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1 Introduction

1.1 Context, motivation, objectives, and contributions

In recent years, first-order optimization methods have gathered special attention due to
their applicability in a large-scale setting. The sheer amount of data can be exploited only
if the used algorithms are capable of efficient processing. One of the ways to certificate
a method’s performance is by establishing the number of iterations necessary to solve a
given optimization problem up to some required accuracy. This leads to lower and upper
complexity bounds which indicate the best and the worst performance for a given class
of problems. Our work is set in the context of affinely constrained convex optimization
problems:

minimize
x∈X

f(x) under constaints Mx = b.

An equivalent formulation including the convex linear composite term is

minimize
x∈X

f(x) + Ib(Mx),

where Ib is the indicator function of the singleton {b}, and f is a smooth, convex function.
Another characteristic of the considered problem class is the assumption that the gradient
of Lagrangian ∇L(z) posses a property called metric subregularity, which describes the
behavior of the points z around the solution set.

Problems of this type are a prototype of important problems in the field of Machine
Learning, such as regularized empirical risk minimization, Support vector machine, and
Machine Learning portfolio problems. The presence of the composite in the formulation
indicates a specific, coupled structure which demands the use of the splitting methods,
such as the primal-dual splitting algorithms.

First objectives consisted in the study of the primal-dual splitting methods proposed by
Vu and Condat, as well as covered the application of the recent convergence analysis
technique to establish a global linear convergence in the Chapter 3, in the Theorem
4.

Further objectives consisted of grasping the understating on the property of metric sub-
regularity, and constructing specific problems whose constant of metric subregularity is
known by an analytical formula. Then, we aimed to deliberately construct our difficult
affine constaints in a way that algorithms take a long time to solve. Having proposed
such problem, we developed a lower bound proof determining the lower bound complexity.
The research question associated with these tasks is:

For any first-order algorithm, what is the best possible performance on solving
affinely constrained smooth convex optimization problems whose gradient of La-
grangian is metrically subregular?
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1 Introduction

Related primary contribution: In the Chapter 4, the Theorem 6 established a bound of
the linear rate: ∥∥x∗ − x(k)∥∥ ≥ O

((
κ

κ+
√
µκ+ 1

)k)
.

Having obtained both the lower and upper bound, we evaluated these bounds together
with the practical results of numerical experiments. In the Chapter 5, the Figure 1.1
compared the results and affirmed the presence of the gap.

Figure 1.1: The comparison between the practical results and the theoretical bounds.

The organization of the report is as follows. In the remaining Section 1.2 of the introduc-
tion we include necessary preliminaries on convergence rates, oracle complexity, convex
analysis, and operator theory. In the chapter 2 we introduce the notion of metric subreg-
ularity, formulate our optimization problem class in detail, and perform a small literature
review. In the Chapter 3, we focus on the upper bound convergence and a primal-dual
algorithm. A new complexity lower bound is proposed in Chapter 4. Finally, simple
numerical experiments were performed in the Chapter 5.

1.2 Preliminaries

Denote X the real Euclidean space of dimension n and Y the real Euclidean space of
dimension m. Both X and Y have the dot product 〈·, ·〉 and the associated norm ‖·‖. As
X is a bijection to Euclidean vector space Rn and Y is a bijection to Rm (in both cases
taking the zero vector as the origin and the standard basis), we will use Rn and X (as
well as Rm and Y) interchangeably.
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1 Introduction

The identity matrix is denoted as I. A symmetric matrix A ∈ Rn×n is a Positive Semi
Definite (PSD) matrix if and only if for all x ∈ Rn, xᵀAx ≥ 0. For the strict inequality,
the matrix is positive definite (PD) for any non-zero vector x ∈ Rn.

Typically, the iteration complexity bounds for the first-order methods are non-asymptotic
because these types of methods often terminate without high precision solution, some-
times before we can see the asymptotic behavior of the algorithm at its tail (after many
iterations). Still, asymptotic convergence gives important information on the overall
speed of the algorithm (sublinear, linear), and is used to describe methods’ convergence
rates. The non-asymptotic convergence is described in the Section 1.2.1. Here, we define 2
types of asymptotic convergence of a sequence: Q-convergence and R-convergence.

