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The aim of this paper is to present three finiteness or finite-generation
theorems:

e Hermite’s theorem about number fields with given degree and ramifi-
cation

e the Mordell-Weil theorem, concerning the group of rational points on
abelian varieties

e Siegel’s theorem about integral points on curves of non-zero genus.

Our presentation follows mainly the one given in [2].

1 Hermite’s theorem

We begin with a weak form of Hermite’s finiteness theorem.

Proposition 1.1. There exists only finitely many number fields of given de-
gree and discriminant.

Proof. Let n and D be two integers, and K a number field of degree n and

discriminant D admitting r; real embeddings o1,...,0,, and 2rp complex
embeddings oy 41,y Or 41y Ori+1s---10r4r4, 50 that Ok can be viewed
as a lattice in R™ x C via (01,...,00,4ry)-

Suppose first 1 # 0. Then by Minkowski’s theorem there exists a con-
stant C (depending explicitely on n and D) such that there exists a« € Ok
with

1) loi(a)[ < C; oo(a)| <1/2,..., |or 4 ()| < 1/2.

Then by the product formula one also has |o1(a)| > 1, so |o1(a)| # |T(a)]
and hence 01 (a) # 7(a) for any embedding 7 # o1. This implies K = Q(«).



Now the (integral) coefficients of the minimal polynomial of such an « can
be bounded in terms of n and C, so they can take only finitely many values.
This in turn implies the finiteness result announced.

The case 1 = 0 can be treated in the same way by considering a € Ok
verifying |Reoi(a)] < 1/2, |[Imoi(a)| < C, and |oj(a)| < 1/2 for j > 2
(remark that Im o () is then non-zero, so that o1(a) # o1(a)). O

Proposition 1.2 (Hensel). Let A be a Dedekind ring, K its quotient field,
L a finite extension of K, B the integral closure of A in L, B a non-zero
prime ideal of B, and vy the associated discrete valuation. Let p = PN Ok
and e = vg(p) the corresponding ramification index. Suppose furthermore
that the residual extension is separable. Then the exponent of P in the dif-
ferent D i can be bounded as follows:

(2) vp(Dr k) < e—1+vgp(e).

Proof. We recall the proof from [1]. Without loss of generality one can
suppose A and B complete local rings. After replacing K by its maximal
unramified extension in L, one can also suppose L totally ramified over K, so
[L : K] = e. In this situation there exists 7 € B that satisfies an Eisenstein
equation f(w) = 0, with

e
(3) f(X):Zalea a'ezla Qe—1,---,00 €P, Qo ¢p2,
1=0

and such that B = A[r]. This last assertion implies that the different is
generated by f'(m) = > 5_;ia;m""'. Remark then that the e — 1 terms of
this sum all have distinct valuation, so that

(4)  vp®r/k) = 1i<n£ vp(ia;m ) < vp(eaem® ™) = e — 1+ vyg(e)

i<e

since a, = 1. [l

Theorem 1.3 (Hermite’s theorem). Let K be a number field, n an in-
teger and S a finite set of places of K. Then K admits only finitely many
extensions of degree n unramified out of S.

Proof. If L is such an extension, proposition 1.2 gives a bound for the dif-
ferent D,/ at each element of S, and as the absolute discriminant of L can
be expressed in terms of this different and of the absolute discriminant of K,
the finiteness result follows from proposition 1.1. O



2 The Mordell-Weil theorem

Theorem 2.1 (Chevalley-Weil). Let K be a number field, X and Y two
smooth projective varieties over K, and h : X — Y an étale morphism.
Then there exists a finite extension L of K such that Y (K) is contained in
h(X(L)).

Proof. Using the openness of the étale locus and the projectivity hypothesis,
one gets a finite set S of places of K, projective models X and ) of X and
Y over Og, and an étale morphism § : X — ) that extends h. Then if
3 C 9 is the Zariski closure of @ € Y (K), and if P is the generic point of
an irreducible component of the fiber product h=1(E) = & xg X, the field
K (P) is an extension of K of degree less than the degree of h unramified out
of S. By Hermite’s theorem there exists only finitely many such extensions,
so they are all contained in their compositum. This compositum is the L we
were looking for. O

Remarks.

