as an abstract vector space)
that preserve the Hamming metric. We might call Autin(C) the group of “internally
defined” automorphisms (or isometries) of C. Obviously, an element of Aut(C) acts
on C through an element of Autin(C), and conversely, the McWilliams equivalence
theorem [33] shows that all elements of Autin(C) arise in this way. So we have an
identification

Autin(C) = Aut(C)/Aut0(C)

where Aut0(C) ⊆ Aut(C) is the kernel of the action of Aut(C) on C. It then
appears very natural to try compare the Autin(C〈t〉) as t varies (and for this, it
might be useful to compare the Aut0(C〈t〉) first).

Last, we were interested here only in groups acting linearly on codes. However,
when F is a nonprime finite field, we can also consider the action of the Frobenius,
which preserves the Hamming metric, leading to the notion of semilinear automor-
phism. One could then try to extend the study to this semilinear setting.

3. Estimates involving the dual distance

3.1. — A characterization of the dual distance d⊥(C) of a linear code C ⊆ Fn
is as the smallest possible length of a linear dependence relation between columns
of C. In case C = Fn, there is no such relation, but it might then be convenient to
set d⊥(Fn) = n+ 1.

This can be rephrased as:

Lemma. Let 0 ≤ m ≤ n. Then we have d⊥(C) ≥ m+ 1 if and only if, for any
set of indices J ⊆ [n] of size |J | = m, and for any j ∈ J , there is a codeword y ∈ C
with coordinate πj(y) = 1 and πj′(y) = 0 for j′ ∈ J \ {j}.

Equivalently, d⊥(C) ≥ m + 1 if and only if, for any J ⊆ [n] of size |J | = m,
dim(πJ(C)) = m.

3.2. — From this we readily derive the following properties:

Lemma. Let C ⊆ Fn be a linear code. Then:
(i) For any subcode C ′ ⊆ C, we have d⊥(C ′) ≤ d⊥(C).
(ii) For any set of indices S ⊆ [n], we have d⊥(πS(C)) ≥ min(|S|+1,d⊥(C)).
(iii) We have d⊥(C) ≤ dim(C) + 1 with equality if and only if C is MDS.

3.3. — The simplest estimate involving products of codes and the dual dis-
tance is probably the following:

ON PRODUCTS AND POWERS OF LINEAR CODES 33

Proposition. Let C1, C2 ⊆ Fn be two linear codes with full support, i.e. dual
distances d⊥1 , d⊥2 ≥ 2. Then we have

d⊥(C1 ∗ C2) ≥ min(n+ 1, d⊥1 + d⊥2 − 2).

Proof. It suffices to show that any subset J ⊆ [n] of sizem = min(n, d⊥1 +d⊥2 −
3) satisfies the condition in Lemma 3.1. So pick j ∈ J and write J \ {j} = A1 ∪A2

with |A1| = d⊥1 − 2 and |A2| ≤ d⊥2 − 2. Then by Lemma 3.1 we can find y1 ∈ C1

that is 1 at j and 0 over A1, and y2 ∈ C2 that is 1 at j and 0 over A2. Then
y = y1 ∗ y2 ∈ C1 ∗ C2 is 1 at j and 0 over J \ {j} as requested. �

From this one deduces the following estimate, that the author first learned from
A. Couvreur:

3.4. Corollary. Let C ⊆ Fn have full support and no repeated column, i.e.
dual distance d⊥ ≥ 3. Then for all t ≥ 1 we have

dim(C〈t〉) ≥ min(n, 1 + (d⊥ − 2)t).

As a consequence C has regularity

r(C) ≤
⌈
n− 1

d⊥ − 2

⌉
and for t ≥ r(C) we have C〈t〉 = Fn.

Proof. Write dim(C〈t〉) ≥ d⊥(C〈t〉)−1 and make induction on t using Propo-
sition 3.3. �

In fact it is possible to say slightly better, as will be seen below.

3.5. Proposition. Let C1, C2 ⊆ Fn be two linear codes. Suppose C2 has full
support, i.e. dual distance d⊥2 ≥ 2. Then we have

dim(C1 ∗ C2) ≥ min(n1, k1 + d⊥2 − 2)

where n1 = |Supp(C1)| and k1 = dim(C1).

Proof. We can suppose C1 has a generator matrix of the form

G1 =
(
Ik1 X 0

)
where Ik1

is the k1 × k1 identity matrix, and X is a k1 × (n1 − k1) matrix with no
zero column. Then, multiplying rows of G1 with suitable codewords of C2 given by
Lemma 3.1, one constructs codewords in C1 ∗C2 that form the rows of a matrix of
the form (

Ik Z
)

with k = min(n1, k1 + d⊥2 − 2). See [44, Lemma 6], for more details. �

For example, if C1, C2 ⊆ Fn have full support, and C2 is MDS of dimension k2

so d⊥2 = k2 + 1, we find

dim(C1 ∗ C2) ≥ min(n, k1 + k2 − 1).

3.6. — In another direction, an easy induction on Proposition 3.5 also shows
that if C ⊆ Fn is a linear code with full support and no repeated column, then for
any integers t0 ≥ 0, a ≥ 1, and j ≥ 0, we have

dim(C〈t0+aj〉) ≥ min(n, k0 + (d⊥a − 2)j)

34 HUGUES RANDRIAMBOLOLONA

where k0 = dim(C〈t0〉) and d⊥a = d⊥(C〈a〉). As a consequence C has regularity

r(C) ≤ t0 + a

⌈
n− k0

d⊥a − 2

⌉
and for t ≥ r(C) we have C〈t〉 = Fn. We retrieve Corollary 3.4 by setting t0 = 0,
k0 = 1, a = 1.

3.7. Corollary. Let C1, C2 ⊆ Fn be two linear codes. Suppose C2 has full
support, i.e. dual distance d⊥2 ≥ 2. Fix an integer i in the interval 1 ≤ i ≤ dim(C1),
and set

m = min(wi(C1)− i, d⊥2 − 2) ≥ 0

where wi(C1) is the i-th generalized Hamming weight of C1. Then for all j in the
interval 1 ≤ j ≤ i+m we have

wj(C1 ∗ C2) ≤ wi(C1)− i−m+ j.

In particular (for C1 nonzero) setting i = j = 1 we find

dmin(C1 ∗ C2) ≤ max(1, d1 − d⊥2 + 2)

where d1 = w1(C1) = dmin(C1).

Proof. Since wj(C1 ∗C2) ≤ wi+m(C1 ∗C2)− i−m+ j (proof: shortening), it
suffices to show wi+m(C1 ∗C2) ≤ wi(C1). But then, just take C ′ ⊆ C1 with support
size wi(C1) and dimension i, and observe that C ′ ∗ C2 ⊆ C1 ∗ C2 has support size
wi(C1) and dimension at least i+m by Proposition 3.5. �

3.8. — The same works for the dual weights of a product, improving on 3.3:

Corollary. Let C1, C2 ⊆ Fn be two linear codes with full support. Then for
all i in the interval 1 ≤ i ≤ n− dim(C1 ∗ C2) we have

wi((C1 ∗ C2)⊥) ≥ wi+d⊥2 −2(C⊥1).

Proof. By Corollary 2.40 we have (C1 ∗ C2)⊥ ∗ C2 ⊆ C⊥1 , so for all j,

wj(C
⊥
1) ≤ wj((C1 ∗ C2)⊥) ∗ C2).

Set m = min(wi((C1 ∗C2)⊥)− i, d⊥2 −2) ≥ 0. Then for 1 ≤ j ≤ i+m we can apply
Corollary 3.7 with C1 replaced by (C1 ∗ C2)⊥, to get

wj((C1 ∗ C2)⊥ ∗ C2) ≤ wi((C1 ∗ C2)⊥)− i−m+ j

= max(j, wi((C1 ∗ C2)⊥)− i+ j − d⊥2 + 2).

We combine these two inequalities, and we note that C1 having full support implies
wj(C

⊥
1) ≥ j + 1, so the only possibility left in the max is

wj(C
⊥
1) ≤ wi((C1 ∗ C2)⊥)− i+ j − d⊥2 + 2.

Now for j = i this gives wi((C1 ∗ C2)⊥) ≥ i+ d⊥2 − 2 so in fact m = d⊥2 − 2. Then
setting j = i+ d⊥2 − 2 finishes the proof. �

3.9. — The last assertion in Corollary 3.7 extends to distances with rank con-
straints (as defined in 1.21):

ON PRODUCTS AND POWERS OF LINEAR CODES 35

Proposition. Let C1, C2 ⊆ Fn be two linear codes of the same length n.
Suppose C2 has full support, i.e. dual distance d⊥2 ≥ 2.

Let C1 be equipped with an arbitrary rank function, and C2 with the trivial rank
function. Equip then C1 ∗ C2 with the product rank function. Then for 1 ≤ i ≤
dim(C1) we have

dmin,i(C1 ∗ C2) ≤ max(1,dmin,i(C1)− d⊥2 + 2).

Proof. Let x ∈ C1 with rank rk(x) ≤ i and weight w = dmin,i(C1). Choose
j ∈ Supp(x). Then Lemma 3.1 gives y ∈ C2 nonzero at j but vanishing at m =
min(w − 1, d⊥2 − 2) other positions in Supp(x). Then z = x ∗ y ∈ C1 ∗ C2 has rank
rk(z) ≤ rk(x) and weight w −m. �

In particular, if C ⊆ Fn is a linear code with dual distance d⊥ ≥ 2, then, with
the convention of 1.20, for all t, t′ ≥ 0 we have

dmin,i(C
〈t+t′〉) ≤ max(1, dmin,i(C

〈t〉)− (d⊥ − 2)t′).

3.10. — Since the dual distance behaves nicely under projection, its use com-
bines well with the following filtration inequality:

Lemma. Let C,C ′ ⊆ Fn be two linear codes. Suppose C equipped with a filtra-
tion

0 = C0 ⊆ C1 ⊆ · · · ⊆ C` = C

by linear subcodes Ci. For 1 ≤ i ≤ ` set Ti = Supp(Ci) \ Supp(Ci−1). Then we
have

dim(C ∗ C ′) ≥
∑̀
i=1

dim(πTi(Ci) ∗ πTi(C
′)).

In particular if ` = k = dim(C) and dim(Ci) = i for all i, we have

dim(C ∗ C ′) ≥
k∑
i=1

dim(πTi
(C ′)).

Proof. We have a filtration

0 = C0 ∗ C ′ ⊆ C1 ∗ C ′ ⊆ · · · ⊆ C` ∗ C ′ = C ∗ C ′

where for all i ≥ 1 we have Ci−1 ∗ C ′ ⊆ kerπTi , hence

dim(Ci ∗ C ′)− dim(Ci−1 ∗ C ′) ≥ dim(Ci ∗ C ′)− dim((Ci ∗ C ′) ∩ kerπTi
)

= dim(πTi(Ci ∗ C ′)).

Then we observe πTi
(Ci ∗ C ′) = πTi

(Ci) ∗ πTi
(C ′) and we sum over i.

In case ` = k = dim(C) and dim(Ci) = i for all i, we can pick ci ∈ Ci \ Ci−1

and we have πTi(Ci) = 〈vi〉, where vi = πTi(ci) ∈ FTi has full support (except if
Ti = ∅, but then the contribution is 0, which is fine). The conclusion follows. �

From this, another bound involving the dual distance was established by D. Mi-
randola:

36 HUGUES RANDRIAMBOLOLONA

3.11. Theorem ([35]). Let q be a prime power. Fix an odd integer D ≥ 3.
Then for all ε > 0, there is an integer N such that, for any integers n, k such that
n− k ≥ N and for any [n, k]q linear code C with dual distance d⊥ ≥ D we have

dim(C〈2〉) ≥ k +

(
1

2
− ε
)
D − 1

2
log2

q(n− k).

The proof uses two main ingredients. The first is to transform the condition
on d⊥ into a lower bound on the terms dim(πTi(C)) that appear in Lemma 3.10
(applied with C ′ = C). For this one can use any of the classical bounds of coding
theory, applied to πTi

(C)⊥. For example, the Singleton bound gives dim(πTi
(C)) ≥

min(|Ti|, d⊥ − 1), as already mentioned; Mirandola also uses the Hamming bound.
Then, in order to optimize the resulting estimates, one needs the filtration of C to
be constructed with some control on the |Ti|; for this one uses the Plotkin bound.
However this leads to quite involved computations, and a careful analysis remains
necessary in order to make all this work.

3.12. — Some of the results above become especially interesting when seen
from the geometric point of view. Recall from Proposition 1.28 that r(C) is also
equal to the Castelnuovo-Mumford regularity of the projective set of points ΠC ⊆
Pk−1 associated to C. Then ΠC admits syzygies

0 −→
⊕
j

OPk−1(−ak−1,j) −→ · · ·

· · · −→
⊕
j

OPk−1(−a1,j) −→ OPk−1 −→ OΠC
−→ 0

for some integers ai,j ≥ i, and we have

r(C) = max
i,j

(ai,j − i)

(see e.g. Chapter 4 of [19]). Thus, from estimates such as the one in Corollary 3.4
(or 3.6), we see that important information on the syzygies of ΠC can be extracted
from the dual code C⊥.

This situation is very similar to that of [20] although, admittedly, the results
proved there are much deeper. There, the duality of codes, seen from a geometric
point of view, is called Gale duality, in reference to another context where it is of
use.

4. Pure bounds

Here we consider bounds on the basic parameters (dimension, distance) of a
code and its powers, or of a family of codes and their product. In contrast with
section 3, no other auxiliary parameter (such as a dual distance) should appear.
Most of the material here will be taken from [43] and [44]. The results are more
involved and in some places we will only give partial proofs, but the reader can
refer to the original papers for details.

The generalized fundamental functions.

4.1. — In many applications, a linear code is “good” when both its dimension
and its minimum distance are “large”. In order to measure to what extent this

ON PRODUCTS AND POWERS OF LINEAR CODES 37

is possible, it is customary to consider the “fundamental functions of linear block
coding theory” given by

a(n, d) = max{k ≥ 0 ; ∃C ⊆ Fn, dim(C) = k, dmin(C) ≥ d}
and

α(δ) = lim sup
n→∞

a(n, bδnc)
n

.

Now suppose we need a code C such that all powers C,C〈2〉, . . . , C〈t〉, up to
a certain t, are good (see 5.4-5.14 for situations where this condition naturally
appears). Thanks to Theorem 2.32, to give a lower bound on the dimension and
the minimum distance of all these codes simultaneously, it suffices to do so only
for dim(C) and for dmin(C〈t〉). This motivates the introduction of the generalized
fundamental functions

a〈t〉(n, d) = max{k ≥ 0 ; ∃C ⊆ Fn, dim(C) = k, dmin(C〈t〉) ≥ d}
and

α〈t〉(δ) = lim sup
n→∞

a〈t〉(n, bδnc)
n

,

first defined in [43]
If the base field F is not clear from the context, we will use more explicit

notations such as a〈t〉F and α〈t〉F . Also if q is a prime power, we set a〈t〉q = a
〈t〉
Fq

and

α
〈t〉
q = α

〈t〉
Fq

, where Fq is the finite field with q elements.

4.2. — From Theorem 2.32 we get at once:

Lemma. Let t ≥ 1. Then for all n, d we have

a〈t+1〉(n, d) ≤ a〈t〉(n, d)

and for all δ we have
α〈t+1〉(δ) ≤ α〈t〉(δ).

As a consequence, any upper bound on the usual fundamental functions passes
to the generalized functions. However, improvements can be obtained by working
directly on the latter.

Concerning lower bounds, we have the following:

4.3. Proposition. Let t ≥ 1. Then for all 1 ≤ d ≤ n we have

a〈t〉(n, d) ≥
⌊n
d

⌋
.

Moreover if n ≤ |F|+ 1 we also have

a〈t〉(n, d) ≥
⌊
n− d
t

⌋
+ 1.

Proof. For the first inequality, partition the set [n] of coordinates into
⌊
n
d

⌋
subsets of size d or d+ 1, and consider the code C spanned by their characteristic
vectors. Then C〈t〉 = C has dimension

⌊
n
d

⌋
and minimum distance d.

For the second inequality, consider the (possibly extended) Reed-Solomon code,
obtained by evaluating polynomials of degree up to

⌊
n−d
t

⌋
at n given distinct ele-

ments of F (or possibly also at infinity). It has dimension
⌊
n−d
t

⌋
+ 1, and its t-th

power is also a Reed-Solomon code, obtained by evaluating polynomials of degree
up to t

⌊
n−d
t

⌋
≤ n− d, so of minimum distance at least d. �

38 HUGUES RANDRIAMBOLOLONA

It will be a consequence of the product Singleton bound that these inequalities
are tight, leading to the exact determination of the functions a〈t〉 and α〈t〉 when F
is infinite (see Corollary 4.10).