Definition 1 (Quotient convergence rate). A sequence {xk}k∈N converges Q-linearly to
x̄ with rate r if there exists r ∈]0, 1[ such that the quotient between two successive errors
verifies

‖xk+1 − x̄‖
‖xk − x̄‖

= r (1.1)

For r = 1, the Q-convergence is sublinear. Even a single pair of slow successive terms
suffices to break the rate of the whole otherwise fast sequence. A generalization of Q-
convergence that alleviates this drawback is the R-convergence:

Definition 2 (Root convergence rate). A sequence {xk}k∈N converges R-linearly to x̄ if
there exists a sequence (σk)k∈N converging to 0 Q-linearly and ‖xk − x̄‖ ≤ σk holds for
all k ∈ N (overall decrease of errors).

1.2.1 Information-based complexity

The black-box model is a basis for the information-based complexity theory that is used
extensively in large-scale convex optimization. In such problems, a large number of
dimensions n prohibits the use of methods that require costly iterations. A method
that converges in a single iteration is useless if the large n renders the iteration insanely
expensive. For instance, the standard Interior Point methods are typically unusable in
the big data context as their arithmetic complexity is at least O(n2). In such a large-
scale setting, we rather use the first order methods. While less accurate, these methods
are dimensions-free, which amounts to a low iteration cost that doesn’t explode in high
dimensions.

For the first order methods, iterations are relatively cheap and we are primarily concerned
with the number of iterations, rather than an arithmetic complexity of an iteration. In
other words, we are focused on the amount of information about a problem that an
algorithm needs in order to solve it.

An oracle is a proxy between the problem and a method. At each iteration k, an algorithm
queries the oracle O with an iterate x(k) and gets information about the problem, which
the method uses to form better x(k+1). With oracle, we can quantify the efficiency of
iterative algorithms in terms of the number of iterations it requires (information transfer).
As a result, we can bound these quantities, as well as compare the performances of
different algorithms on various classes of problems.
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1 Introduction

Depending on the type of an oracle, it returns different types of information. The oracle
of p order returns f(x(k)) and the derivatives up to the p-th order (or subderivatives).
For the first order methods, we use the first order oracle which outputs f(xk) and ∇f(xk)
for a differentiable f . Another type of information commonly included in oracle is the
proximity operator, especially for non-smooth problems.

The information-based complexity theory can only work if the algorithm doesn’t bypass
the oracle. No prior knowledge about the structure of the problem is asserted by the
following assumption:

Assumption 1 (Black-box). In the black-box setting, the explicit form of the objective
function f and the functional constraints are assumed unknown. The only way an algo-
rithm can gain quantitative information about the problem is through the calls to the
oracle.

We consider the algorithms in the context of some problem class consisting of a family of
many specific problems that share some characteristics. An algorithm A is an iterative
process that performs sequential calls to the oracle and accumulate information: at the
i-th step, a method sends a search point xi to the oracle which returns information at
that point: e.g. O(xi) = (f(xi),∇f(xi)) for a first-order oracle and differentiable f . The
informational set is updated with the data from the step. Then, a new search point
is generated according to the method’s search rule that depends on all the previous
information, i.e. a call to the oracle is formed by a recurrence:

xi = A(O(x1), . . . ,O(xi−1)) (1.2)

The process repeats until some termination criterion T is satisfied, e.g. the just-formed
point x is an ε approximate solution to the problem, i.e. |f(x̂)− f (x∗)| ≤ ε or ‖x̂− x∗‖ ≤
ε holds for an ε > 0, and A terminates by outputting it.

We want this method to find the solution in a least number of iterations possible. The
following definitions summarize all the described aspects in a mathematical way.

Definition 3 (Information based complexity). The complexity CA(ε, f) is the number of
oracle calls performed by an algorithm A that are necessary to solve a specific problem
with objective f up to accuracy ε:

CA(ε, f) = min {k = 1, 2, 3, . . . | f(xk)− f(x∗) ≤ ε} (1.3)

Rather than complexity for a particular problem CA(ε, f), we look at the performance of
a method on the whole problem class CA(ε):

Definition 4 (Oracle complexity for A on F). The complexity CA,F(ε) of A on the whole
problem class with family of target functions F is the worst case number of oracle calls
made by A on f ∈ F :

CA,F(ε) = max
f∈F
{CA(ε, f)} (1.4)

That is, CA,F(ε) is the least integer for which CA(ε, f) ≤ CA,F(ε) for all f ∈ F . Hence,
the oracle complexity gives the efficiency of an algorithm on a problem class, which is
decided by method’s performance on the worst problem in the whole problem class.