1. One in fact has proved the stronger result: A~ }(Y(K)) C X(L).

2. For non algebraic-geometry oriented readers, the preceding construc-
tion can be made a little more concrete by considering equations over
K defining Y as a subvariety of some PV, and X as a subvariety of
some PM over Y, the last ones with non-vanishing jacobian determi-
nant. Then the set S of places to throw away are those occuring in the
denominators of these equations and jacobian.

Proposition 2.2 (Weak Mordell-Weil theorem). Let K be a number
field, A an abelian variety over K. Then for any integer m > 1, the group
A(K)/m.A(K) is finite.

Proof. Applying the Chevalley-Weil theorem with X =Y = A and h the
multiplication-by-m map, one gets a finite extension L of K such that
m.A(L) contains A(K). Without loss of generality one can suppose that

L is Galois over K with group G. By construction the group of Galois
invariants of m.A(L) is then the whole of A(K):

(5) (m.A(L))¢ = A(K).

This and the long exact sequence in cohomology associated to the short exact
sequence of G-modules

(6) 0— A, — AL) 5 m.A(L) — 0



gives an injection of A(K)/m.A(K) into the finite set H'(G, Ap). This
proves the proposition. [l

Remark. The preceding cohomological argument can be made a little more
explicit as follows. Without loss of generality one can suppose that A(K)
contains A,,. For any @ € A(K), choose an m-th root P of Q) in A(L). Then
for any o € G, the difference P? — P lies in A, and does not depend on the
choice of P. The map ¢ — P? — P is then a group homomorphism from
G to A, and one easily checks that the map sending @ to this homomor-
phism gives a group homomorphism from A(K) to Hom(G, A,,) with kernel
m.A(K), so that A(K)/m.A(K) embeds in the finite group Hom(G, 4,,).

From now on we will suppose known the basic properties of the Néron-
Tate height 71~associated to a symmetric ample line bundle on A4, in particular
the fact that h comes from a positive definite symmetric bilinear form on the
(for the moment possibly infinite dimensional) real vector space A(K) ®zR.

Theorem 2.3 (Mordell-Weil). Let K be a number field, A an abelian va-
riety over K, and T' = A(K) its group of rational points. Then T is finitely
generated.

Proof. Choose any symmetric ample line bundle on A, and define a norm
|.| on T ®z R by the formula |P|? = h(P), where h is the corresponding
Néron-Tate height. For any real ¢, put

(7) Iy={pPel | |P[<t},

which is a finite set by Northcott’s theorem. Choose Py, ..., P, € I repre-
sentatives of I'/2I" (which is finite by the weak Mordell-Weil theorem) and
put

(8) C:ma'x{|P1|a---a|Pn|a1}'

We claim that I is generated by the finite set I'o¢. As I' is the union of the
I'kc for k € N, all we have to prove is that the subgroup < I'y¢ > generated
by I'sc contains all the I'yc. This is obviously true for £ = 2. Now we
proceed by induction, supposing that < I'sc: > contains I'x_1)¢, and taking
P €T'yc, where k > 3. Now there is a unique P; having the same class as P
in I'/2T, so that there exists @ € T" with P = 2Q) + P;. One then has
k+1

(9) Q| = —IP Rl < (IPI +HIA) < —5—C < (k-1)C.

Thus Q € T _1)c C<T2¢ >, and P =2Q + P; €< Tyc > +l'c =< Tyc >,
which proves the claim. O



Remark. In fact, a careful analysis of the proof would lead to the fact that
one even has I' =< 'y > with Cy = max{|Py|,...,|Py|}

3 Siegel’s Theorem

To begin with, we quote the following geometric reformulation of Roth’s
approximation theorem:

Theorem 3.1. Let V' be a smooth projective variety over a number field K,
and h a height function associated to an ample line bundle £ on V. Fiz an
embedding o : K — C, choose a Riemannian metric on V,(C), and denote
by d, the corresponding distance. Then there exists 6 > 0 such that for any
a € V(K) and for any C > 0, there exists only finitely many w € V(K) with

(10) dy (o, w) < Ce W),

Remark that the particular case V = P! (or more generally V = PV)
with £ = O(1) gives precisely the usual version of Roth’s theorem, where
any ¢ > 2 is then convenient. The general case follows by using some power
of £ to embed V in some PV.