4.4. — On the other hand, when F = Fq is a finite field, the corresponding
(generalized) fundamental functions a〈t〉q and α〈t〉q are much more mysterious.

For example, note that the function α〈t〉q is nontrivial if and only if there is an
asymptotically good family of linear codes over Fq whose t-th powers also form an
asymptotically good family (and then also do all powers between 1 and t). We let

τ(q) = sup{t ≥ 1 ; ∃δ > 0, α〈t〉q (δ) > 0} ∈ N ∪ {∞}

be the supremum of the integers t for which this holds, for a given q.
There is no q for which it is known whether τ(q) is finite or infinite, although

algebraic-geometry codes will provide examples showing that

τ(q)→∞

as q →∞.
It is also true that τ(q) ≥ 2 for all q, that is, there exists an asymptotically

good family of q-ary linear codes whose squares also form an asymptotically good
family. But as we will see, to include the case of small q requires a quite intricate
construction.

This leads to the author’s favorite open problem on this topic: try to improve
(any side of) the estimate

2 ≤ τ(2) ≤ ∞.
That is, answer one of these two questions: does there exist an asymptotically good
family of binary linear codes whose cubes also form an asymptotically good family?
or instead of cubes, is it possible with powers of some arbitrarily high given degree?

An upper bound: Singleton.

4.5. — The Singleton bound is one of the simplest upper bounds on the pa-
rameters of (possibly nonlinear) codes. In the linear case, it states that for any
C ⊆ Fn of dimension k and minimum distance d, we have

k + d ≤ n+ 1.

At least three strategies of proof can be devised:
(i) Shortening. Shorten C at any set of coordinates I of size |I| = k−1, that

is consider the subcode made of codewords vanishing at I. This subcode
has codimension at most k−1, since it is defined by the vanishing of k−1
linear forms, so it is nonzero. Hence C contains a nonzero codeword c
supported in [n] \ I, and d ≤ w(c) ≤ n− k + 1.

(ii) Duality. Let H be a parity matrix for C, and let C⊥ be the dual code.
Recall that codewords of C are precisely linear relations between columns
of H. So dmin(C) ≥ d means any d − 1 columns of H are linearly inde-
pendent, hence n− k = dim(C⊥) = rk(H) ≥ d− 1.

(iii) Puncturing. Puncture C at any set of coordinates J of size |J | = n −
k+ 1. By dimension, the corresponding projection C −→ (Fq)[n]\J is not
injective. This means there are two codewords in C that differ only over
J , hence d ≤ |J | ≤ n− k + 1.

ON PRODUCTS AND POWERS OF LINEAR CODES 39

Of course these methods are not entirely independent, since shortening is somehow
the dual operation to puncturing.

Note that proofs (i) and (ii) work only in the linear case, while proof (iii)
remains valid for general codes (suppose F = Fq finite, set k = blogq|C|c, and use
cardinality instead of dimension to show the projection noninjective).

Also a variant of proof (iii) is to puncture at a set of coordinates of size d− 1
(instead of n − k + 1), and conclude using injectivity of the projection (instead of
noninjectivity).

4.6. — Now let C1, . . . , Ct ⊆ Fn be linear codes, and set ki = dim(Ci) and
d̃ = dmin(C1 ∗ · · · ∗ Ct). By the shortening argument of (i) above, we see that for
any choice of Ii ⊆ [n] of size |Ii| = ki − 1, there is a nonzero codeword ci ∈ Ci
supported in [n] \ Ii. If we could do so as the intersection of the supports of the ci
be nonempty (and the Ii be pairwise disjoint), then c1 ∗ · · · ∗ ct would be a nonzero
codeword in C1 ∗ · · · ∗ Ct of weight at most n− (k1 − 1)− · · · − (kt − 1).

Although this argument is incomplete, it makes plausible that, perhaps under a
few additional hypotheses, the Singleton bound should extend to products of codes
essentially in the form of a linear inequality k1 + · · ·+ kt + d̃ ≤ n+ t.

A result of this sort has been proved in [44] and will be discussed in 4.9 below.
It turns out that the case t = 2 is already of interest:

4.7. Proposition. Let C1, C2 ⊆ Fn be linear codes, with nondisjoint supports.
Set ki = dim(Ci) and d̃ = dmin(C1 ∗ C2). Then

d̃ ≤ max(1, n− k1 − k2 + 2).

It is interesting to try to prove this result with each of the three methods in 4.5.
Quite surprisingly, the shortening approach (i) does not appear to adapt easily (or
at least, the author did not succeed). On the other hand, the duality approach (ii)
and the puncturing approach (iii) will give two very different proofs.

A first common step is to reduce to the case where C1 and C2 both have full
support, by projecting on I = Supp(C1) ∩ Supp(C2). Indeed, setting Ci = πI(Ci),
ki = dim(Ci), n = |I|, and Ji = Supp(Ci) \ I, we have dmin(C1 ∗ C2) = d̃, while
ki ≥ ki − |Ji| so n− k1 − k2 + 2 ≤ n− k1 − k2 + 2. Hence the result holds for C1

and C2 as soon as it holds for C1 and C2.
So in the two proofs below we suppose that C1 and C2 both have full support.

Also we set di = dmin(Ci).

First proof of Proposition 4.7. We will reason by duality (the reader can
check that our argument reduces to 4.5(ii) when C1 = 1).

If d̃ = 1 the proof is finished, so we can suppose d̃ ≥ 2 and we have to show
d̃ ≤ n− k1 − k2 + 2.

First, by Corollary 2.40 we have

n− k2 = dim(C⊥2) ≥ dim(C1 ∗ (C1 ∗ C2)⊥),

while by Proposition 3.5

dim(C1 ∗ (C1 ∗ C2)⊥) ≥ min(n, k1 + d̃− 2).

Then Corollary 3.7 gives d̃ ≤ d1, so k1 + d̃ ≤ n+1 by the classical Singleton bound.
Thus

min(n, k1 + d̃− 2) = k1 + d̃− 2

40 HUGUES RANDRIAMBOLOLONA

and we conclude. �

Second proof of Proposition 4.7. We distinguish two cases:

• high dimension: suppose k1 + k2 > n, show d̃ = 1

• low dimension: suppose k1 + k2 ≤ n, show d̃ ≤ n− k1 − k2 + 2.

To start with, we reduce the low dimension case to the high dimension case using
a puncturing argument similar to 4.5(iii).

So suppose k1 + k2 ≤ n, and puncture at any set of coordinates J of size
|J | = n− k1 − k2 + 1. If one of the projections Ci −→ F[n]\J is not injective, then
di ≤ |J | ≤ n − k1 − k2 + 2, and the proof is finished since d̃ ≤ di by Corollary
3.7. On the other hand, if both projections are injective, set Ci = π[n]\J(Ci)

and n = k1 + k2 − 1. Then we have dim(Ci) = ki with k1 + k2 > n, while
d̃ ≤ dmin(C1 ∗ C2) + |J |. Replacing Ci with Ci we are now reduced to the high
dimension case. It is treated in the following Lemma. �

4.8. Lemma. Let C1, C2 ⊆ Fn be linear codes, both with full support. Set
ki = dim(Ci) and suppose k1 + k2 > n. Then there are codewords c1 ∈ C1 and
c2 ∈ C2, the product of which has weight

w(c1 ∗ c2) = 1.

In particular we have dmin(C1 ∗ C2) = dmin,1(C1 ∗ C2) = 1.

This Lemma was first proved by N. Kashyap, as follows:

Proof. Let Hi be a parity-check matrix for Ci. It is enough to find a pair of
disjoint subsets A1, A2 ⊆ [n] and a coordinate j ∈ [n] \ (A1 ∪ A2) such that, for
each i = 1, 2:

• the columns of Hi indexed by Ai are linearly independent
• the columns of Hi indexed by Ai ∪ {j} are linearly dependent.

These can be found by a simple greedy algorithm:
Initialize A1 = A2 = ∅
FOR j = 1, . . . , n

IF columns of H1 indexed by A1 ∪ {j} are independent
THEN

append j to A1

ELSE
IF columns of H2 indexed by A2 ∪ {j} are independent
THEN

append j to A2

ELSE
Output A1, A2, j and STOP.

The stopping criterion must be met for some value of j, since rk(H1) + rk(H2) =
(n− k1) + (n− k2) < n. �

It is remarkable that, in this case, we can show that the minimum distance of
C1 ∗ C2 is attained by a codeword in product form (compare with Example 1.22).

Now we state the product Singleton bound for general t:

ON PRODUCTS AND POWERS OF LINEAR CODES 41

4.9. Theorem. Let C1, . . . , Ct ⊆ Fn be linear codes; if t ≥ 3 suppose these
codes all have full support. Then there are codewords c1 ∈ C1, . . . , ct ∈ Ct, the
product of which has weight

1 ≤ w(c1 ∗ · · · ∗ ct) ≤ max(t− 1, n− (k1 + · · ·+ kt) + t)

where ki = dim(Ci). As a consequence we have

dmin(C1 ∗ · · · ∗ Ct) ≤ dmin,1(C1 ∗ · · · ∗ Ct) ≤ max(t− 1, n− (k1 + · · ·+ kt) + t).

The proof is a direct generalization of the second proof of Proposition 4.7
above. The puncturing step is essentially the same, so the only difficulty is to find
the proper generalization of Lemma 4.8. We refer to [44] for the details.

By Proposition 4.3 we see that this upper bound is tight. Also it turns out
that, for t ≥ 3, the condition that the codes have full support is necessary. Actually,
projecting on the intersection of the supports (as in the case t = 2) allows to slightly
relax this condition, but not to remove it entirely. More details can be found in
[44].

4.10. Corollary. For any field F we have

a〈t〉(n, d) =
⌊n
d

⌋
for 1 ≤ d ≤ t,

a〈t〉(n, d) =

⌊
n− d
t

⌋
+ 1 for t < d ≤ n ≤ |F|+ 1,

and (in case F finite)

a〈t〉(n, d) ≤
⌊
n− d
t

⌋
+ 1 for t < d ≤ n with n > |F|+ 1.

Likewise, we have α〈t〉(0) = 1, and

α〈t〉(δ) ≤ 1− δ
t

for 0 < δ ≤ 1

with equality when F is infinite.

Proof. Consequence of Theorem 4.9 and Proposition 4.3, and of the inequality
a〈t〉(n, d) ≤ a〈d〉(n, d) (Lemma 4.2) in case d ≤ t. �

It should be noted that the bound in Theorem 4.9 holds not only for the
minimal distance dmin of the product code, but also for the distance with rank
constraint dmin,1. As a consequence, the estimates in Corollary 4.10 hold in fact for
the functions a〈t〉(n, d)1 = max{k ≥ 0 ; ∃C ⊆ Fn, dim(C) = k, dmin,1(C〈t〉) ≥ d}
and α〈t〉(δ)1 = lim supn→∞

a(n,bδnc)1

n .
Another interesting remark is that, for t ≥ 2, the function α〈t〉 is not continuous

at δ = 0. This might make wonder whether the definitions of the functions a〈t〉
and α〈t〉 are the “right” ones. For example one could ask how these functions are
modified when one considers only codes with no repeated columns.

Lower bounds for q large: AG codes.

4.11. — When F = Fq is a finite field, the inequality a〈t〉q (n, d) ≤
⌊
n−d
t

⌋
+ 1 in

Corollary 4.10 might be strict for n > q + 1, because the length of Reed-Solomon
codes is bounded.

42 HUGUES RANDRIAMBOLOLONA

In this setting, a classical way to get codes sharing most of the good properties
of Reed-Solomon codes, but without this limitation on the length, is to consider
so-called algebraic-geometry codes constructed from curves of higher genus.

We recall from Example 1.7 that C(D,G) is the code obtained by evaluating
functions from the Riemann-Roch space L(D), associated with a divisor D, at a
set G of points out of the support of D, on an algebraic curve over F.

4.12. Proposition. Let q be a prime power and t ≥ 1 an integer. Suppose
there is a curve X of genus g over Fq having at least n rational points. Then we
have

a〈t〉q (n, d) ≥
⌊
n− d
t

⌋
+ 1− g for t < d ≤ n− tg.

Proof. Let G be a set of n rational points on X, and D a divisor of degree
deg(D) =

⌊
n−d
t

⌋
with support disjoint from G. Then we have g ≤ deg(D) ≤

tdeg(D) < n so by the Goppa estimates

dim(C(D,G)) = l(D) ≥ deg(D) + 1− g

and
dmin(C(tD,G)) ≥ n− tdeg(D) ≥ d.

The conclusion follows since C(D,G)〈t〉 ⊆ C(tD,G) by Example 1.7. �

4.13. — We let Nq(g) be the largest integer n such that there is a curve of
genus g over Fq with n rational points, and we define the Ihara constant

A(q) = lim sup
g→∞

Nq(g)

g
.

Corollary. For any prime power q and for any integer t ≥ 1 we have

α〈t〉q (δ) ≥ 1− δ
t
− 1

A(q)
for 0 < δ ≤ 1− t

A(q)
.

As a consequence,
τ(q) ≥ dA(q)e − 1.

Proof. Apply Proposition 4.12 with g →∞ and n/g → A(q). �

4.14. — For any prime power q we have [17]

A(q) ≤ q1/2 − 1,

and in the other direction the following are known:
(i) There is a constant c > 0 such that, for any prime power q, we have [51]

A(q) > c log(q).

(ii) If p is a prime, then for any integer s ≥ 1 we have [25]

A(p2s) = ps − 1.

(iii) If p is a prime, then for any integer s ≥ 1 we have [22]

A(p2s+1) ≥
(

1

2

(
1

ps − 1
+

1

ps+1 − 1

))−1

.

ON PRODUCTS AND POWERS OF LINEAR CODES 43

Then from Corollary 4.13 and from (i) we see that τ(q)→∞ for q →∞, as claimed
in 4.4. Moreover, we also see that the lower bound in Corollary 4.13 asymptotically
matches the upper bound in Corollary 4.10.

Lower bounds for q small: concatenation.

4.15. — The lower bound in Corollary 4.13 is too weak to give some nontrivial
information on τ(q) for q small. A useful tool in such a situation is concatenation,
which allows to construct codes over small alphabets from codes over large alpha-
bets. For technical reasons we present this notion in a more general context.

First, if A1, . . . ,At and B are sets, seen as “alphabets”, and if

Φ : A1 × · · · × At −→ B

is any map, then for any integer n, applying Φ componentwise we get a map that
(by a slight abuse of notation) we also denote

Φ : (A1)n × · · · × (At)n −→ Bn.

From this point on, we can proceed as in 1.17: given subsets S1 ⊆ (A1)n, . . . , St ⊆
(At)n we let

Φ̇(S1, . . . , St) = {Φ(c1, . . . , ct) ; c1 ∈ S1, . . . , ct ∈ St} ⊆ Bn.

If moreover A1, . . . ,At,B are F-vector spaces and C1 ⊆ (A1)n, . . . , Ct ⊆ (At)n are
F-linear subspaces, we let

Φ(C1, . . . , Ct) = 〈Φ̇(C1, . . . , Ct)〉 ⊆ Bn.

For instance, if t = 2, A1 = A2 = B = F, and Φ is multiplication in F, we
retrieve the definition of C1 ∗ C2 given in 1.3.

4.16. — Concatenation in the usual sense corresponds to t = 1, A = Fqr ,
B = (Fq)m, and

ϕ : Fqr ↪→ (Fq)m

an injective Fq-linear map. Using the natural identification ((Fq)m)n = (Fq)nm, we
see that if C is a [n, k]qr code, then ϕ(C) is a [nm, kr]q code.

In the classical terminology, ϕ(C) ⊆ (Fq)nm is called the concatenated code
obtained from the external code C ⊆ (Fqr)n and the internal code Cϕ = ϕ(Fqr) ⊆
(Fq)m, using the symbol mapping ϕ.