We can also have an information-based complexity of a class of problems F , without the
context of a given class of algorithms A:
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1 Introduction

Definition 5 (Oracle complexity of F). The complexity CF(ε) of a problem class with
target functions F is determined by the lower bound on the complexities for all black-
box algorithms A, i.e. by the minimal complexity obtained while using the best possible
(optimal) method:

CF(ε) = min
A
{CA,F(ε)} (1.5)

= min
A

max
f∈F
{CA(ε, f)} (1.6)

= min
A

max
f∈F

min
k∈Z+
{k = 1, 2, 3, . . . | f(x̄)− f(x∗) ≤ ε} . (1.7)

The complexity of a class amounts to the minimal number of iterations needed by the
optimal method on the worst function (particular problem) in a problem class.

Definition 6 (Optimal algorithm A for a problem class F). An algorithm A is optimal
for some problem class F ifA’s complexity CA,F(ε) matches the complexity of the problem
class CF(ε), i.e. at worst the algorithm has the minimal complexity for which all problems
in the class are ε-solved. Put differently, the upper complexity bound of an algorithm
equals with the lower complexity bound of a problem class.

Definition 7 (Lower complexity bound). A lower complexity bound k of a problem class
with objective family F is obtained when

∀A ∈ A, ∃f ∈ F such that CA(ε, f) ≥ k

i.e. find the most difficult function f which all algorithms fail to solve with less information
than after k oracle calls.

Oracle complexity gives the required number of iterations, which depends on the desired
accuracy ε (the distance to the optimum). Instead of giving k in terms of ε, we can give
the accuracy ε of an algorithm after k oracle calls. Both formulations are equivalent and
we can freely find one from the other. In the later formulation, it follows that instead of
the worst case number of iterations needed to attain some accuracy ε, we talk about the
worst case residual (maximal error) obtained by the algorithm on the problem class after
k oracle calls.

Note that the information-based complexity is non-asymptotic concept, but also talk
about the obtained results in terms of the asymptotic convergence. For instance, a lower
bound with exponent amounts to the linear convergence rate.

1.2.2 Convex Analysis

The convex analysis version of the indicator function will be needed.

Definition 8 (Indicator function). Indicator function IA : X → {0,+∞} of the set A is
given by

IA(x) =

{
0 if x ∈ A
+∞ else.

(1.8)

If the set A in the Definition 8 is a singleton, we simplify the notation and write IA as
x ∈ {a} ⇐⇒ x = a. In particular, we can write the indicator function of the set {0} as
I0(x) = 0 if x = 0 and I0(x) = +∞ when x 6= 0 instead of I{0}(x) = 0 if x ∈ {0} and +∞
when x 6∈ {0}.
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1 Introduction

Definition 9 (L-Lipschitz continuous gradient). A differentiable function f : X ⊆ Rn →
R has L-Lipschitz continuous gradient ∇f on X with Lipschitz constant L > 0 if for all
x, y ∈ X we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ (1.9)

⇐⇒ |f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2 (Descent Lemma). (1.10)

Differentiable functions whose gradient is L-Lipschitz continuous are also called L-smooth.

Definition 10 (Convex set). A set C ⊆ Rn is convex if for any x, y ∈ C and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ C.

Example 1. Let b ∈ Rn. The singleton C = {b} is a convex set because for any pair
x, y ∈ C, x = y = b and θx+ (1− θ)y = b ∈ C for θ ∈ [0, 1].

Other examples include ∅, Rn, Euclidean balls, lines, hyperplanes, and halfspaces.

Definition 11 (Convex function). A function f : X ⊆ Rn → R is convex if its domain
X is a convex set and for all x, y ∈ X and θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (1.11)

Moreover, if f is differentiable, then we have

(1.11) ⇐⇒ f(y) ≥ f(x) + 〈∇f(x), y − x〉 (1.12)

⇐⇒ ∇2f(x) � 0. (1.13)

By Γ0(X ) we denote the set of all closed proper l.s.c convex functions on X → (−∞,+∞].

Example 2. The indicator function IA is a convex function. To see that, apply the
Definition 1.11 of convexity with a, b ∈ X and consider 4 possible combinations of the
memberships of a, b in A.