In the following theorem, we show that if V' = A is an abelian variety, ¢
can be taken arbitrarily small.

Theorem 3.2. Let A be an abelian variety over a number field K, and h a
height function associated to an ample line bundle L on A. Fiz an embedding
o : K — C, choose a Riemannian metric on A,(C), and denote by d, the
corresponding distance. Then for any € > 0, for any a € A(K) and for any
C > 0, there exists only finitely many w € A(K) with

(11) dy(a,w) < Ce M),

Proof. One can suppose that £ is symmetric, that h is the associated Néron-
Tate height, and that the metric is invariant by translation. Let § > 0 be the
constant given by the preceeding theorem, and choose an integer m such that
em? > 6. Proceeding by contradiction, suppose there is an infinite sequence
(wn)nen of distinct elements of T' = A(K) satisfying (11). By Northcott’s
theorem the h(wp) tend to infinity, so that the w, converge to a (for the
complex topology on A,(C)).

By the weak Mordell-Weil theorem, there are infinitely many wy, having
the same class modulo mI', and after a translation one can assume this
class is zero. Thus after extracting a subsequence one can suppose there



exists w!, in T such that w, = mw!, for all n. Extracting a subsequence
again one can suppose the w/, converge to some o/ in A,(C). One then has

a = ma, so that o lies in fact in A(K). Now, since for all big enough n,

do (!, w}) = Ldg(a,wy) and h(w),) = zh(wy), one finds

C

d I 1 —eh(wn) c
(12) U(a 7‘”n) U(a7 wn) s —€ =

/ C /
6—sm2h(wn) < _e—Jh(wn)’
m m

which contradicts theorem 3.1. O

Now we explain how this theorem of Diophantine approximation on
abelian varieties can be used to get finiteness results for integral points on
curves.

Theorem 3.3 (Siegel). Let K be a number field, C a smooth projective
curve over K of genus g > 1, and z : C — PL a rational function on
C of degree D > 1. Then there exists only finitely many P € C(K) with
z(P) € Ok.

Proof. Suppose by contradiction that there is an infinite sequence Py, Ps, ...
of distinct elements of C(K) with z; = 2(P;) € Ok for all 4. This last
condition implies that the height of z; can be expressed as

(13) h(z) = ) log|r(z),

T:K—C
and then for each 4 there is a 7 with log|7(z)| > mh(zz) Thus after
extracting a subsequence, one can suppose there is an embedding ¢ : K < C
such that for all i,

1

(14) log |o(z)| > mh(zl)

By compactness, after extracting again, one can suppose the P; converge to
some P in C,(C). Remark that Northcott’s theorem implies that the terms
in (14) tend to infinity, so that P is a pole of z, and hence lies in C'(K). Let
e be the order of this pole.

Now choose an embedding of C in its Jacobian J, £ a symmetric ample
line bundle on J with associated Néron-Tate height h,, and d, a distance
on J,(C), as in theorem 3.2. Then one has

(15) log |o(24)| = —elogd, (P, P) + O(1)



and for any € > 0,

(16) h(z) > ( _ ) he(P) +0Q1).

deg L
Combining this with (14) one finds k > 0 such that
(17) —logds(P;, P) 2 kh(F)
for all 4 > 0, which contradicts theorem 3.2. O

Remark. In theorems 3.1 and 3.2 we restricted our attention to an archi-
medean place. However, analogous results still hold in a non-archimedean
setting. Thus Siegel’s finiteness theorem generalizes to points with coordi-
nates in Og for any finite set of places S.
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