It is easily seen that we have dmin(ϕ(C)) ≥ dmin(C) dmin(Cϕ). Now let t ≥ 2
be an integer. It turns out that if ϕ is well chosen, then there is a T ≥ t such
that dmin(ϕ(C)〈t〉) can be estimated from dmin(C〈T 〉) similarly. To state this more
precisely we need to introduce the following notations:

4.17. — Suppose we are given h symmetric maps ψ1 : (Fqr)t −→ Fqr , . . . ,
ψh : (Fqr)t −→ Fqr such that:

• viewed over Fqr , each ψi is a polynomial of degree Di ≤ T
• viewed over Fq, each ψi is t-multilinear.

In case t > q, suppose also these ψi satisfy the Frobenius exchange condition A.5
in Appendix A.

Then by Theorem A.7, the map

Ψ : (ψ1, . . . , ψh) : (Fqr)t −→ (Fqr)h

44 HUGUES RANDRIAMBOLOLONA

admits a symmetric algorithm, that is, one can find an integer m and Fq-linear
maps ϕ : Fqr −→ (Fq)m and ω : (Fq)m −→ (Fqr)h such that the following diagram
is commutative

(Fqr)t (Fqr)h

((Fq)m)t (Fq)m

Ψ

∗
(ϕ,...,ϕ) ω

where ∗ is componentwise multiplication in (Fq)m.
Now suppose both ϕ and ω are injective.

4.18. Proposition. Let C be a [n, k] code over Fqr . With the notations just
above, suppose either:

• each polynomial ψi is homogeneous of degree Di, or
• C contains the all-1 word 1[n].

Then the [nm, kr] code ϕ(C) over Fq satisfies

dmin(ϕ(C)〈t〉) ≥ dmin(C〈T 〉).

Proof. This is a straightforward generalization of [43, Prop. 8]. Following the
conventions in 4.15, first viewing ψi as a symmetric t-multilinear map, it defines
a Fq-linear subspace ψi(C, . . . , C) ⊆ (Fqr)n. Then viewing ψi as a polynomial of
degree Di, and using our hypothesis that either ψi is homogeneous or C contains
1[n], we deduce ψi(C, . . . , C) ⊆ C〈Di〉. The commutative diagram in 4.17 then
translates into the diagram

(C)t C〈D1〉 ⊕ · · · ⊕ C〈Dh〉

(ϕ(C))t ϕ(C)〈t〉.

Ψ

∗

(ϕ,...,ϕ) ω

Now let z ∈ ϕ(C)〈t〉 be a nonzero codeword of minimum weight

w(z) = dmin(ϕ(C)〈t〉).

From the diagram just above we can write ω(z) = (c1, . . . , ch) with ci ∈ C〈Di〉, and
since ω is injective, there is at least one i such that ci 6= 0. On the other hand ω is
defined blockwise on (Fq)nm = ((Fq)m)n, so

w(z) ≥ w(ci) ≥ dmin(C〈Di〉).

We conclude since Di ≤ T implies dmin(C〈Di〉) ≥ dmin(C〈T 〉) by Theorem 2.32. �

4.19. Theorem. Keep the notations above and suppose t ≤ q. Set m =(
r+t−1
t

)
and

T = qb
(t−1)r

t c + qb
(t−2)r

t c + · · ·+ qb
r
t c + 1.

Then:
(i) We have

a〈t〉q (nm, d) ≥ ra〈T 〉qr (n, d)

for all 1 ≤ d ≤ n.

ON PRODUCTS AND POWERS OF LINEAR CODES 45

(ii) We have
α〈t〉q (δ) ≥ r

m
α
〈T 〉
qr (mδ)

for all 0 ≤ δ ≤ 1/m.
(iii) If τ(qr) ≥ T , then τ(q) ≥ t.

Proof. Since t ≤ q, any symmetric t-multilinear map admits a symmetric
algorithm by Theorem A.7. Equivalently, for any Fq-vector space V , the space
of symmetric tensors Symt

Fq
(V) is spanned by elementary symmetric tensors. We

apply this with V = (Fqr)∨, so we can find m linear forms ϕ1, . . . , ϕm ∈ (Fqr)∨

such that ϕ⊗t1 , . . . , ϕ⊗tm span Symt
Fq

((Fqr)∨) = (StFq
Fqr)∨. Note that this implies

that ϕ1, . . . , ϕm span (Fqr)∨, so ϕ = (ϕ1, . . . , ϕm) : Fqr −→ (Fq)m is injective,
and also that Φ = (ϕ⊗t1 , . . . , ϕ⊗tm) : (Fqr)t −→ (Fq)m induces an isomorphism
StFq

Fqr ' (Fq)m of Fq-vector spaces.
However, by Theorem B.7 we also have an isomorphism StFq

Fqr '
∏
I∈S FqrI

(for some rI |r), induced by a symmetric t-multilinear map Ψ : (Fqr)t −→
∏
I∈S FqrI ,

so all this fits in a commutative diagram:

(Fqr)t
∏
I∈S FqrI

((Fq)m)t (Fq)m.

⊆ (Fqr)|S|
Ψ

∗
(ϕ,...,ϕ) '

Φ

The components of Ψ are homogeneous polynomials SI , which can be chosen of
degree DI ≤ T by Corollary B.22. Now we only have to apply Proposition 4.18 to
get (i), from which (ii) and (iii) follow. �

4.20. Example. For t = 2, the bounds in (i) and (ii) give

a〈2〉q (r(r + 1)n/2, d) ≥ ra〈q
br/2c+1〉

qr (n, d)

and
α〈2〉q (δ) ≥ 2

r + 1
α
〈qbr/2c+1〉
qr (r(r + 1)δ/2)

for any prime power q and for any r.
For t = 3, they give

a〈3〉q (r(r + 1)(r + 2)n/6, d) ≥ ra〈q
b2r/3c+qbr/3c+1〉

qr (n, d)

and
α〈3〉q (δ) ≥ 6

(r + 1)(r + 2)
α
〈qb2r/3c+qbr/3c+1〉
qr (r(r + 1)(r + 2)δ/6)

for any q ≥ 3 and for any r. Note that the proof does not apply for q = 2, since it
requires t ≤ q.

4.21. — Let q be a prime power and let t ≤ q be an integer. Then for any
integer r, combining Corollary 4.13 with Theorem 4.19(ii) we find

α〈t〉q (δ) ≥ r

m

(
1−mδ
T

− 1

A(qr)

)
where m =

(
r+t−1
t

)
and T = qb

(t−1)r
t c + · · ·+ qb

r
t c + 1.

46 HUGUES RANDRIAMBOLOLONA

For this to be nontrivial we need T < A(qr). Since A(qr) ≤ qr/2 − 1, this can
happen only for t = 2 and r odd, and it turns out we have indeed T < A(qr) in
this case: this follows from 4.14(ii) if q is a square, and from 4.14(iii) else. As a
consequence we see

τ(q) ≥ 2

for all q. In particular for q = 2 and r = 9 we findm = 45, T = 17, and A(29) ≥ 465
23 ,

so [43]

α
〈2〉
2 (δ) ≥ 74

39525
− 9

17
δ ≈ 0.001872− 0.5294 δ.

5. Some applications

Product of codes being such a natural operation, it is no wonder it has already
been used, since a long time, implicitely or explicitely, in numerous applications.
Our aim here is to quickly survey the most significant of these applications, without
entering too much into the historical details (for which the reader can refer to the
literature), but rather focusing on where the various bounds, structural results, and
geometric interpretations presented in this text can be brought into play.

Multilinear algorithms.

5.1. — Let V1, . . . , Vt and W be finite-dimensional F-vector spaces, and let

Φ : V1 × · · · × Vt −→W

be a t-multilinear map. A multilinear algorithm of length n for Φ is a collection of
t+ 1 linear maps ϕ1 : V1 −→ Fn, . . . , ϕt : Vt −→ Fn and ω : Fn −→ W , such that
the following diagram commutes:

V1 × · · · × Vt
Φ−−−−→ W

(ϕ1,...,ϕt)

y xω
Fn × · · · × Fn ∗−−−−→ Fn

or equivalently, such that

Φ(v1, . . . , vt) = ω(ϕ1(v1) ∗ · · · ∗ ϕt(vt))
for all v1 ∈ V1, . . . , vt ∈ Vt.

If we let ε1, . . . , εn be the canonical basis of Fn and π1, . . . , πn the canonical
projections Fn → F, then setting wj = ω(εj) ∈W and li,j = πj ◦ ϕi ∈ V ∨i , the last
formula can also be written

Φ(v1, . . . , vt) =
∑

1≤j≤n

 ∏
1≤i≤t

li,j(vi)

wj .

Said otherwise, Φ can be viewed as a tensor in V ∨1 ⊗· · ·⊗V ∨t ⊗W , and a multilinear
algorithm of length n corresponds to a decomposition

Φ =
∑

1≤j≤n

l1,j ⊗ · · · ⊗ lt,j ⊗ wj

as a sum of n elementary tensors. In turn, since elementary tensors are essentially
the image of the Segre map in V ∨1 ⊗· · ·⊗V ∨t ⊗W , all this can be viewed geometrically
in a way similar to 1.30.

ON PRODUCTS AND POWERS OF LINEAR CODES 47

5.2. — More precisely, consider the linear codes

Ci = ϕi(Vi) ⊆ Fn

and
C ′ = ωT (W∨) ⊆ (Fn)∨ = Fn

(where ωT is the transpose of ω). Let also Vi = Vi/ ker(ϕi), and W = Im(ω). Note
that Φ and the ϕi pass to the quotient, and as such they define a t-multilinear
map Φ : V1 × · · · × Vt −→ W as well as a multilinear algorithm of length n for it.
So, after possibly replacing Φ with Φ, we can suppose the ϕi and ωT are injective,
hence give identifications Ci ' Vi and C ′ ' W∨. Also we can suppose the Ci
and C ′ all have full support (otherwise some coordinates are not “used” in the
algorithm, and can be discarded). Then Φ defines a point PΦ in the projective
space P = P(C1 ⊗ · · · ⊗ Ct ⊗ C ′), and the multilinear algorithm of length n for Φ
defines n points in the Segre subvariety in P whose linear span contains PΦ. Now,
untying all the definitions, we see these n points are precisely those in the projective
set of points ΠC1∗···∗Ct∗C′ constructed in 1.30.

5.3. — When V1 = · · · = Vt = V and Φ is a symmetric multilinear map, the
algorithm is said symmetric if ϕ1 = · · · = ϕt = ϕ. A symmetric algorithm of
length n for Φ corresponds to a decomposition of the associated tensor as a sum
of n elementary symmetric tensors in Symt(V ∨)⊗W . In turn, the Symt(V ∨) part
of this tensor space is essentially the image of a Veronese map, and links with the
constructions in 1.31 could be given as above.

When F is finite it is not always true that a symmetric multilinear map admits
a symmetric algorithm (counterexamples can be given as soon as t > |F|), but
Theorem A.7 in Appendix A provides a necessary and sufficient criterion for this
to occur.

5.4. — From a more concrete point of view, the multilinear algorithm for Φ
can be interpreted as follows: each vi ∈ Vi is splitted into n local shares in Fq using
the fixed map ϕi, the shares are multiplied locally, and the results are combined
using ω to recover the final value Φ(v1, . . . , vt). This is of interest in at least two
contexts:

• In algebraic complexity theory one is interested in having n as small as
possible, in order to minimize the number of t-variable multiplications in
Fq needed to compute Φ. This is relevant for applications in which the
cost of a fixed linear operation is negligible compared to the cost of a
t-variable multiplication. We thus define

µ(Φ)

the multilinear complexity of Φ, as the smallest possible length of a mul-
tilinear algorithm for Φ; and when Φ is symmetric,

µsym(Φ)

the symmetric multilinear complexity of Φ, as the smallest possible length
of a symmetric multilinear algorithm for Φ (provided such an algorithm
exists). These are rank functions (in the sense of 1.13) on the correspond-
ing spaces of multilinear maps.

There is a very broad literature on this subject, for various classes
of multilinear maps Φ. We mention [6] for first pointing out the link

48 HUGUES RANDRIAMBOLOLONA

between these questions and coding theory, and [11] for studying this
link much further, in particular bringing AG codes into play. For more
recent results and other points of view still close to the one presented here,
we refer the reader to [1][2][13][42][49], and to the references therein for
a more thorough historical coverage.
• One can also view this process as a very naive instance of multi-party

computation, in which the local shares are given to n remote users, who
“collectively” compute Φ. Now this scheme has to be modified because it
is too weak for most practical applications, in which it is customary to
impose various security requirements. For example, some shares could be
altered by noise, or even by malicious users, to which the computation
should remain robust. Also, these malicious users should not be able
to determine neither the entries nor the final value of the computation
by putting their shares in common. Of special importance is the case
where Φ is multiplication in F (or in an extension field), since addition
and multiplication are the basic gates in arithmetic circuits, that allow
to represent arbitrary computable functions.

A more precise formalization of these problems, as well as some im-
portant initial constructions, can be found in [4][9][15]. For the more
mathematically minded reader, especially if interested in the use of AG
codes, a nice point of entry to the literature could be [10] and then [8].

Since the vectors in Fn involved in the computation are codewords in the Ci
or in their product C1 ∗ · · · ∗ Ct, all the questions above are linked to the possible
parameters of these codes. For example it is easily shown:

5.5. Proposition. If the given multilinear algorithm for Φ has length n >
dim(C1∗· · ·∗Ct), then one can puncture coordinates to deduce a shorter multilinear
algorithm of length dim(C1 ∗ · · · ∗ Ct).

Moreover, if the original algorithm is symmetric, then so is the punctured al-
gorithm.

Proof. Let S ⊆ [n] be an information set for C1 ∗ · · · ∗Ct, and let σ : FS ∼−→
C1 ∗ · · · ∗ Ct be the inverse of the natural projection πS (on C1 ∗ · · · ∗ Ct). Then
πS ◦ϕ1, . . . , πS ◦ϕt and ω ◦σ define a multilinear algorithm of length |S| for Φ. �

In this way µ(Φ) (and if relevant, µsym(Φ)) can be expressed as the dimension
of a product code.

Likewise, in the multi-party computation scenario, one is interested in con-
structing codes C having high rate (for efficiency), and such that C〈2〉 has high
minimum distance (for resilience), and also C⊥ has high minimum distance (for
privacy). The reader can consult [8] for recent advances in this direction.

Construction of lattices from codes.

5.6. — Barnes and Sloane’s Construction D, first introduced in [3], and For-
ney’s code formula from [21], are two closely related ways to construct lattices from
binary linear codes. Up to some details, they can be described as follows.

Consider the lifting

ε : F2
∼−→ {0, 1} ⊆ Z.

ON PRODUCTS AND POWERS OF LINEAR CODES 49

As in 4.15 we extend ε coordinatewise to ε : (F2)n −→ Zn. Then given a chain of
binary linear codes

C : C0 ⊆ C1 ⊆ · · · ⊆ Ca−1 ⊆ Ca = (F2)n

we construct a subset

ΛC = ε(C0) + 2ε(C1) + · · ·+ 2a−1ε(Ca−1) + 2aZn ⊆ Zn.
It turns out that ΛC need not be a lattice in general, a fact that was sometimes
overlooked in the literature. One can show:

5.7. Proposition. With these notations, ΛC is a lattice if and only if the
codes Ci satisfy

C
〈2〉
i ⊆ Ci+1.

Proof. This follows from the relation

ε(u) + ε(v) = ε(u+ v) + 2ε(u ∗ v) ∈ Zn

which holds for any u, v ∈ (F2)n. �

This observation was first made in Kositwattanarerk and Oggier’s paper [28],
where examples and a more careful analysis of the connection between the construc-
tions in [3] and [21] are also given. Roughly at the same time and independently,
it was rediscovered by Boutros and Zémor, from whom the author learned it.

A feature of this Construction D is that, if ΛC is a lattice, then its parameters
(volume, distance) can be estimated from those of the Ci. One motivation for its
introduction was to reformulate a construction of the Barnes-Wall lattices. In this
case the Ci are essentially Reed-Muller codes, and the condition C

〈2〉
i ⊆ Ci+1 is

satisfied, as noted in Example 1.7.

5.8. — What precedes can be generalized to codes over larger alphabets. Let
p be a prime number, choose an arbitrary set of representatives R for Z modulo p,
and consider the lifting

ε : Fp
∼−→ R ⊆ Z.

Then given a chain of binary linear codes

C : C0 ⊆ C1 ⊆ · · · ⊆ Ca−1 ⊆ Ca = (Fp)n

we construct a subset

ΛC = ε(C0) + pε(C1) + · · ·+ pa−1ε(Ca−1) + paZn ⊆ Zn.
Again, ΛC need not be a lattice in general. To give a criterion for this, one can
introduce carry operations

κj : Fp × Fp −→ Fp
for 1 ≤ j ≤ a− 1, such that for each x, y ∈ Fp we have

ε(x) + ε(y) = ε(x+ y) + pε(κ1(x, y)) + · · ·+ pa−1ε(κa−1(x, y)) mod pa

in Z.