Definition 12 (µ-strongly convex function). A function f : X ⊆ Rn → R is µ-strongly
convex if X is a convex set and there exists a constant µ > 0 such that for any x, y ∈ X
and θ ∈ [0, 1] it holds that:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− µ

2
θ(1− θ)‖x− y‖2. (1.14)

Moreover, if f is differentiable, then we have

(1.14) ⇐⇒ f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖2 (1.15)

⇐⇒ ∇2f(x) � µIn. (1.16)
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1 Introduction

Example 3 (Function µ
2
‖x‖2 is strongly convex).

f(θx+ (1− θ)y)− θ(f(x)− (1− θ)f(y)

= µθ2||x||2 + 2µθ(1− θ)〈x, y〉+ µ(1− θ)2||y||2 − µθ||x||2 − µ(1− θ)||y||2

= µθ(θ − 1)||x||2 + µ(1− θ)(1− θ − 1)||y||2 + 2µθ(1− θ)〈x, y〉
= −µθ(1− θ)||x||2 + 2µθ(1− θ)〈x, y〉 − µθ(1− θ)||y||2

= −µθ(1− θ)(||x||2 − 2〈x, y〉+ ||y||2)
= −µθ(1− θ)||x− y||2

≤ −µ
2
θ(1− θ)||x− y||2

. (1.17)

Proposition 1. A function f : X → (−∞,+∞] is µ-strongly convex with some µ > 0 if
and only if f − µ

2
‖·‖2 is convex.

Proposition 2. A sum of an µ-strongly convex function and a convex function is a
strongly convex function. To see that, add the inequalities of a strongly convex g(x) and
non-strongly convex h(x) and equate them to the strongly convex f(x).

Definition 13 (Subdifferential). Let f : X → [−∞,+∞]. The subdifferential ∂f : X →
2X is the set of the subgradients g of f at some x ∈ dom(f):

∂f(x) = {g ∈ X | f(y) ≥ f(x) + 〈g, (y − x)〉 ,∀y ∈ dom(f) ⊆ X} .

Example 4. Subdifferential of the indicator function at {0} maps to the whole space G
if x = 0 or to the empty set otherwise:

∂I0(x) =

{
G if x = 0

∅ else.
(1.18)

This can be seen as ∂I0(x) = {g | I0(y) ≥ I0(x) + 〈g, (y − x)〉 , y ∈ {0}} = {g | 〈g, x〉 ≥ I0(x)},
which for x = 0 gives {g | 〈g, 0〉 ≥ 0} = G and for x 6= 0 is {g | 〈g, x〉 ≥ +∞} = ∅.

Definition 14 (Fenchel conjugate). Conjugate f ∗ of a function f : X ⊆ Rn → R is a
convex function defined as:

f ∗(y) = sup
x∈X
{〈y, x〉 − f(x)} = − inf

x∈X
{f(x)− 〈y, x〉} .

Remark. Definition 14 amounts to Legendre transform if f is convex and univariate,
neither of which is necessary to take a Fenchel conjugate of f . Since Fenchel conjugate
is a generalization of Legendre transform, conjugate f ∗ is also called Legendre-Fenchel
transformation.

Following the work of Moreau [Moreau 1962], an important operator was defined:

Definition 15 (Proximity operator). We define the proximity operator of f ∈ Γ0(X ) for
every x ∈ X as

proxf (x) = argmin
y∈X

f(y) +
1

2
‖y − x‖2. (1.19)
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The optimization problem whose solution is defined as proximity operator is always
unique provided that f is proper and convex. We say that some function is proximable if
its proximal operator can be easily computed, ideally with a closed-form solution.

Example 5 (Prox of the indicator function). The proximal of an indicator function
IC : X → {0,+∞} is:

proxIC (x) = argmin
y∈X

Ib(y) +
1

2
‖y − x‖2 = argmin

y∈C
‖y − x‖2 (1.20)

Hence, the proximal operator reduces to Euclidean projection onto C. Indeed, proximal
operators can thus be interpreted as generalized projections [Parikh and Boyd 2014]. In
the case when C is a singleton, e.g. C = {b}, then there is no calculation to be made:
argminy∈{b}‖y − x‖

2 has single possible vector b to be the proximal of Ib hence proxIb = b.

1.2.3 Operator theory

Operator theory serves well to generalize convex analysis into set-valued analysis. A set-
valued operator A on X is denoted as A : X → 2X . It’s essentially a multivalued function
with codomain identical to its domain. An operator A maps a point x ∈ X to a selection
of points in the same space Ax ⊆ X , which we call the image of x ∈ X by an operator
A, i.e. Ax = {y ∈ X |y ∈ Ax}. When the cardinality of this subset of X is at most 1, (Ax
is either an empty set or a singleton), we get a special case of a single-valued operator
X → X .