5.9. Proposition. With these notations, ΛC is a lattice if and only if for any
i, j we have

κj(Ci, Ci) ⊆ Ci+j
(where κj(Ci, Ci) is defined according to 4.15).

Proof. Same as above. �

50 HUGUES RANDRIAMBOLOLONA

The usefulness of this criterion depends on our ability to control the κj(Ci, Ci),
which in turn depends on the choice of the lifting ε, or equivalently, of the set of
representatives R.

It turns out that there are at least two natural choices for this.

5.10. — The first choice is to take R = {0, 1, . . . , p−1}. We call the associated
ε the “naive” lifting. Then one has κ1 = κ where

κ(x, y) =

{
1 if x+ y ≥ p
0 else

while
κj = 0 for j > 1.

One drawback of this choice is that the expression for κ does not appear to
have much algebraic structure, except for the cocycle relation

κ(x, y) + κ(x+ y, z) = κ(x, y + z) + κ(y, z).

Anyway the fact that the higher κj are 0 should help in the computations.

5.11. — Another choice is to take as R a set of p − 1-th roots of unity in
Z modulo pa, plus 0. We call the associated ε the multiplicative or Teichmüller
lifting. The κj are then essentially given by the addition formulae for Witt vectors
[50, §II.6][36, Lect. 26], more precisely this allows to express κj as a symmetric
homogeneous polynomial of degree pj . However since κj is defined on Fp × Fp,
sometimes this expression can be simplified.

Example. For p = 3 we can take R = {0, 1,−1} as multiplicative representa-
tives for any a. The first carry operation is given by

κ1(x, y) = −xy(x+ y).

Then an expression for κ2 is κ2(x, y) = −xy(x+ y)(x− y)6, however over F3 × F3

this is always 0. In fact the same holds for all the higher κj : as in the case p = 2
we can take

κj = 0 for j > 1.

5.12. Corollary. When ε is the Teichmüller lifting, a sufficient condition
for ΛC to be a lattice is that the codes Ci satisfy

C
〈p〉
i ⊆ Ci+1.

Proof. Indeed, since κj can be expressed as a symmetric homogeneous poly-
nomial of degree pj , we then have κj(Ci, Ci) ⊆ C〈p

j〉
i ⊆ Ci+j . �

Natural candidates for a family of codes satisfying this condition is to take the
Ci evaluation codes, e.g. (generalized) Reed-Muller codes, as in the binary case.
It remains to be investigated whether these lead to new examples of good lattices.
Also, note that we worked over Z for simplicity, but most of the discussion remains
valid over the ring of integers of an algebraic number field, possibly allowing further
improvements. All this will be eventually considered in a forthcoming paper.

Oblivious transfer.

5.13. — In an oblivious transfer (OT) protocol, Alice has two secrets s0, s1 ∈
{0, 1}n, and Bob has a selection bit b. At the end of the protocol, Bob should

ON PRODUCTS AND POWERS OF LINEAR CODES 51

get sb but no other information, and Alice should get no information on b. In the
Crépeau-Kilian protocol, Alice and Bob achieve this through communication over a
noisy channel [16]. As a first step, emulating a coset coding scheme over a wiretap
channel, they construct an almost-OT protocol, in which Alice can cheat to learn
s with a certain positive probability.

Then, from this almost-OT protocol, they construct a true OT protocol. More
precisely, Alice chooses a N × n random matrix A0 such that (in row vector con-
vention)

1[N] ·A0 = s0,

and she sets
A1 = A0 + (1[N])

T · (s0 + s1).

Bob has a selection bit b, and he chooses a random selection vector v = (b1, . . . , bN) ∈
{0, 1}N such that

v · (1[N])
T = b.

Using the almost-OT protocol N times, for each i he then learns the i-th row of
Abi . Putting theses rows together in a N × n matrix B, he finally finds

1[N] ·B = v ·A1 + (1[N] − v) ·A0 = sb.

One can then show that for N ≈ n2, Alice cannot cheat without Bob noticing it.

5.14. — A slight drawback of this protocol is that the number N of channel
uses grows quadratically in the size n of the secret, so the overall communication
rate tends to 0. A first solution was proposed in [26]. Their construction combines
several sub-protocols, one of which is based on the results of [10] already mentioned
in the discussion about multilinear algorithms and multi-party computation.

Another construction is proposed in [38]. Quite interestingly it also makes an
essential use of product of codes, while staying very close in spirit to the original
Crépeau-Kilian protocol. The key idea is to replace the vector 1[N] above, which is
the generator matrix of a repetition code, by the generator matrix G of a code C
of fixed rate R > 0 (so the secrets s0 and s1 also become matrices). For Bob the
reconstruction step is only slightly more complicated: if he is interested in s0, he
has to choose a random selection vector

b ∈ (C〈2〉)⊥.

One can then show that Alice cannot cheat as soon as (C〈2〉)⊥ has dual distance
at least δn for some fixed δ > 0. Note that the dual distance of (C〈2〉)⊥ is just
dmin(C〈2〉), and the linear span in the definition of C〈2〉 is relevant here since the
distance appears through a duality argument.

This raised the question of the existence of asymptotically good binary linear
codes with asymptotically good squares, as discussed in section 4 above, to which
a positive answer was finally given in [43].

Decoding algorithms.

5.15. — There are several applications of products of codes to the decoding
problem. The first and probably the most famous of them is through the notion of
error-correcting pairs [29][39]. If C is a linear code of length n, a t-error-correcting
pair for C is a pair of codes (A,B) of length n such that:

(i) A ∗B ⊥ C
(ii) dim(A) > t

52 HUGUES RANDRIAMBOLOLONA

(iii) dmin(A) > n− dmin(C)
(iv) d⊥(B) > t.

(In [39] the product A ∗ B is defined without taking the linear span, but this is
equivalent here since we are interested in the orthogonal). Given such a pair, C then
admits a decoding algorithm that corrects t errors with complexity O(n3). This
might be viewed as a way to reformulate most of the classical decoding algorithms
for algebraic codes.

It is then natural to investigate the existence of error-correcting pairs for given
C and t. Results are known for many classes of codes, and the study deeply involves
properties of the ∗ product, such as those presented in this text. For cyclic codes,
a key result is the Roos bound, which is essentially the following:

5.16. Proposition ([46][40]). Let A,B,C ⊆ Fn be linear codes such that:
• A ∗B ⊥ C
• A has full support
• dim(A) + dmin(A) + d⊥(B) ≥ n+ 3.

Then
dmin(C) ≥ dim(A) + d⊥(B)− 1.

Proof. Since C ⊆ (A∗B)⊥, it suffices to show d⊥(A∗B) ≥ dim(A)+d⊥(B)−1.
Then by Lemma 3.1, setting

s = dim(A) + d⊥(B)− 2,

it suffices to show
dim(πS(A ∗B)) = s

for all S ⊆ [n] of size |S| = s.
Now for any such S we have |[n] \ S| = n + 2 − dim(A) − d⊥(B) < dmin(A),

so the projection πS : A −→ πS(A) is injective, that is, dim(πS(A)) = dim(A).
On the other hand, by Lemma 3.2(ii), we have d⊥(πS(B)) ≥ d⊥(B). We can then
conclude with Proposition 3.5 applied to πS(A) and πS(B). �

Various improvements as well as generalizations of Proposition 5.16 are given
in [31][18], all of which can also be re-proved along these lines.

5.17. — As another example of application of the product ∗ to the decoding
problem, we can cite the technique of so-called power syndrome decoding for Reed-
Solomon codes [47]. If c is codeword of a Reed-Solomon code C, then for any
integer i, the (componentwise) power ci is also a codeword of a Reed-Solomon code
of higher degree. Now let x be a received word, with error e = x− c. Then xi − ci
has support included in that of e. Arranging the xi together, we thus get a virtual
received word for an interleaved Reed-Solomon code, with a burst error. Special
decoding algorithms exist for this situation, and using them one eventually expects
to get an improved decoding algorithm for the original C. A more detailed analysis
shows this works when C has sufficiently low rate, allowing to decode it beyond
half the minimum distance.

Analysis of McEliece-type cryptosystems.

5.18. — McEliece-type cryptosystems [32] rely on the fact that decoding a
general linear code is a NP-hard problem [5]. First, Alice chooses a particular
linear code C with generator matrix G, for which an efficient decoding algorithm

ON PRODUCTS AND POWERS OF LINEAR CODES 53

(up to a certain number t of errors) is known, and she sets G′ = SGP where S
is a randomly chosen invertible matrix and P a random permutation matrix. Her
secret key is then the triple (G,S, P), while her public key is essentially G′ (plus
the number t).

Typically, C is chosen among a class of codes with a strong algebraic struc-
ture, which is used for decoding. However, multiplying G by S and P allows to
conceal this algebraic structure and make G′ look like the generator matrix of a
general linear code C ′. A possible attack against such a scheme uses the fact that
study of products C1 ∗ · · · ∗Ct allows to find hidden algebraic relationships between
subcodes Ci of C ′, and ultimately, to uncover the algebraic structure of C ′, from
which a decoding algorithm could be designed. This strategy was carried out suc-
cessfully against certain variants of the McEliece cryptosystem, e.g. when C is a
(generalized) Reed-Solomon code [60][14].

5.19. — However, the original McEliece cryptosystem remains unbroken. There,
C is a binary Goppa code, which is constructed as a subfield subcode of an algebraic
code defined over a larger field. As D. Augot pointed out to the author, one key
difficulty in the analysis comes from the fact that it is not yet well understood how
subfield subcodes behave under the ∗ product.

Appendix A: A criterion for symmetric tensor decomposition

Frobenius symmetric maps.

A.1. — First we recall definitions from 5.1. Let F be a field, let V,W be
finite-dimensional F-vector spaces, and let

Φ : V t −→W

be a symmetric t-multilinear map. A symmetric multilinear algorithm of length
n for Φ is a pair of linear maps ϕ : V −→ Fn and ω : Fn −→ W , such that the
following diagram commutes:

V t
Φ−−−−→ W

(ϕ,...,ϕ)

y xω
(Fn)t

∗−−−−→ Fn

or equivalently, such that

Φ(v1, . . . , vt) = ω(ϕ1(v1) ∗ · · · ∗ ϕt(vt))
for all v1, . . . , vt ∈ V .

In turn, using the natural identification Symt(V ;W) = Symt(V ∨) ⊗ W ⊆
(V ∨)⊗t ⊗W to view Φ as an element in this tensor space, this corresponds to a
decomposition

Φ =
∑

1≤j≤n

l⊗tj ⊗ wj

as a sum of n elementary symmetric tensors. Here, “symmetry” refers to the action
of St by permutation on the t copies of V ∨ in (V ∨)⊗t⊗W , and we call elementary
the symmetric tensors of the form l⊗t ⊗ w for l ∈ V ∨, w ∈W .

To show the equivalence, write wj = ω(εj) ∈ W and lj = πj ◦ ϕ ∈ V ∨, where
ε1, . . . , εn and π1, . . . , πn are the canonical bases of Fn and (Fn)∨ respectively.

54 HUGUES RANDRIAMBOLOLONA

A.2. — When F = Fq is a finite field, it turns out that not all symmetric
multilinear maps admit a symmetric algorithm, or equivalently, not all symmetric
tensors can be decomposed as a sum of elementary symmetric tensors. There are
at least two ways to see that.

The first is by a dimension argument: setting r = dim(V) and s = dim(W),
we have

dim Symt(V ;W) =

(
r + t− 1

t

)
s

which goes to infinity as t→∞, while

dim〈l⊗t ; l ∈ V ∨〉 ⊗W ≤ qr − 1

q − 1
s

remains bounded. So, for t big enough, 〈l⊗t ; l ∈ V ∨〉 ⊗ W cannot be all of
Symt(V ;W), as claimed. However this proof is nonconstructive, because given an
element in Symt(V ;W), it does not provide a practical way to check whether or
not this element admits a symmetric algorithm.

The second is to show that the l⊗t all satisfy certain algebraic identities. So, by
linearity, if an element in Symt(V ;W) does not satisfy these identities, then it can
not admit a symmetric algorithm. One such identity will come from the Frobenius
property, xq = x for all x ∈ Fq. At first sight this gives a necessary condition for
the existence of a symmetric algorithm. However, by elaborating on this Frobenius
property, we will show how to turn it into a necessary and sufficient condition.

A.3. — Symmetric tensor decomposition in characteristic 0 has been exten-
sively studied; see e.g. [13] for a survey of recent results. Over finite fields, perhaps
the earliest appearance of the notion of symmetric bilinear algorithm was in [49].

In this context, an important problem is the determination of

µsym
q (k)

the symmetric bilinear complexity of Fqk over Fq, defined as the smallest possible
length of a symmetric bilinear algorithm for the multiplication map Fqk × Fqk −→
Fqk (seen as a Fq-bilinear map). One can also consider

µq(k)

the (general) bilinear complexity of Fqk over Fq, defined similarly but without the
symmetry condition. A survey of results up to 2005 can be found in [1]. Quite
strangely, although most authors gave constructions of symmetric algorithms, they
only stated their results for the weaker complexity µq(k) (this is perhaps because
another central topic in algebraic complexity theory is that of matrix multiplication,
which is noncommutative).

At some point the development of the theory faced problems due to the fact
that construction of symmetric algorithms from interpolation on a curve required
a careful analysis of the 2-torsion class group of the curve [8], that was previ-
ously overlooked; in particular, some of the bounds cited in [1] (especially the one
from [52]) had to be revised. Finally the situation was clarified by the author
in [42]; among the contributions of this work we can cite:

• emphasis is put on the distinction between symmetric and general bilinear
complexity, rediscovering some results of [49]

• it is shown that nonsymmetric bilinear algorithms are much easier to
construct, since the 2-torsion obstruction does not apply to them

ON PRODUCTS AND POWERS OF LINEAR CODES 55

• for symmetric algorithms, a new construction is given (the idea of which
originates from [45]) that bypasses the 2-torsion obstruction, repairing
most of the broken bounds except perhaps for very small q.1

However, although this work settled a certain number of problems for bilinear
algorithms, in particular showing that symmetric bilinear complexity is always well-
defined, at the same time it raised the question of the existence of symmetric
algorithms for symmetric t-multilinear maps, t ≥ 3.

A.4. Proposition-definition. Let V,W be Fq-vector spaces and

f : V t −→W

a symmetric t-multilinear map, for an integer t ≥ q. Then, for 1 ≤ i ≤ t − q + 1,
the map

f̃ (i) : V t−q+1 −→W

defined by

f̃ (i)(v1, . . . , vt−q+1) = f(v1, . . . , vi−1, vi, . . . , vi︸ ︷︷ ︸
q times

, vi+1, . . . , vt−q+1)

for v1, . . . , vt−q+1 ∈ V , is t− q + 1-multilinear.
We call this f̃ (i) the i-th Frobenius reduced of f .

Proof. This follows from these two facts: (1) all elements λ ∈ Fq satisfy
λq = λ, and (2) the binomial coefficients

(
q
j

)
are zero in Fq for 0 < j < q. �

When i is not specified, we let f̃ = f̃ (1) be “the” Frobenius reduced of f .

A.5. Definition. Let V,W be Fq-vector spaces and

f : V t −→W

a symmetric t-multilinear map. We say that f satisfies the Frobenius exchange
condition, or that f is Frobenius symmetric if, either:

• t ≤ q, or
• t ≥ q + 1 and f̃ (1) = f̃ (2), that is,

f(u, . . . , u︸ ︷︷ ︸
q times

, v, z1, . . . , zt−q−1) = f(u, v, . . . , v︸ ︷︷ ︸
q times

, z1, . . . , zt−q−1)

for all u, v, z1, . . . , zt−q−1 ∈ V .

We let Symt
Frob(V ;W) ⊆ Symt(V ;W) be the subspace of Frobenius symmetric

t-multilinear maps from V toW (in case the base field is not clear from the context,
we will use a more precise notation such as Symt

Fq,Frob(V ;W)).