Graph of an operator is the subset of X ×X that identifies (characterizes) the operator:
graA = {(x, y) ∈ X × X : y ∈ Ax}. The domain and image (range) of an operator are
defined as dom(A) = {x ∈ X : Ax 6=} and im(A) =

⋃
x∈X Ax, respectively.

Example 6 (The graph of the operator ∂I0). The subdifferential ∂I0 is a set-valued
operator which maps to either whole space G or an empty set ∅ (Example 4). Its graph
can be written:

gra(∂I0) = {(x, y) : y ∈ ∂I0(x)}
= {(x, ∅), (0, y) : x ∈ G \ {0} and y ∈ G}

The inverse of an operator A is the operator A−1 which verifies A−1y = {x ∈ X | y ∈ Ax},
i.e. whose graph is required to be

gra(A−1) = {(x, y) ∈ X × X : (y, x) ∈ gra(A)}
= {(x, y) ∈ X × X : x ∈ Ay} .

Example 7 (The inverse of the operator ∂I0).

gra(∂I−10 ) = {(x, y) : (y, x) ∈ gra(∂I0)}
= {(∅, x), (y, 0) : x ∈ G \ {0} and y ∈ G}
= {(y, 0) : y ∈ G}

In other words, the operator ∂I−10 is a null (multi)function that collapses any element
from G to 0.

10
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Another characteristic of an operator is its set of zeros: zer(A) = {x ∈ dom(A) : 0 ∈ Ax} =
{x ∈ dom(A) : (x, 0) ∈ gra(A)} = A−1({0}). The sum A+B of A and B is the operator
(A + B)(x) = {y + z : y ∈ Ax, z ∈ Bx} when x ∈ dom(A) ∪ dom(B), and ∅ elsewhere.
Finally, the composition AB of operators A and B is the operator AB whose graph is
required to be:

gra(AB) = {(x, z) ∈ X × X : ∃y ∈ X , y ∈ Bx, z ∈ Ay}
= {(x, z) ∈ X × X : ∃(x, y) ∈ gra(B), (y, z) ∈ gra(A)}

.

Definition 16 (Monotone Operator). An operator A is monotone if for any pair of points
x, y from the domain of A, and for all points u ∈ Ax and v ∈ Ay, it holds that

〈x− y, u− v〉 ≥ 0 (1.21)

Definition 17 (Maximal monotone operator). A monotone operator A is maximal there
is no operator B such that gra(A) ⊂ gra(B), i.e. if its graph is a maximal element in the
graph inclusion ordering.

Definition 18 (Resolvent of an operator A).

JA = (I + A)−1 (1.22)

The resolvent can be viewed as a generalization of prox for monotone operators. An
operator R is non-expansive if its Lipschitz constant L = 1. For L < 1, R is a contrac-
tion.

Definition 19 (Averaged operator). Operator A is α-averaged if there exists a non-
expansive operator R such that T = αR + (1− α)I

An averaged operator is firmly non-expansive if its 1
2
-averaged. Given α > 0, a single-

valued operator A is α -cocoercive if αA is firmly-nonexpansive.

Lemma 1 (Composition of averaged operators). [Ogura and Yamada 2002, Theorem 3]
Let α1 ∈]0, 1[, α2 ∈]0, 1], T1 ∈ A (α1) and T2 ∈ A (α2). Then T1 ◦ T2 ∈ A (α′), where

α′ :=
α1 + α2 − 2α1α2

1− α1α2

(1.23)

Definition 20 (Parallel sum). Let A and B be operators X → 2X . The parallel sum of
A and B is

A � B =
(
A−1 +B−1

)−1
. (1.24)

There is a connection between the proximity operator and the resolvent of a subdifferen-
tial:

Proposition 3. Let Jλ∂f be the resolvent of the subdifferential operator ∂f for some
λ > 0, i.e. Jλ∂f = (Id + λ∂f)−1. Then,

proxλf = Jλ∂f

11



1 Introduction

Theorem 1 (Baillon–Haddad). Let f : Rn → (−∞,+∞] be a differentiable convex
function. Then, ∇f is L-Lipschitz continuous (L∇f is nonexpansive) if and only if ∇f
is L−1-cocoercive (L−1∇f is firmly non-expansive):

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ⇐⇒ 〈∇f(x)−∇f(y), x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2

∀x, y ∈ domf
(1.25)

Remark. In particular case of L = 1, a gradient map is nonexpansive if and only if it’s
firmly nonxpansive.

12



2 Problem formulation and related
work

In this chapter, we begin with the presentation of metric subregularity. This property has
entered the realm of research in optimization only recently, hence we choose to establish
this notion first. Then, we fully describe the considered class of optimization problems.
Lastly, we will conduct the literature review on first-order optimization algorithms and
lower complexity bounds.

2.1 Metric subregularity

The concept of metric regularity has its roots in the work of Hoffman on the estimation of
the distance to the set of solutions in a system of linear inequalities [Hoffman 1952]. This
idea was generalized into the regularity at a point [Ioffe 1979], which is analogous to the
metric subregularity [Dontchev and Rockafellar 2009, Section 3H]. The basic idea is that
if a map is subregular at some point x̄, then we could estimate the distance between points
x nearby x̄ and the solution set by other distances that can be calculated more easily.
We will provide more details, but first let us introduce the definition of the property of
metric subregularity:

Definition 21 (Metric subregularity). A set-valued operator F : X → 2X is metrically
sub-regular at x̄ for ȳ with (x̄, ȳ) ∈ graF if there exists metric subregularity constant
κ ≥ 0 with a neighborhood N (x̄) such that

dist(x, F−1ȳ) ≤ κ dist(ȳ, Fx) ∀x ∈ N (x̄). (2.1)

The case of κ = +∞ translates to the lack of metric subregularity.

The mapping F is set-valued, which makes the metric subregularity a bit complex to
visualize. Note that F−1ȳ is a set (many points x may map to ȳ), and for each point x
in the given neighborhood N (x̄), we have some set Fx. Hence, quantities d(x, F−1ȳ) and
d(ȳ, Fx) are the distances between a point and a set according to

d(a,A) = inf {‖x− a‖ : a ∈ A} .

Metric subregularity asserts an existence of a finite constant κ such that the ”error dis-
tance” d(x, F−1ȳ) can be bounded (estimated) by the means of a distance d(ȳ, Fx). This
assertion is equivalent to the ruling out of the critically different behavior of F at points
around x̄ for ȳ. It must stay subregular, and the more subregular it is, the smaller the
constant κ and better the error bound.

In our work, a concrete case of the Definition 21 of metric subregularity will be uniquely
considered: We suppose a single-valued operator F : X → X , which means that Fx is at
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most a singleton set for any x and we can write ‖ȳ − Fx‖ instead of d(ȳ−Fx). Moreover,
we consider metric subregularity at x∗ for 0:

d(x− F−1(0)) ≤ κ‖Fx‖ ∀x ∈ N (x∗).

Furthermore, assuming that the solution set F−1(0) contains an unique solution x∗, we
get a highly useful estimate of the distance from the solution:

‖x− x∗‖ ≤ κ‖Fx‖ ∀x ∈ N (x∗) ∀x ∈ N (x∗).

As noted in our Problem 1, we associate metric subregularity to the gradient of La-
grangian, hence the operator is F = ∇L. At last, the form of metric subregularity that
will be of our prime interest is

‖x− x∗‖ ≤ κ‖∇L(x)‖, (2.2)

which essentially amounts to the error bounds property [Kruger 2015], [Drusvyatskiy and
Lewis 2018].

In general, the constant of metric subregularity can be called in more descriptive fashion
as the modulus of subregularity of F at x for y and denoted subreg(F ;x | y). In our
case, we will only talk about metric subregularity for ∇L at x∗ for 0, hence we just use
κ.

Checking if a particular problem is metrically subregular is a difficult task in general.
Fortunately, for affinely constrained problems we know already that the problem is met-
rically subregular [Hoffman 1952]. Even more so, in this case the metric subregularity is
global, i.e. N (x∗) = Rn.

Another 2 examples of metrically subregular problems are:

• Global metric subregularity holds when f + g and h∗ in Problem 2 are strongly
convex [Latafat, N. Freris, and Patrinos 2017, Lemma IV.2]

• Local metric subregularity holds when f, g, h in Problem 2 are piecewise linear
quadratic (PLQ) functions [Latafat, N. Freris, and Patrinos 2017, Lemma IV.4]

Some works has been done towards establishing the conditions sufficient for metric sub-
regularity [Bai, Ye, and J. Zhang 2019], but this remains an open problem.