A.6. — If f : V t −→ W is a symmetric t-multilinear map, for t ≥ q + 1, then
in general its (first) Frobenius reduced f̃ need not be symmetric. However:

Proposition. Let f ∈ Symt(V ;W) be a symmetric t-multilinear map, for an
integer t ≥ q + 1. Then these two conditions are equivalent:

(i) f satisfies the Frobenius exchange condition, that is, it is Frobenius sym-
metric;

1For very small q, the effect of 2-torsion on the bounds cannot be entirely discarded, but the
methods of [8] allow to make it smaller, leading to the best results in this case.

56 HUGUES RANDRIAMBOLOLONA

(ii) its Frobenius reduced f̃ is symmetric.
Moreover, suppose these conditions are satisfied. Then:

• all the Frobenius reduced of f are equal: f̃ (i) = f̃ for 1 ≤ i ≤ t− q + 1

• f̃ also satisfies the Frobenius exchange condition, that is, f̃ also is Frobe-
nius symmetric.

Proof. Direct computation from the definitions. �

So, as a summary, for t ≤ q we have Symt
Frob(V ;W) = Symt(V ;W) by defini-

tion, and for t ≥ q + 1 we have

f ∈ Symt
Frob(V ;W) ⇐⇒ f̃ ∈ Symt−q+1

Frob (V ;W).

Now we can state our main result:

A.7. Theorem. Let V,W be Fq-vector spaces of finite dimension, and f ∈
Symt(V ;W) a symmetric multilinear map. Then f admits a symmetric multilinear
algorithm if and only if f is Frobenius symmetric.

In particular when t ≤ q (for example, when t = 2) this holds automatically.

Proof. Choose vectors wi forming a basis of W , and let w∨i be the dual basis.
Then f admits a symmetric multilinear algorithm if and only if all the w∨i ◦f admit
a symmetric multilinear algorithm, and f is Frobenius symmetric if and only if all
the w∨i ◦ f are Frobenius symmetric. As a consequence, it suffices to prove the
Theorem when W = Fq, that is, when f ∈ Symt(V ∨) is a symmetric multilinear
form.

By definition, a symmetric multilinear form f ∈ Symt(V ∨) admits a symmetric
multilinear algorithm if and only if it belongs to the subspace spanned by elemen-
tary symmetric multilinear forms l⊗t, for l ∈ V ∨. Thus, setting Symt

Frob(V
∨) =

Symt
Frob(V,Fq), we have to show the equality

Symt
Frob(V

∨) = 〈l⊗t ; l ∈ V ∨〉
of subspaces of Symt(V ∨).

For this, we proceed by duality. Given a subspace Z ⊆ Symt(V ∨), we let
Z⊥ ⊆ StV be its orthogonal, under the natural duality between Symt(V ∨) and the
t-th symmetric power StV . So we have to show the equality

Symt
Frob(V

∨)⊥ = 〈l⊗t ; l ∈ V ∨〉⊥

of subspaces of StV .
By definition A.5, a symmetric multilinear form f ∈ Symt(V ∨) is Frobe-

nius symmetric if and only if it is orthogonal to all elements of the form (uqv −
uvq)z1 · · · zt−q−1 ∈ StV . Using biduality, this means we have

Symt
Frob(V

∨)⊥ = Jt

where J ⊆ S·V is the homogeneous ideal spanned by the (uqv − uvq) ∈ Sq+1V , for
u, v ∈ V .

Now let X1, . . . , Xn denote a basis of V , so formally we can identify the sym-
metric algebra of V with the polynomial algebra in the Xi, as graded Fq-algebras:

S·V = Fq[X1, . . . , Xn].

With this identification, J then becomes the homogeneous ideal generated by the
polynomials Xq

iXj −XiX
q
j , for 1 ≤ i, j ≤ n.

ON PRODUCTS AND POWERS OF LINEAR CODES 57

Also this choice of a basis X1, . . . , Xn for V gives an identification V ∨ = (Fq)n:
a linear form l ∈ V ∨ corresponds to the n-tuple (x1, . . . , xn) ∈ (Fq)n where
xi = l(Xi). With this identification, the value of l⊗t ∈ Symt(V ∨) at an ele-
ment P (X1, . . . , Xn) ∈ StV is precisely P (x1, . . . , xn). Thus 〈l⊗t ; l ∈ V ∨〉⊥ is the
space of homogeneous polynomials of degree t that vanish at all points in (Fq)n, or
equivalently, that vanish at all points in the projective space Pn−1(Fq).

The conclusion then follows from Lemma A.8 below. �

A.8. Lemma. The homogenous ideal in Fq[X1, . . . , Xn] of the finite projective
algebraic set Pn−1(Fq) is the homogeneous ideal generated by the Xq

iXj − XiX
q
j ,

for 1 ≤ i, j ≤ n.

This is a well-known fact, and a nice exercise, from elementary algebraic ge-
ometry. One possible proof is by induction on n, in which one writes Pn(Fq) =
(Fq)n∪Pn−1(Fq) and one shows at the same time the affine variant, that the set of
polynomials in Fq[X1, . . . , Xn] vanishing at all points in (Fq)n is the ideal generated
by the Xq

i −Xi, for 1 ≤ i ≤ n. (See also [34] for more.)

A.9. Definition. The Frobenius symmetric algebra of a Fq-vector space V
is

S ·FrobV = S·V/(uqv − uvq)u,v∈V
the homogeneous quotient algebra of the symmetric algebra of V by its graded ideal
generated by elements of the form uqv − uvq.

Also, by the t-th Frobenius symmetric power of V we mean the t-th graded
part S tFrobV of this quotient algebra. It comes equipped with a canonical Frobenius
symmetric t-multilinear map V t −→ S tFrobV , with the universal property that,
given another Fq-vector space W , then any Frobenius symmetric t-multilinear map
V t −→W uniquely factorizes through it. Thus we get a natural identification

Symt
Frob(V,W) = (S tFrobV)∨ ⊗W

of Fq-vector spaces, and in particular

Symt
Frob(V

∨) = (S tFrobV)∨.

A.10. — If V has dimension n, with basisX1, . . . , Xn, we have an identification
S ·FrobV = Fq[X1, . . . , Xn]/(Xq

iXj −XiX
q
j)i,j , hence by Lemma A.8

S tFrobV ' PRMq(t, n− 1)

where the projective Reed-Muller code PRMq(t, n− 1) ⊆ (Fq)
qn−1
q−1 is defined as the

image of the map

Fq[X1, . . . , Xn]t −→ (Fq)
qn−1
q−1

that evaluates homogeneous polynomials of degree t at (a set of representatives of)
all points in Pn−1(Fq). In particular we have

dimS tFrobV = dimPRMq(t, n− 1),

which is computed in [55] (and also by another mehtod in [34]).
Last, note that we have

PRMq(t, n− 1) = PRMq(1, n− 1)〈t〉

58 HUGUES RANDRIAMBOLOLONA

where PRMq(1, n − 1) is the [q
n−1
q−1 , n, q

n−1] simplex code. So we see that the se-
quence of dimensions dimS tFrobV coincides with the Hilbert sequence of this simplex
code, as defined in 1.4 (and also, as an illustration of Proposition 1.28, with that
of the projective algebraic set Pn−1(Fq)).

A.11. — That Frobenius symmetry is a necessary condition in Theorem A.7
was already known, and is in fact easy to show: indeed, an elementary symmetric
multilinear map l⊗t ⊗ w, for l ∈ V ∨, w ∈W , is obviously Frobenius symmetric, so
any linear combination of such maps should also be. The author learned it from
I. Cascudo, who provided the example of the map

m : F4 × F4 × F4 −→ F4

(x, y, z) 7→ xyz

which is trilinear symmetric over F2, but does not admit a symmetric trilinear
algorithm, since one can find x, y ∈ F4 with x2y 6= xy2.

So the new part in Theorem A.7 is that Frobenius symmetry is also a sufficient
condition. For example the map

m′ : F4 × F4 × F4 −→ F4

(x, y, z) 7→ x2yz + xy2z + xyz2

is trilinear symmetric over F2, and it satisfies m′(x, x, y) = m′(x, y, y) for all x, y ∈
F4, so it has to admit a symmetric trilinear algorithm. And indeed, one can check

m′(x, y, z) = tr(x) tr(y) tr(z) + α2 tr(αx) tr(αy) tr(αz)

+ α tr(α2x) tr(α2y) tr(α2z)

where F4 = F2[α]/(α2 + α+ 1) and tr is the trace from F4 to F2.

A.12. — Theorem A.7 allows us to retrieve (and perhaps give a slightly more
conceptual proof of) a result of N. Bshouty [7, Th. 5]: given a finite dimensional
commutative Fq-algebra A, then the t-wise multiplication map

mt : At −→ A
(a1, . . . , at) 7→ a1 · · · at

admits a symmetric multilinear algorithm if and only if, either:
• t ≤ q, or
• t ≥ q + 1 and all elements a ∈ A satisfy aq = a.

Indeed, this is easily seen to be equivalent to mt satisfying the Frobenius exchange
condition A.5.

So, for t ≤ q, a symmetric algorithm for mt exists for any algebra A. On the
other hand, for t > q, it turns out that Bshouty’s condition is very restrictive. An
example of algebra in whichmt obviously admits a symmetric multilinear algorithm
is (Fq)n (one can take the trivial algorithm of length n, which is moreover easily
seen minimal). We show that, in fact, it is the only possibility, leading to the
following “all-or-nothing” result:

Proposition. If all elements a in a commutative Fq-algebra A of dimension
n satisfy aq = a, then we have an isomorphism A ' (Fq)n of Fq-algebras.

As a consequence, the t-wise multiplication mapmt in a commutative Fq-algebra
A of dimension n admits a symmetric multilinear algorithm if and only if, either:

• t ≤ q, or

ON PRODUCTS AND POWERS OF LINEAR CODES 59

• t ≥ q + 1 and A ' (Fq)n.

Proof. Let A be a commutative Fq-algebra of dimension n in which all ele-
ments a satisfy aq = a. Then aq

e

= a for arbitrarily large e, implying that A has
no (nonzero) nilpotent element. This means the finite commutative Fq-algebra A
is reduced, and as such, it can be written as a product of extension fields

A =
∏
i

Fqri .

Now using the condition aq = a once again, we see all ri = 1. �

(This proof, shorter than the author’s original one, was inspired by a remark
from I. Cascudo.)

Trisymmetric and normalized multiplication algorithms.

A.13. — We conclude with a last application of Theorem A.7. Let q be a
prime power, and k ≥ 1 an integer. For any a ∈ Fqk we define a linear form
ta : Fqk −→ Fq by setting ta(x) = tr(ax), where tr is the trace from Fqk to Fq.
It is well known that the map a 7→ ta induces an isomorphism of Fq-vector spaces
Fqk ' (Fqk)∨.

Now let m : Fqk × Fqk −→ Fqk be the multiplication map in Fqk , viewed as a
tensor m ∈ Sym2

Fq
((Fqk)∨) ⊗Fq

Fqk . Then by construction, µsym
q (k) is the rank of

m (in the sense of 1.13) with respect to the set of elementary symmetric tensors,
that is, tensors of the form

t⊗2
a ⊗ b

for a, b ∈ Fqk . By definition, “symmetry” here refers only to the first two factors of
the tensors. However, one could try to strengthen this notion as follows:

Definition. The elementary trisymmetric tensors in Sym2
Fq

((Fqk)∨)⊗Fq
Fqk

are those of the form
t⊗2
a ⊗ a

for a ∈ Fqk . We then define
µtri
q (k)

the trisymmetric bilinear complexity of Fqk over Fq, as the rank of m with respect
to these.

Equivalently, µtri
q (k) is the smallest possible length of a trisymmetric bilinear

algorithm for multiplication in Fqk over Fq, that is, of a decomposition of m as a
linear combination of elementary trisymmetric tensors. (Conveniently, if no such
algorithm exists, we set µtri

q (k) =∞.)

An equivalent definition can already be found in [49]. Now we determine the
values of q and k for which µtri

q (k) is finite:

A.14. Proposition. A trisymmetric bilinear algorithm for multiplication in
Fqk over Fq exists for all q and k, except precisely for q = 2, k ≥ 3.

Proof. Applying the trace, we see that a trisymmetric bilinear multiplication
algorithm of the form

m =
∑

1≤j≤n

λj t
⊗2
aj ⊗ aj ∈ Sym2

Fq
((Fqk)∨)⊗Fq Fqk

60 HUGUES RANDRIAMBOLOLONA

for λj ∈ Fq, aj ∈ Fqk , corresponds to a symmetric trilinear algorithm

T =
∑

1≤j≤n

λj t
⊗3
aj ∈ Sym3

Fq
((Fqk)∨)

for the symmetric trilinear form

T : Fqk × Fqk × Fqk −→ Fq
(x, y, z) 7→ tr(xyz).

By Theorem A.7, a symmetric trilinear form always admits a symmetric trilinear
algorithm when q ≥ 3. Now, suppose q = 2. Then T satisfies the Frobenius
exchange condition if only if tr(x2y) = tr(xy2) for all x, y ∈ F2k . On the other
hand we have tr(a) = tr(a2) for all a, so in particular tr(x2y) = tr(x4y2), hence T
satisfies the Frobenius exchange condition if only if

tr(x4y2) = tr(xy2)

for all x, y ∈ F2k . But this means tx4 = tx, or equivalently x4 = x, for all x. We
conclude since this holds if and only if k = 1 or 2. �

A.15. — In case q = k = 2, one can check that the trisymmetric bilinear
complexity of F4 over F2 is 3, so

µ2(2) = µsym
2 (2) = µtri

2 (2) = 3.

Indeed, setting F4 = F2[α]/(α2 +α+1), a symmetric trilinear algorithm for T is
given by the tensor decomposition

T = t⊗3
1 + t⊗3

α + t⊗3
α2

in Sym3
F2

((F4)∨). In fact T is the only element of rank 3 in Sym3
F2

((F4)∨).
This formula could be compared with that for the symmetric algorithm for m′

in A.11, which can be rewritten

m′ = t⊗3
1 ⊗ 1 + t⊗3

α ⊗ α2 + t⊗3
α2 ⊗ α

in Sym3
F2

((F4)∨)⊗F2
F4.

It also motivates the following:

A.16. Definition. A normalized trisymmetric bilinear algorithm of length n
for multiplication in Fqk over Fq is a decomposition of the multiplication tensor m
as a sum of n elementary trisymmetric tensors

m =
∑

1≤j≤n

t⊗2
aj ⊗ aj

in Sym2
Fq

((Fqk)∨) ⊗Fq
Fqk , or equivalently, of the trace trilinear form T as a sum

of n cubes
T =

∑
1≤j≤n

t⊗3
aj

in Sym3
Fq

((Fqk)∨). We then define

µnrm
q (k)

the normalized trisymmetric bilinear complexity of Fqk over Fq, as the smallest
possible length of such a normalized algorithm (Conveniently, if no such algorithm
exists, we set µnrm

q (k) =∞.)

ON PRODUCTS AND POWERS OF LINEAR CODES 61

The new restriction here is we require the decomposition to be a sum, not a
mere linear combination (and as a consequence, this time µnrm

q (k) cannot be inter-
preted in terms of a rank function). This is somehow reminiscent of the distinction
between orthogonal and self-dual bases in a nondegenerate quadratic space. In
fact, suppose instead of the trace trilinear form T (x, y, z) = tr(xyz) of Fqk over Fq,
we’re interested in the much more manageable trace bilinear form B(x, y) = tr(xy).
Since B is nondegenerate, it has symmetric complexity k. Moreover, symmetric
algorithms for B correspond to orthogonal bases of Fqk over Fq, although not nec-
essarily self-dual. See e.g. [48][27] for more on this topic and related questions.

A.17. — The various notions of bilinear complexity defined so far can be com-
pared. Obviously (or for the first three, as a consequence of Lemma 1.16) we always
have

µq(k) ≤ µsym
q (k) ≤ µtri

q (k) ≤ µnrm
q (k).

In the other direction, by [49, Th. 1] or [42, Lemma 1.6] we have

µsym
q (k) ≤ 2µq(k) for char(Fq) 6= 2,

and by [49, Th. 2]

µtri
q (k) ≤ 4µsym

q (k) for q 6= 2, char(Fq) 6= 3.

Now we want an upper bound on µnrm
q (k). This can be stated in a greater

generality. Let V be a Fq-vector space, and let F ∈ Symt(V ∨) be a symmetric
t-multilinear form with a t-symmetric algorithm of length n

F =
∑

1≤j≤n

λj l
⊗t
j ,

for λj ∈ Fq, lj ∈ V ∨. Now suppose each λj can be written as a sum of g t-th powers
in Fq

λj = ξtj,1 + · · ·+ ξtj,g.