2.2 Problem formulation

2.2.1 Problem class

We are interested in the class of affinely constrained convex minimization problems. That
is, minimization of a convex function f(x) under constraints that Mx = b. We write these
constraints into the objective function and state our optimization problem:

Problem 1 (Affinely constrained convex optimization under metric subregularity). Let
f : X → (−∞,+∞] be a proper, lower semicontinuous, convex function that is differ-
entiable on X and whose gradient ∇f is L-Lipschitz continuous for some L > 0. Let
b ∈ Y and let M : X → Y be a linear operator. Let Ib ∈ Γ0(Y) be the indicator function
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at {b}. Moreover, require that the gradient of the problem’s Lagrangian ∇L is metrically
subregular with some finite positive constant κ. The problem is given by:

min
x∈X

f(x) + Ib(Mx) (2.3)

We look for a point x which verifies m equality constrains Mx− b = 0 and minimizes f .
Note that the i-th constraint is given by Mi:x− bi = 0, where Mi: ∈ R1×n is the i-th row
in the matrix M ∈ Rm×n and bi is the i-th component of the vector b. We assume that
the solution x∗ ∈ Rn exists.

We will relate our Problem 1 to a generic template problem of minimizing the sum of
three convex terms: a smooth function, a proximable function, and the composite of a
proximable function with a linear operator:

Problem 2 (Convex optimization involving Lipschitzian, proximable and linear compos-
ite terms). Let f : X → (−∞,+∞] be convex function that is differentiable on X and
whose gradient is L-Lipschitz continuous for some L > 0. Let g : X → (−∞,+∞] and
h : Y → (−∞,+∞] be convex, non-differentiable, proximable functions. Let M : X → Y
be a linear operator. The problem is given by:

min
x∈X

f(x) + g(x) + h(Mx)

We make a brief comparison between our Problem 1 and the Problem 2:

• The general smooth term f is present in both formulations. The non-smooth,
proximable term g is absent in our problem. In both problems we have a linear
operator M .

• Our problem has the non-differentiable, convex, proximable term h, but we set h =
Ib and never consider other forms of h. Our h = Ib is indeed convex (Example 2) and
its proximity operator is indeed simple as proxIb = b (closed-form representation,
see Example 5).

• We acknowledge the presence of the convex linear composite term h ◦ M in our
problem. The composition Ib ◦M couples the primal and dual problems. This is
crucial characteristic which points us towards the use of primal-dual algorithms

• Our requirement of metrically subregular ∇L is absent in the general Problem
2. The exclusion of instances without metric subregularity (problems for which
the constant of metric subregularity is ∞) narrows down the class of considered
problems.

Note that f could be a sum of terms, as long as they are all convex, differentiable
and their gradients are L-Lipschitz continuous. For instance, a valid particular problem
would be affinely constrained convex minimization of a sum of smooth f with a smooth
regularizer ‖x‖22. Hence, despite omitting the non-smooth term g, we could still have
regularization.

The Problem 1 requires only convexity of f , strong convexity isn’t required. Strong
convexity is a generalization of convexity. In the context of unconstrained minimization,
strong convexity has a major impact on the complexity of the problem, enabling linear
rates instead of sublinear. The affine constraints complicate the problem and strong
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convexity is no longer guarantee of linear rate. Still, we emphasize that strongly convex
structure of f isn’t required, but permitted in the framework of our model and it will be
relevant to this work.

There are weaker conditions than strong convexity, but stronger than convexity. An
example of such in-between structure is the error bound property which allows linear
convergence in the unconstrained optimization. A generalization of the bound property
is metric subregularity. In our Problem 1 we require that the gradient of Lagrangian ∇L
is metrically subregular. We wish to use the metric subregular structure as prime feature
to obtain linear convergence in affinely constrained convex optimization.

2.2.2 Primal, dual, and minimax formulations

Our primal optimization problem corresponds directly to the Problem 1:

min
x ∈ X

f(x) + Ib(Mx) (2.4)

and we have the primal function

P(x) = f(x) + Ib(Mx). (2.5)

The Lagrangian function L : X × Y → [−∞,+∞] associated with the primal problem
can be found by noting that the vector of equality constraints is g(x) = Mx − b = 0.
Then

L(x, y) = f(x) + 〈y,Mx− b〉 , (2.6)

where x ∈ X is the primal variable and y ∈ Y is the dual variable (Lagrange multiplier
vector). The (Lagrange) dual function D(y) is:

D(y) = inf
x∈X
L(x, y) = inf

x∈X
{f(x) + 〈y,Mx− b〉} = −〈b, y〉 − f ∗(−Mᵀy),

where f ∗(y) denotes the Fenchel conjugate of f (Definition 14). Briefly, the dual function
is

D(y) = −f ∗(−Mᵀy)− 〈b, y〉 . (2.7)

The corresponding dual optimization problem is:

max
y ∈ Y
−f ∗(−Mᵀy)− 〈b, y〉 . (2.8)

Remark. The functions (2.5), (2.6), and (2.7) could be alternatively obtained by setting
g = Ib in the classic Fenchel-Rockafellar duality framework [Bauschke and Combettes
2011, Definition 15.19].