Then we have
F =

∑
1≤j≤n

((ξj,1lj)
⊗t + · · ·+ (ξj,glj)

⊗t)

so F is a sum of gn t-th powers in Symt(V ∨).
In particular, if g = g(t, q) is the smallest integer such that any element in Fq

is a sum of g t-th powers in Fq (if no such integer exists we set g =∞), we find

µnrm
q (k) ≤ g(3, q)µtri

q (k).

Determination of g(t, q) is an instance of Waring’s problem (note that determi-
nation of µnrm

q (k), that is, of the shortest decomposition of T as a sum of cubes in
Sym3

Fq
((Fqk)∨), also is!). For t = 3 the answer is well known (see e.g. [53]):

A.18. Lemma. For q 6= 2, 4, 7, we have

g(3, q) = 2

i.e. any element in Fq is a sum of two cubes (and this is optimal). The exceptions
are: g(3, 2) = 1, g(3, 4) =∞, and g(3, 7) = 3.

In F4 = F2[α]/(α2 +α+1), note that every nonzero x satisfy x3 = 1. As a
consequence, neither α nor α2 can be written as a sum of cubes, and g(3, 4) = ∞
as asserted.

62 HUGUES RANDRIAMBOLOLONA

A.19. Proposition. A normalized trisymmetric multiplication algorithm for
Fqk over Fq exists for all q and k, except precisely for q = 2, k ≥ 3 and for q = 4,
k ≥ 2. More precisely, we have:

(i) µnrm
q (1) = 1 for all q,

(ii) µnrm
2 (2) = 3,

(iii) µnrm
2 (k) =∞ for k ≥ 3,

(iv) µnrm
4 (k) =∞ for k ≥ 2,

(v) µnrm
7 (k) ≤ 3µtri

7 (k) for k ≥ 2,

(vi) µnrm
q (k) ≤ 2µtri

q (k) for q 6= 2, 4, 7 and k ≥ 2.

Proof. Item (i) is obvious, (ii) comes from A.15, and (iii)(v)(vi) from Propo-
sition A.14 joint with the discussion in A.17 and Lemma A.18.

Now to prove (iv) we have to show that, for k ≥ 2, there is no normalized
multiplication algorithm for F4k over F4. We proceed by contradiction, so we
suppose we have a decomposition

T =
∑

1≤j≤n

t⊗3
aj

which implies, for any x ∈ F4k ,

tr(x3) =
∑

1≤j≤n

tr(ajx)3.

Now let α ∈ F4 with α2 = α+ 1. The trace function tr : F4k −→ F4 is surjective, so
α = tr(z) for some z ∈ F4k . Moreover, by Lemma A.18, we can write z = x3 + y3

as a sum of two cubes in F4k . So we conclude that

α = tr(x3 + y3) =
∑

1≤j≤n

(tr(ajx)3 + tr(ajy)3)

is a sum of cubes in F4, in contradiction with Lemma A.18 and the discussion
following it. �

The more constraints we put on the structure of the algorithms, the smaller the
set of such algorithms is, and hopefully the lower the complexity of search in this
set should be. This makes one wonder whether an adaptation of the methods of [2]
could allow one to succesfully compute the exact values of µtri

q (k) and µnrm
q (k) for

a not-so-small range of k, and find the corresponding optimal algorithms.

Appendix B: On symmetric multilinearized polynomials

B.1. — Let A be the algebra of all functions from (Fqr)t to Fqr . It is easily
checked that any such function can be represented as a polynomial function, and
moreover, since elements of Fqr satisfy xq

r

= x, we have a natural identification

A = Fqr [x1, . . . , xt]/(x
qr

1 − x1, . . . , x
qr

t − xt).

Often we will identify an element f ∈ A with its (unique) representative of minimum
degree in Fqr [x1, . . . , xt]. Likewise we identify Z/rZ with {0, 1, . . . , r − 1}.

ON PRODUCTS AND POWERS OF LINEAR CODES 63

The symmetric group St acts linearly on A, by permutation of the variables:
for σ ∈ St, f ∈ A, and (u1, . . . , ut) ∈ (Fqr)t, we set

(σf)(u1, . . . , ut) = f(uσ(1), . . . , uσ(t)).

Also, the Frobenius f 7→ fq defines an automorphism of A over Fq, of order r,
hence an action of Z/rZ on A, where j ∈ Z/rZ acts as f 7→ fq

j

.
These two actions commute, so A is equipped with an action of

G = St × Z/rZ,
the invariants of which are the symmetric functions on (Fqr)t with values in Fq.

Note that the action of St is linear over Fqr , while the action of Z/rZ (hence
that of G) is only linear over Fq.

B.2. Definition. The t-multilinearized polynomials with coefficients in Fqr
over Fq are the polynomials of the form∑

0≤i1,...,it≤r−1

ai1,...,irx
qi1

1 · · ·xq
it

t

with ai1,...,ir ∈ Fqr .

These t-multilinearized polynomials form a Fqr -linear subspace
B ⊆ A,

of dimension rt over Fqr (hence also of dimension rt+1 over Fq).
It is easily checked that B coincides precisely with the space of functions from

(Fqr)t to Fqr that are t-multilinear over Fq.
For t = 1, one retrieves the notion of linearized polynomials, which is an impor-

tant tool in the theory of finite fields and in coding theory. For t = 2, bilinearized
polynomials have also been introduced to solve various problems in bilinear alge-
bra, as illustrated in [49] and [43]. Our aim here is to extend some of the results
from [43] to arbitrary t.

More precisely, in Theorem B.7 we construct a family of homogeneous symmet-
ric t-multilinearized polynomials

SI : (Fqr)t −→ FqrI
(the index I ranges in a certain set S and is essentially the multidegree of SI)
taking values in an intermediate field FqrI , and satisfying the following universal
property: for any Fq-vector space V , and for any map

F : (Fqr)t −→ V

symmetric t-multilinear over Fq, there is a unique family of Fq-linear maps

fI : FqrI −→ V

such that
F =

∑
I∈S

fI ◦ SI .

Then in Theorem B.9 (or more precisely in Corollary B.22) we give an upper bound
on the degrees of the SI .

Polynomial description of symmetric powers of an extension field.

First we state (without proof) two easy results on group actions.

64 HUGUES RANDRIAMBOLOLONA

B.3. Lemma. Let Γ be a finite group acting on a finite set P, let R ⊆ P be
a set of representatives for the action, and for I ∈ R let o(I) ⊆ P be its orbit.
Suppose also Γ acts linearly on a vector space V with basis (bI)I∈P , such that

γ · bI = bγI

for all γ ∈ Γ, I ∈ P. Now for I ∈ R, set

sI =
∑
J∈o(I)

bJ .

Then, the subspace of invariants V Γ admits the (sI)I∈R as a basis.

B.4. Lemma. Let the finite cyclic group Z/rZ act on a finite set R, and let
S ⊆ R be a set of representatives for the action. For each I ∈ S, let rI = |o(I)| be
the size of its orbit, so rI |r and rIZ/rZ ⊆ Z/rZ is the stabilizer subgroup of I.

Now set
P = Z/rZ×R

and let Z/rZ act on this product set, on the first factor, by translation, and on the
second factor, by the action we started with. Then the action of Z/rZ on P is free,
and it admits

T = {(i, I) ; 0 ≤ i ≤ rI − 1, I ∈ S} ⊆ P
as a set of representatives. Moreover we have

|T | =
∑
I∈S

rI = |R|.

Note that there are other possible choices for a set of representatives, for in-
stance a more obvious one would be {0} × R. However, T is the choice that will
make the proof of Theorem B.7 below work.

B.5. — To each I = (i1, . . . , it) ∈ (Z/rZ)t we associate a monomial

MI = xq
I

= xq
i1

1 · · ·xq
it

t ,

of degree
DI = qi1 + · · ·+ qit

so t ≤ DI ≤ tqr−1. These form a basis of B over Fqr .
As we saw in B.1, the symmetric group St acts on A, and we let it act also on

(Z/rZ)t by permutation of coordinates. The map I 7→MI is compatible with these
actions, in that

σMI = Mσ(I)

for σ ∈ St, so B is stable under St.
Let R ⊆ (Z/rZ)t be the set of nonincreasing t-tuples of elements of Z/rZ '

{0, 1, . . . , r − 1}. It has cardinality

|R| =
(
r + t− 1

t

)
.

Clearly R is a set of representatives for the action of St on (Z/rZ)t, so we have a
bijection

R ∼−→ (Z/rZ)t/St

I 7→ o(I)

ON PRODUCTS AND POWERS OF LINEAR CODES 65

where o(I) ⊆ (Z/rZ)t is the orbit of I under St. Now for I ∈ R we set

SI =
∑
J∈o(I)

MJ ,

so SI is a symmetric homogeneous polynomial of degree DI in t variables over Fqr ,
which is also symmetric t-multilinear over Fq. The number |o(I)| of monomials in
SI is a divisor of t! (it can be a strict divisor if I has repeated elements).

Then, by Lemma B.3, the subspace of invariants

BSt = Symt
Fq

(Fqr ;Fqr)

admits the (SI)I∈R as a basis over Fqr .

B.6. — As we saw in B.1, the cyclic group Z/rZ acts on A by Frobenius, and
we let it act also on (Z/rZ)t diagonally by translation, that is, we let j ∈ Z/rZ act
as I = (i1, . . . , it) 7→ I + j = (i1 + j, . . . , it + j) where addition is modulo r. The
map I 7→MI is compatible with these actions, in that

(MI)
qj = MI+j

so B is stable under Z/rZ.
This diagonal action of Z/rZ on (Z/rZ)t commutes with that ofSt, so it defines

an action of Z/rZ on R ' (Z/rZ)t/St, which can be written as

Z/rZ×R −→ R
(j, I) 7→ I � j

where I � j is the representative of I + j in R. More precisely, I + j need not be
nonincreasing since addition is modulo r, but there is a (cyclic) permutation that
puts it back in nonincreasing order, the result of which is I � j. (Example: r = 10,
t = 5, I = (8, 7, 4, 2, 2), I + 3 = (1, 0, 7, 5, 5), I � 3 = (7, 5, 5, 1, 0).)

By construction we then have

Sq
j

I = SI�j

in BSt .
Choosing a set of representatives

S ⊆ R

for this action � of Z/rZ on R, we note that

S ' R/(Z/rZ) ' ((Z/rZ)t/St)/(Z/rZ) ' (Z/rZ)t/G,

so S is also a set of representatives for the action of G on (Z/rZ)t.

B.7. — For each I ∈ S, we let rI be the size of its orbit under Z/rZ in R, so
rI |r and rIZ/rZ ⊆ Z/rZ is the stabilizer subgroup of I. We then have Sq

rI

I = SI ,
so in fact SI defines a map

SI : (Fqr)t −→ FqrI
whose image lies in the subfield FqrI ⊆ Fqr .

Theorem. With these notations, the map

Ψ : (Fqr)t −→
∏
I∈S

FqrI

66 HUGUES RANDRIAMBOLOLONA

whose components are the SI for I ∈ S, is symmetric t-multilinear over Fq, and
moreover it is universal for this property.

In particular, it induces an isomorphism

StFq
Fqr '

∏
I∈S

FqrI

of Fq-vector spaces.

Proof. We have to show that, for a certain basis B of the dual Fq-vector space
(
∏
I∈S FqrI)∨, the (b ◦ Ψ)b∈B form a basis of (StFq

Fqr)∨ = Symt
Fq

((Fqr)∨) over Fq.
For this we would like, ultimately, to apply Lemma B.3 to the action of Z/rZ on
BSt . Indeed, as already noted BSt = Symt

Fq
(Fqr ;Fqr), so its subspace of invariants

under Frobenius is

BG = (BSt)Z/rZ = Symt
Fq

(Fqr ;Fq) = Symt
Fq

((Fqr)∨).

Now, since the action of Z/rZ is only Fq-linear, we need a basis of BSt over Fq,
stable under the action.

First choose a γ ∈ Fqr such that

γ, γq, . . . , γq
r−1

is a (normal) basis of Fqr over Fq. Then, given I ∈ S, we set

βi,I =
∑

j∈Z/rZ, j≡i mod rI

γq
j

for 0 ≤ i ≤ rI − 1, which happen to form a basis of FqrI over Fq. This is easily
checked directly, but can also be viewed as a consequence of Lemma B.3 (with
Γ = rIZ/rZ, P = Z/rZ, V = Fqr , V Γ = FqrI).

In B.5 we saw that the (SI)I∈R form a basis of BSt over Fqr . It then follows
that the

(γq
i

SI)i∈Z/rZ,I∈R

form a basis of BSt over Fq. This basis is stable under the action of Z/rZ on BSt

by Frobenius, more precisely we have

(γq
i

SI)
qj = γq

i+j

SI�j .

This means, our basis is indexed by

P = Z/rZ×R,

and Z/rZ acts on this product set, on the first factor, by translation, and on the
second factor, by the action �. Let

T = {(i, I) ; 0 ≤ i ≤ rI − 1, I ∈ S} ⊆ P

be the set of representatives given by Lemma B.4.
Now we can apply Lemma B.3, which gives that the

Fi,I =
∑

j∈Z/rZ

(γq
i

SI)
qj ,

ON PRODUCTS AND POWERS OF LINEAR CODES 67

for (i, I) ∈ T , form a basis of (BSt)Z/rZ = Symt
Fq

((Fqr)∨) over Fq. Using the
invariance of SI under rIZ/rZ and grouping together the j according to their class
modulo rI , these can also be written

Fi,I =
∑

j∈Z/rIZ

(βi,ISI)
qj = ϕi,I ◦ SI = ϕi,I ◦ πI ◦Ψ

where
ϕi,I : FqrI −→ Fq

x 7→ trFqrI /Fq
(βi,Ix)

is the trace linear form deduced from βi,I , and

πI :
∏
I∈S

FqrI � FqrI

is projection on the I-th factor.
Now, for fixed I, the βi,I form a basis of FqrI over Fq, so the ϕi,I form a basis

of (FqrI)∨ over Fq. Hence as i and I vary, the ϕi,I ◦πI form a basis of (
∏
I∈S FqrI)∨

over Fq. This is the basis B we were looking for at the beginning of the proof. �

As a double check, Lemma B.4 also gives directly

dimFq

∏
I∈S

FqrI =
∑
I∈S

rI = |R| =
(
r + t− 1

t

)
= dimFq

StFq
Fqr .

Also we note that Burnside’s lemma allows us to compute |S| = |R/(Z/rZ)| =
1
r

∑
d| gcd(r,t) φ(d)

(
(r+t)/d−1

t/d

)
, although this will not be needed in the sequel.

Equidistributed beads on a necklace.

B.8. — Recall from B.5-B.6 we are interested in the set R = Rr,t ⊆ (Z/rZ)t

of nonincreasing t-tuples of elements of Z/rZ ' {0, 1, . . . , r − 1}, of cardinality
|Rr,t| =

(
r+t−1
t

)
, modulo the action � of Z/rZ, inherited from the diagonal action

of Z/rZ on (Z/rZ)t by translation.
There are several ways to interpret this object. For instance, we can also view it

as the set of multisets of cardinality t of elements of Z/rZ, or as the set of vectors in
Nr that sum to t (identify a multiset with its characteristic vector), with the natural
action of Z/rZ by cyclic permutation. So, in a sense, the quotient set Rr,t/(Z/rZ)
describes all the possible arrangements of r beads with weight in N into a circular
necklace of total weight t.

We introduce a particular element Ir,t ∈ Rr,t, which corresponds to the weight
being equidistributed on the necklace:

Ir,t =

(⌊
(t− 1)r

t

⌋
,

⌊
(t− 2)r

t

⌋
, . . . ,

⌊r
t

⌋
, 0

)
=

(
r −

⌈r
t

⌉
, r −

⌈
2r

t

⌉
, . . . , r −

⌈
(t− 1)r

t

⌉
, 0

)
Equip Rr,t with the lexicographic order, so for I = (i1, . . . , it) and J =

(j1, . . . , jt) in Rr,t, we set I < J if and only if there exists an index a such that
ib = jb for all b < a, and ia < ja.

B.9. Theorem. Each orbit in Rr,t/(Z/rZ) admits a representative I ≤ Ir,t.

68 HUGUES RANDRIAMBOLOLONA

Example: r = 10, t = 7, I10,7 = (8, 7, 5, 4, 2, 1, 0). Let J = (9, 8, 7, 6, 4, 3, 1).
Then in the orbit of J we can find J � 4 = (8, 7, 5, 3, 2, 1, 0) < I10,7, and also
J � 7 = (8, 6, 5, 4, 3, 1, 0) < I10,7 (so there is not unicity in the Theorem).

Note that the Theorem is stated for multisets, but then, it applies a fortiori to
ordinary sets. So it gives that, for any subset J ⊆ Z/rZ of cardinality |J | = t, there
is a translate I of J in Z/rZ whose largest elements are b (t−1)r

t c, . . . , b (t−a+1)r
t c,

but then the next one (if applicable) is smaller than b (t−a)r
t c. Moreover, here we

used the lexicographic order, but the very same method of proof gives a similar
result for the antilexicographic order: there is also a translate I of J in Z/rZ whose
smallest elements are 0, b rt c, . . . , b

(a−1)r
t c, but then the next one (if applicable) is

smaller than bart c.
The proof of the Theorem will require several intermediary results:

B.10. Definition. We say J = (j1, . . . , jt) ∈ Rr,t is reduced if jt = 0. We
let R0

r,t ⊆ Rr,t be the set of reduced elements.

For instance, Ir,t ∈ R0
r,t is reduced. Note also that forgetting the last coordinate

gives R0
r,t ' Rr,t−1, so |R0

r,t| =
(
r+t−2
t−1

)
.

B.11. — Let
Gr,t ⊆ N>0 × Nt−1

be the set of t-tuples of integers (g1, . . . , gt) with g1 > 0 and sum

g1 + · · ·+ gt = r

so |Gr,t| =
(
r+t−2
t−1

)
. Equip Gr,t with the lexicographic order.

Given J = (j1, . . . , jt) ∈ R0
r,t, so jt = 0, we define its i-th gap, 1 ≤ i ≤ t, as

gi(J) =

{
r − j1 for i = 1

ji−1 − ji for 2 ≤ i ≤ t

so in particular gt(J) = jt−1, and we let its gap sequence be

g(J) = (g1(J), . . . , gt(J)) ∈ Gr,t.
Then:

B.12. Lemma. This map g : R0
r,t −→ Gr,t is an order-reversing bijection.

Proof. Indeed, to (g1, . . . , gt) ∈ Gr,t, the inverse map associates the t-uple
(j1, . . . , jt) ∈ R0

r,t given by

ji = r − (g1 + · · ·+ gi),

which is clearly order-reversing. �

B.13. — We let Z/tZ act on Nt by cyclic permutation. More precisely, we let
σ0 be the identity on Nt, and for g = (g1, . . . , gt) ∈ Nt and 1 ≤ a ≤ t− 1 we set

σa(g) = (ga+1, ga+2, . . . , gt, g1, g2, . . . , ga).

This action “almost” preserves Gr,t: more precisely, for g ∈ Gr,t, we have σa(g) ∈ Gr,t
if and only if ga+1 > 0.

B.14. — Let J = (j1, . . . , jt) ∈ R0
r,t and let j > 0 be such that j = ja for an

index a; if there are several choices for such an a, choose it maximum, so ja > ja+1,
hence ga+1 > 0. Then:

ON PRODUCTS AND POWERS OF LINEAR CODES 69

Lemma. With these notations, we have

g(J � (r − ja)) = σa(g(J)).

Proof. Clear, from
J � (r − ja) = (ja+1 + r − ja, ja+2 + r − ja, . . . , jt−1 + r − ja, r − ja,

j1 − ja, j2 − ja, . . . , ja−1 − ja, 0).

�

B.15. Lemma (“large gap”). Let J = (j1, . . . , jt) ∈ R0
r,t have gap sequence

g(J) = (g1, . . . , gt). Suppose there is an index a such that ga > d rt e. Then there is
j ∈ Z/rZ such that J � j < Ir,t.

Proof. Thanks to Lemma B.14, after possibly replacing J with J� (r− ja−1)
if a > 1, we can suppose a = 1. Then

j1 = r − g1 < r −
⌈r
t

⌉
so J < Ir,t. �

B.16. Lemma (“small gap”). Let J = (j1, . . . , jt) ∈ R0
r,t have gap sequence

g(J) = (g1, . . . , gt). Suppose there is an index a such that ga < b rt c. Then there is
j ∈ Z/rZ such that J � j ≤ Ir,t.

Proof. Choose a such that ga is minimum; if there are several choices for such
an a, choose it maximum, so ga+1 > ga if a < t. Then, thanks to Lemma B.14,
after possibly replacing J with J � (r − ja) if a < t, we can suppose a = t, so
jt−1 = gt < b rt c, hence, since these are integers,

jt−1 ≤
⌊r
t

⌋
− 1 ≤ r

t
− 1.

Now we proceed by contradiction: suppose J � j > Ir,t for all j. We will
construct a sequence of indices 1 ≤ a1 < a2 < · · · < ak < t with the following
properties:

(i) r − ja1 <
a1r
t

(ii) jai − jai+1 <
(ai+1−ai)r

t for 2 ≤ i ≤ k − 1

(iii) jak <
(t−ak)r

t .
Summing all these inequalities we find r < r, a contradiction.

The sequence is constructed as follows. To start with, we have J > Ir,t so there
is an index a < t such that ja > r−dart e. If there are several choices for such an a,
choose it maximum (which implies ja > ja+1), and call it a1. Then r− ja1

< da1r
t e

and moreover r − ja1
is an integer, so r − ja1

< a1r
t .

Now suppose we have already constructed 1 ≤ a1 < a2 < · · · < a` < t satisfying
(i) and (ii), and with ja` > ja`+1. If a` = t−1, then we are done: (iii) is more than
satisfied (with k = `) since jt−1 ≤ r

t − 1 < r
t .

If a` < t − 1, we use the fact that J � (r − ja`) > Ir,t, so for some b ≥ 1,
these sequences coincide on the first b − 1 positions, while the b-th coefficient of
J � (r− ja`) (whose expression is given in the proof of Lemma B.14) is larger than
that of Ir,t. We distinguish two cases.

First case: b < t− a`. Then ja`+b + r − ja` > r − d brt e, with the left-hand side
an integer, hence in fact ja`+b + r − ja` > r − br

t . Thus there exists an index a

70 HUGUES RANDRIAMBOLOLONA

(namely here a = a` + b works) with a` < a < t and ja` − ja <
(a`−a)r

t . If there are
several choices for such an a, choose it maximum (which implies ja > ja+1), and
call it a`+1.

Second case: b ≥ t−a`, so the (t−1−a`)-th coefficient of J � (r− ja`) is equal
to that of Ir,t, that is, jt−1 +r−ja` = r−d (t−1−a`)r

t e, or ja` = jt−1 +d (t−1−a`)r
t e <

jt−1 + (t−1−a`)r
t + 1. But then we use jt−1 ≤ r

t − 1 to conclude that (iii) is satisfied
with k = `. �

B.17. Definition. Let J = (j1, . . . , jt) ∈ R0
r,t have gap sequence g(J) =

(g1, . . . , gt). We say J is balanced if |ga − r
t | < 1 for all a (i.e. ga = b rt c or d

r
t e).

We let
Rbal
r,t ⊆ R0

r,t

be the set of such balanced sequences.

B.18. — Suppose t6 | r, set Q = d rt e, so Q− 1 = b rt c, and write

r = tQ− u

with 0 < u < t, which can also be written

r = u
⌊r
t

⌋
+ (t− u)

⌈r
t

⌉
.

Let J = (j1, . . . , jt) ∈ Rbal
r,t be a balanced sequence, with gaps g(J) = (g1, . . . , gt).

Since all ga = b rt c or d
r
t e and they must sum to r, we deduce exactly u of them

are equal to b rt c, and the other t − u are equal to d rt e. So let a1 < a2 < · · · < au
be those indices a with ga = b rt c, and then for 1 ≤ i ≤ u set bi = r − ai. Note
1 ≤ ai ≤ t so bi ∈ {0, . . . , t − 1} ' Z/tZ, and the bi form a decreasing sequence,
hence they define an element of Rt,u.

Definition. With these notations, we call

∂(J) = (b1, . . . , bu)

the derived sequence of J .

B.19. Proposition. This map

∂ : Rbal
r,t −→ Rt,u

is injective and order-preserving.

Proof. The map ∂ factorizes as

Rbal
r,t

g|Rbal
r,t−−−−→ Gbal

r,t

b
−−−→ Rt,u.

Here Gbal
r,t = g(Rbal

r,t) ⊆ Gr,t is the set of t-tuples of integers (g1, . . . , gt) ∈ Nt among
which u of them are equal to b rt c, and the other t − u are equal to d rt e, and with
g1 > 0. Note that, if t < r, the last condition vanishes since g1 ≥ b rt c > 0
automatically, while if t > r, then g1 > 0 means g1 = d rt e. Then by Lemma B.12,
the restriction g|Rbal

r,t
is an order-reversing bijection.

The second map is b(g1, . . . , gt) = (b1, . . . , bu), where bi = t− ai and a1 < a2 <
· · · < au are those indices a with ga = b rt c. This map is clearly injective.

Now suppose (g1, . . . , gt) < (g′1, . . . , g
′
t), so there is some index k with gi = g′i

for i < k, and gk = b rt c < g′k = d rt e. So k = av < a′v for some v, while aw = a′w

ON PRODUCTS AND POWERS OF LINEAR CODES 71

for w < v. This means (a1, . . . , au) < (a′1, . . . , a
′
u), or equivalently, (b1, . . . , bu) >

(b′1, . . . , b
′
u). Hence the map b is also order-reversing.

We conclude since composing two order-reversing maps gives an order-preserving
map. �

B.20. Proposition. Suppose t 6 | r, and write r = tQ − u with Q = d rt e,
0 < u < t. Then Ir,t ∈ Rbal

r,t and

∂(Ir,t) = It,u.

Proof. We have g(Ir,t) = (g1, . . . , gt) with

ga =
⌈ar
t

⌉
−
⌈

(a− 1)r

t

⌉
.

However, writing ar
t = aQ − au

t we find dart e = aQ − baut c. Then, since u
t < 1,

there are only two possibilities:
• either baut c = b (a−1)u

t c, in which case ga = Q = d rt e,
• or baut c = b (a−1)u

t c+ 1, and ga = Q− 1 = b rt c.
We are interested in the second case. It happens precisely when

(a− 1)u

t
< m ≤ au

t

for a certain integer m (namely m = baut c), that is when a− 1 < mt
u ≤ a, or

a = am =

⌈
mt

u

⌉
.

Setting bm = t− am, we find

∂(Ir,t) = (b1, . . . , bu) = It,u

as claimed. �

B.21. Lemma. Suppose t 6 | r. Let J = (j1, . . . , jt) ∈ Rbal
r,t , and let v be an

index with jv > jv+1. Then

∂(J � (r − jv)) = ∂(J) � (t− v)

in Rt,u.

Proof. Consequence of Lemma B.14 and the definition of ∂. �

Proof of Theorem B.9. We proceed by induction on t. The result is clear
for t = 1. Suppose it holds for all t′ < t.

Let J = (j1, . . . , jt) ∈ Rr,t. After possibly replacing J with J � (r − jt) =
J − jt, we can suppose J ∈ R0

r,t. If J has a gap larger than d rt e we conclude with
Lemma B.15; and if J has a gap smaller than b rt c we conclude with Lemma B.16.
So the only case remaining is J ∈ Rbal

r,t . If t|r, this means all gaps are equal to r
t ,

and then J = Ir,t. Now suppose t6 | r, set Q = d rt e, and write r = tQ − u with
0 < u < t. Then ∂(J) ∈ Rt,u and we can apply the induction hypothesis to find v
such that

∂(J) � (t− v) ≤ It,u.
In particular the first coefficient of ∂(J) � (t− v) is at most t− d tue < t− 1. This
means that the first gap of ∂(J) � (t− v), or equivalently the (v + 1)-th gap of J ,
is not equal to b rt c, so it is d rt e ≥ 1, which means in turn jv > jv+1. We can then

72 HUGUES RANDRIAMBOLOLONA

apply Lemma B.21 to the left-hand side of our last inequality, and Proposition B.20
to the right-hand side, to restate it as

∂(J � (r − jv)) ≤ ∂(Ir,t).

But ∂ is order-preserving by Proposition B.19, so

J � (r − jv) ≤ Ir,t
which finishes the proof. �

B.22. — Theorem B.9 can be used to make Theorem B.7 more precise. Recall
there we are working in an extension Fqr of a finite field Fq, and we have constructed
a universal family of symmetric homogeneous t-multilinearized polynomials

SI : (Fqr)t −→ FqrI
for I ranging in a set S of representatives of Rr,t modulo Z/rZ.

Corollary. Suppose t ≤ q, and set

T = qb
(t−1)r

t c + qb
(t−2)r

t c + · · ·+ qb
r
t c + 1.

Then the set S can be chosen so that the polynomials SI all have

deg(SI) ≤ T.

Proof. Recall for I ∈ Rr,t we defined DI = qi1 + · · · + qit = deg(MI) =
deg(SI). In particular we have T = DIr,t . However, since t ≤ q, it is easily seen
that DI ≤ DI′ if and only if I ≤ I ′ for the lexicographic order. To construct S, in
each orbit of Rr,t/(Z/rZ) we choose the representative I that is minimum for the
lexicographic order, so I ≤ Ir,t by Theorem B.9, and we conclude. �

(Note that for t > q, it can be that DI > DI′ although I < I ′. This happens
for instance, for t = 3, q = 2, I = (2, 2, 2), I ′ = (3, 0, 0). In such a case, instead
of choosing in each orbit the representative I minimum for the lexicographic order,
perhaps it is better to choose the one that gives the smallest DI .)

B.23. Example. For t = 2, Theorem B.9 specializes to the results of [43].
Here we have

S = {(0, 0), (1, 0), (2, 0), . . . , (br/2c, 0)}
and the SI for I ∈ S are the maps m0(x, y) = xy and mi(x, y) = xq

i

y + xyq
i

for 1 ≤ i ≤ br/2c. The maximum degree is qbr/2c + 1, reaching the bound in
Corollary B.22.

If r is odd, then
(Fqr)

r+1
2

can be seen as a Fq-vector space of dimension r(r+1)
2 . On the other hand, if r is

even, by abuse of notation we set

(Fqr)
r+1

2 = (Fqr)r/2 × Fqr/2

and again this can be seen as a Fq-vector space of dimension r(r+1)
2 ; note then that

mr/2 takes values in Fqr/2 . In any case, the map Ψ = (m0,m1, . . . ,mbr/2c) induces
an isomorphism

S2
Fq
Fqr ' (Fqr)

r+1
2

of Fq-vector spaces.

ON PRODUCTS AND POWERS OF LINEAR CODES 73

This can be viewed as a symmetric variant of the isomorphism

Fqr ⊗Fq
Fqr ' (Fqr)r

induced by the maps (x, y) 7→ xq
i

y for i ∈ Z/rZ, although the latter has the
additional property that it is in fact an isomorphism of Fq-algebras.

B.24. Example. For q = 2, r = 2, t = 3, we can take

S = {(0, 0, 0), (1, 0, 0)}

with associated maps m(x, y, z) = xyz and m′(x, y, z) = x2yz + xy2z + xyz2 on
(F4)3. Then (m,m′) induces an isomorphism

S3
F2
F4 ' (F4)2

of F2-vector spaces, of maximum degree 4.
For q = 2, r = 3, t = 3, we can take

S = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)}

with associated maps ψ1(x, y, z) = xyz, ψ2(x, y, z) = x2yz+xy2z+xyz2, ψ3(x, y, z) =
x2y2z+ x2yz2 + xy2z2, and ψ4(x, y, z) = x4y2z+ x4yz2 + x2y4z+ x2yz4 + xy4z2 +
xy2z4 on (F8)3. Note that ψ4 is invariant under Frobenius, so it takes values in F2,
and then (ψ1, ψ2, ψ3, ψ4) induces an isomorphism

S3
F2
F8 ' (F8)3 × F2

of F2-vector spaces, of maximum degree 7.

Appendix C: Review of open questions

Here is a subjective selection of (hopefully) interesting open problems related
to the topic of products of codes, some of which were already mentioned in the text.

C.1. — Study arithmetic in the +, ∗,⊆ -ordered semiring of linear codes of
length n over Fq (either for n fixed, or for n→∞).

One could devise an almost infinite number of questions, but perhaps the most
natural ones to start with concern the distribution of squares [43]:

• Among all linear codes of length n over Fq, how many of them are
squares?
• What is the maximum number of square roots a code can admit?
• If a code is not a square, what are the largest squares it contains? or the

smallest squares it is contained in?
This leads to some approximation problems. Consider the metric dist(C,C ′) =
dim(C + C ′)− dim(C ∩ C ′). Then:

• How far can a code be from the set of squares?

C.2. — These questions can also be made more algorithmic:
• Is there an efficient algorithm to decide if a code if a square?
• If so, is there an efficient algorithm to compute one of its square roots?

or to compute all of them?

C.3. — In 2.56 we pointed out three open problems concerning symmetries
and automorphisms of powers of codes:

74 HUGUES RANDRIAMBOLOLONA

• Compare the Aut(C〈t〉) as t varies, where Aut(C) ⊆ Aut(Fn) is the
group of monomial transformations preserving C; e.g. for all C and
t, does it hold Aut(C〈t〉) ⊆̂ Aut(C〈t+1〉)? (From 2.52 and 2.55 we know
Aut(C〈t〉) ⊆̂ Aut(C〈t

′〉) only for t|t′ or t′ ≥ r(C).)
• Instead of Aut(C), compare the Autin(C〈t〉) as t varies, where Autin(C)

is the group of invertible linear endomorphisms of C (seen as an abstract
vector space) that preserve the Hamming metric.
• Do the same thing for semilinear automorphisms.

C.4. — Study how change of field operations interact with product of codes.
Here is what is known:

extension of scalars obvious (2.23((iii)), 2.28)
concatenation partial results, highly dependent on the inner code (4.18)
trace code not yet understood

subfield subcode not yet understood

As noted in 5.18, results on products of subfield subcodes would be useful in the
analysis of the original McEliece cryptosystem. Since the trace code operation is
somehow dual to the subfield subcode operation, one could guess both to be equally
difficult to understand. With some abuse of language one can consider trace codes
as a very specific class of concatenated codes (with a noninjective symbol mapping).
This raises the question of whether some of the techniques introduced for the study
of products of concatenated codes (e.g. polynomial representation of Fq-multilinear
maps) could also be applied to trace codes.

C.5. — Improve the bounds on the possible joint parameters of a family of
codes and their product, or of a code and its powers, given in section 4. In particular:

• Beside the Singleton bound, try to generalize the other classical bounds
of coding theory in the context of products of codes.
• Fill the large gap between 4.10 and 4.21:

0.001872− 0.5294 δ ≤ α〈2〉2 (δ) ≤ 0.5− 0.5 δ.

• Is τ(2) > 2? That means, does there exist an asymptotically good family
of binary linear codes C whose cubes C〈3〉 also form an asymptotically
good family?
• Is τ(2) infinite? That means, for any t (arbitrarily large), does there

exist an asymptotically good family of binary linear codes C whose t-th
powers C〈t〉 also form an asymptotically good family?

C.6. — Does there exist an asymptotically good family of binary linear codes
C, whose squares C〈2〉, and also whose dual codes C⊥, form an asymptotically good
family?

(Motivation comes from the theory of multi-party computation, as mentioned
after 5.5.)

If instead of binary codes, one is interested in q-ary codes, then AG codes
are easily seen to provide a positive answer, at least for q large. When q becomes
smaller, AG codes still work, except perhaps for q = 2, 3, 4, 5, 7, 11, 13: this is shown
in [8], using a careful analysis of the 2-torsion in the class group of a certain tower
of curves.

ON PRODUCTS AND POWERS OF LINEAR CODES 75

However, for q = 2, curves simply do not have enough points, so there is no
hope that bare AG codes work in this case. Probably one should combine AG
codes with another tool. Note that concatenation as in [43] does not work, since it
destroys the dual distance.

C.7. — Our bound 4.19 on t-th powers of concatenated codes, for t ≤ q, relied
on Appendix B, in which we gave a polynomial description of the symmetric power
StFq

Fqr , using homogeneous t-multilinearized polynomials of controlled degree.
To extend this bound for t > q, it would be nice to have a similar result also

for the Frobenius symmetric power StFrob,Fq
Fqr , as defined in A.9. That means:

construct a universal family of Frobenius symmetric t-multilinearized polynomials,
of controlled degree.

Such a construction seems highly unlikely if one keeps the homogeneity con-
dition; so we might drop this condition, to allow more flexibility. Indeed, usually
this will not be a problem for applications. For instance, Proposition 4.18 can deal
with non-homogeneous polynomials, provided the external code C contains the all-1
word 1[n]. It is often so in practice, e.g. when C is an AG code.

C.8. — In 1.23 we defined ni = dim〈x ∈ C⊥ ; w(x) ≤ i〉⊥, and noted that n0

is the length of C, while n1 is its support length, and n2 its projective length. Is
there such a nice interpretation for the subsequent values ni, i ≥ 3? Or conversely,
is there another “natural” sequence of which n0, n1, n2 are the first terms?

References

[1] S. Ballet & R. Rolland. “On the bilinear complexity of the multiplication in finite fields.” In:
Y. Aubry & G. Lachaud, Eds. Arithmetic, Geometry and Coding Theory (AGCT 2003). Sém.
Congr. Vol. 11, Société Mathématique de France, 2005, pp. 179-188.

[2] R. Barbulescu, J. Detrey, N. Estibals & P. Zimmermann. “Finding optimal formulae for bilinear
maps.” Intern. Workshop on Arithmetics of Finite Fields (WAIFI 2012), Bochum, Germany,
July 16-19, 2012. Online version: http://hal.inria.fr/hal-00640165

[3] E. Barnes & N. Sloane. “New lattice packings of spheres.” Canad. J. Math. 35 (1983) 117-130.
[4] M. Ben-Or, S. Goldwasser & A. Wigderson. “Completeness theorems for non-cryptographic

fault-tolerant distributed computation.” Proc. 20th Ann. ACM Symp. on Theory of Computing
(STOC ’88), 1988, pp. 1-10.

[5] E. Berlekamp, R. McEliece & H. van Tilborg. “On the inherent intractability of certain coding
problems.” IEEE Trans. Inform. Theory 24 (1978) 203-207.

[6] R. Brockett & D. Dobkin. “On the optimal evaluation of a set of bilinear forms.” Proc. 5th
Ann. ACM Symp. on Theory of Computing (STOC ’73), 1973, pp. 88-95.

[7] N. Bshouty. “Multilinear complexity is equivalent to optimal tester size.” Electron. Colloq.
Comput. Complexity, Report No. TR13-011 (2013).

[8] I. Cascudo, R. Cramer & C. Xing. “The torsion-limit for algebraic function fields and its
application to arithmetic secret sharing.” In: P. Rogaway, Ed. Advances in cryptology —
CRYPTO 2011. Lecture Notes in Comp. Science Vol. 6841, Springer-Verlag, Berlin, 2011,
pp. 685-705.

[9] D. Chaum, C. Crépeau & I. Damgård. “Multiparty unconditionally secure protocols.” Proc.
20th Ann. ACM Symp. on Theory of Computing (STOC ’88), 1988, pp. 11-19.

[10] H. Chen & R. Cramer. “Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields.” In: C. Dwork, Ed. Advances in cryptology — CRYPTO 2006.
Lecture Notes in Comp. Science Vol. 4117, Springer-Verlag, Berlin, 2006, pp. 521-536.

[11] D. Chudnovsky & G. Chudnovsky. “Algebraic complexities and algebraic curves over finite
fields.” J. Complexity 4 (1988) 285-316.

[12] G. Cohen and A. Lempel, “Linear intersecting codes.” Discr. Math. 56 (1985) 35-43.
[13] P. Comon, G. Golub, L.-H. Lim & B. Mourrain. “Symmetric tensors and symmetric tensor

rank.” SIAM J. Matrix Anal. Appl. 30 (2008) 1254-1279.

76 HUGUES RANDRIAMBOLOLONA

[14] A. Couvreur, P. Gaborit, V. Gauthier, A. Otmani & J.-P. Tillich. “Distinguisher-based attacks
on public-key cryptosystems using Reed-Solomon codes.” Presented at WCC 2013, to appear
in Des. Codes Crypto. Preprint: http://arxiv.org/abs/1307.6458

[15] R. Cramer, I. Damgård & U. Maurer. “General secure multi-party computation from any
linear secret-sharing scheme.” In: B. Preneel, Ed. Advances in cryptology — EUROCRYPT
2000. Lecture Notes in Comp. Science Vol. 1807, Springer-Verlag, Berlin, 2000, pp. 316-334.

[16] C. Crépeau & J. Kilian. “Achieving oblivious transfer using weakened security assumptions.”
Proc. 29th IEEE Symp. on Found. of Computer Sci. (FOCS ’88), 1988, pp. 42-52.

[17] V. Drinfeld & S. Vladut. “Number of points of an algebraic curve.” Funct. Anal. 17 (1983)
53-54.

[18] I. Duursma & R. Pellikaan. “A symmetric Roos bound for linear codes.” J. Combin. Theory
Ser. A 113 (2006) 1677-1688.

[19] D. Eisenbud. The geometry of syzygies. A second course in commutative algebra and algebraic
geometry. Graduate Texts in Math. Vol. 229, Springer-Verlag, New York, 2005.

[20] D. Eisenbud & S. Popescu. “Gale duality and free resolutions of ideals of points.” Invent.
Math. 136 (1999) 419-449.

[21] G. Forney. “Coset codes I: Introduction and geometrical classification.” IEEE Trans. Inform.
Theory 34 (1988) 1123-1151.

[22] A. Garcia, H. Stichtenoth, A. Bassa & P. Beelen. “Towers of function fields over non-prime
finite fields.” To appear. Preprint: http://arxiv.org/abs/1202.5922

[23] A. Grothendieck & J. Dieudonné. “Éléments de géométrie algébrique. II. Étude globale élé-
mentaire de quelques classes de morphismes.” Inst. Hautes Études Sci. Publ. Math. 8 (1961).

[24] R. Hartshorne. Algebraic geometry. Graduate Texts in Math. Vol. 52, Springer-Verlag, New
York-Heidelberg, 1977.

[25] Y. Ihara. “Some remarks on the number of rational points of algebraic curves over finite
fields.” J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981) 721-724.

[26] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, A. Sahai & J. Wullschleger.
“Constant-rate oblivious transfer from noisy channels.” In: P. Rogaway, Ed. Advances in cryp-
tology — CRYPTO 2011. Lecture Notes in Comp. Science Vol. 6841, Springer-Verlag, Berlin,
2011, pp. 667-684.

[27] D. Jungnickel, A. Menezes & S. Vanstone “On the number of self-dual bases of GF (qm) over
GF (q).” Proc. AMS 109 (1990) 23-29.

[28] W. Kositwattanarerk & F. Oggier. “On construction D and related constructions of lattices
from linear codes.” Presented at WCC 2013, to appear in Des. Codes Crypto. Preprint: http:
//arxiv.org/abs/1308.6175

[29] R. Kötter. “A unified description of an error locating procedure for linear codes.” Proc. Int.
Workshop on Algebraic and Comb. Coding Theory, Voneshta Voda, Bulgaria, June 22-28,
1992.

[30] M. Laurent. “Hauteur de matrices d’interpolation.” In: Approximations diophantiennes et
nombres transcendants (Luminy, 1990), de Gruyter, Berlin, 1992, pp. 215-238.

[31] J. van Lint & R. Wilson. “On the minimum distance of cyclic codes.” IEEE Trans. Inform.
Theory 32 (1986) 23-40.

[32] R. McEliece. “A public-key system based on algebraic coding theory.” Deep Space Network
Progress Report 44 (1978) 114-116.

[33] F. J. McWilliams. Combinatorial properties of elementary abelian groups. Ph.D. dissertation,
Harvard University, Cambridge, Mass., 1962.

[34] D.-J. Mercier & R. Rolland. “Polynômes homogènes qui s’annulent sur l’espace projectif
Pm(Fq).” J. Pure Appl. Algebra 124 (1998) 227-240.

[35] D. Mirandola. Schur products of linear codes: a study of parameters. Master Thesis (under
the supervision of G. Zémor), Univ. Bordeaux 1 & Stellenbosch Univ., July 2012. Online
version: http://www.algant.eu/documents/theses/mirandola.pdf

[36] D. Mumford. Lectures on curves on an algebraic surface. Annals of Math. Studies Vol. 59,
Princeton University Press, Princeton, N.J., 1966.

[37] D. Mumford. “Varieties defined by quadratic equations.” In: Questions on Algebraic Varieties
(C.I.M.E., III Ciclo, Varenna, 1969), Ed. Cremonese, Rome, 1970, pp. 29-100.

[38] F. Oggier & G. Zémor. “Coding constructions for efficient oblivious transfer from noisy chan-
nels.” In preparation.

ON PRODUCTS AND POWERS OF LINEAR CODES 77

[39] R. Pellikaan. “On decoding by error location and dependent sets of error positions.” Discrete
Math. 106/107 (1992) 369-381.

[40] R. Pellikaan. “On the existence of error-correcting pairs.” J. Statist. Plann. Inference 51
(1996) 229-242.

[41] H. Randriambololona. “Hauteurs des sous-schémas de dimension nulle de l’espace projectif.”
Ann. Inst. Fourier (Grenoble) 53 (2003) 2155-2224.

[42] H. Randriambololona. “Bilinear complexity of algebras and the Chudnovsky-Chudnovsky in-
terpolation method.” J. Complexity 28 (2012) 489-517.

[43] H. Randriambololona. “Asymptotically good binary linear codes with asymptotically good
self-intersection spans.” IEEE Trans. Inform. Theory 59 (2013) 3038-3045.

[44] H. Randriambololona. “An upper bound of Singleton type for componentwise products of
linear codes.” To appear in IEEE Trans. Inform. Theory.

[45] H. Randriambololona, “(2, 1)-separating systems beyond the probabilistic bound.” To appear
in Israel J. Math.

[46] C. Roos. “A new lower bound for the minimum distance of a cyclic code.” IEEE Trans. Inform.
Theory 29 (1983) 330-332.

[47] G. Schmidt, V. Sidorenko & M. Bossert. “Syndrome decoding of Reed-Solomon codes beyond
half the minimum distance based on shift-register synthesis.” IEEE Trans. Inform. Theory 56
(2010) 5245-5252.

[48] G. Seroussi & A. Lempel. “Factorization of symmetric matrices and trace-orthogonal bases
in finite fields.” SIAM J. Comput. 9 (1980) 758-767.

[49] G. Seroussi & A. Lempel. “On symmetric algorithms for bilinear forms over finite fields.” J.
Algorithms 5 (1984) 327-344.

[50] J.-P. Serre. Corps locaux. Actualités Sci. Indust. No. 1296, Hermann, Paris, 1968.
[51] J.-P. Serre. “Nombres de points des courbes algébriques sur Fq .” Sém. théorie des nombres

Bordeaux 12 (1982/1983).
[52] I. Shparlinski, M. Tsfasman & S. Vladut. “Curves with many points and multiplication in

finite fields.” In: H. Stichtenoth & M. Tsfasman, Eds. Coding theory and algebraic geometry
(Luminy, 1991). Lecture Notes in Math. Vol. 1518, Springer-Verlag, Berlin, 1992, pp. 145-169.

[53] S. Singh. “Analysis of each integer as sum of two cubes in a finite integral domain.” Indian J.
Pure Appl. Math. 6 (1975) 29-35.

[54] D. Slepian. “Some further theory of group codes.” Bell Syst. Tech. J. 39 (1960) 1219-1252.
[55] A. Sørensen. “Projective Reed-Muller codes.” IEEE Trans. Inform. Theory 37 (1991) 1567-

1576.
[56] H. Stichtenoth. Algebraic function fields and codes. Graduate Texts in Math. Vol. 254,

Springer-Verlag, Berlin, 2009.
[57] M. Tsfasman & S. Vladut. Algebraic-geometric codes. Math. and its Appl. (Soviet Series)

Vol. 58, Kluwer Acad. Publishers Group, Dordrecht, 1991.
[58] M. Tsfasman & S. Vladut. “Geometric approach to higher weights.” IEEE Trans. Inform.

Theory 41 (1995) 1564-1588.
[59] V. Wei. “Generalized Hamming weights for linear codes.” IEEE Trans. Inform. Theory 37

(1991) 1412-1418.
[60] C. Wieschebrink. “Cryptanalysis of the Niederreiter public key scheme based on GRS sub-

codes.” In: N. Sendrier, Ed. Post-quantum cryptography. Lecture Notes in Comp. Science
Vol. 6061, Springer-Verlag, Berlin, 2010, pp. 61-72.