The minimax problem corresponding to the Problem 2 is

min
x ∈ X

max
y ∈ Y

f(x) + g(x)− h∗(y) + 〈Mx, y〉 .

Here, the minimax problem corresponding to our primal and dual is

min
x ∈ X

max
y ∈ Y

f(x)− I∗b(y) + 〈Mx, y〉 .
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That is,
min
x ∈ X

max
y ∈ Y

f(x)− 〈b, y〉+ 〈Mx, y〉 (2.9)

as the Fenchel conjugate of the indicator function h = Ib is a linear function h∗(y) = I∗b =
〈b, y〉. We define the minimax function

M(x, y) = f(x)− 〈b, y〉+ 〈Mx, y〉. (2.10)

In the primal problem (2.4), there is an Ib(Mx) term, which is non-differentiable. In the
minimax formulation, this linear composition term is no longer present. Advantageously,
all the terms in the minimax problem are differentiable.

The primal function P(x) is convex because f was assumed convex in the Problem 1.
The dual function D(y) is concave. Hence, the minimax function M(x, y) is convex-
concave.

2.2.3 Monotone inclusions formulation

To find the primal solution of (2.4) and the dual solution of (2.8) (or jointly, solution
to (2.9)), we can search for saddle points (x∗, y∗) of the Lagrangian because upon strong
duality such x∗ is the primal solution and y∗ is the dual solution.

We search for the saddle points of the Lagrangian. By the optimality condition, the
saddle point of L(x, y) is found by setting the gradient of the Lagrangian to zero. First,
with respect to the primal variable:

∇xL(x, y) = 0

∇xf(x) +∇x 〈y,Mx− b〉 = 0

∇xf(x) +∇x 〈Mx, y〉 = 0

∇xf(x) +M∗y = 0

Where M∗ is the adjoint of M , i.e. Mᵀ. Second, with respect to the dual variable:

∇yL(x, y) = 0

∇y 〈y,Mx− b〉 = 0

Mx− b = 0.

Hence, looking for (x, y) such that ∇xL(x, y) = 0 and ∇yL(x, y) = 0 amounts to solv-
ing:

∇xf(x) +M∗y = 0

Mx− b = 0
.

We will rewrite these formulation as an inclusion problem.

For the first line, we decomposed ∇xL(x, y) into 2 terms ∇f and Mᵀy . Since f is
differentiable, the subdifferential ∂f(x) is a singleton, i.e. for any x in the Euclidean
space X , the set-mapping given by the subdifferential ∂f(x) has a single element: ∂f(x) =
{∇f(x)}. We can claim that

∇f(x) +M∗y = 0 is equivalent to the inclusion 0 ∈ ∂f(x) +M∗y
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because ∂f(x) +M∗y = {u+M∗y | u ∈ ∂f(x)} = {∇f(x) +M∗y} as ∂f(x) = {∇f(x)}.
Hence, ∇f(x) +M∗y = 0 ⇐⇒ 0 ∈ ∂f(x) +M∗y.

For the second line, we state Mx − b = 0 ⇐⇒ 0 ∈ Mx − {b}. Remark that ∂I∗b(y) =
{b}.

Therefore, the corresponds inclusion problem becomes

find (x∗, y∗) ∈ X × Y such that

(
0
0

)
∈
(
∂f(x∗) +M∗y∗

Mx∗ − {b}

)
(2.11)

A pair (x∗, y∗) that satisfies the inclusion problem (2.11) is the saddle point of the La-
grangian, x∗ is a primal solution, y∗ is a dual solution, and strong duality holds. Hence,
a method that resolves the inclusion (2.11) amounts to solving the original Problem 1. A
major benefit of the inclusion formulation (2.11) is that the composition h ◦M has been
split.

2.3 Primal-dual splitting optimization algorithms

For the review on the first-order convex optimization algorithms in unconstrained and
set-constrained setting good sources are [Bubeck 2015] and [Nesterov 2018]. Here, we
will only review the relevant class of splitting methods, with the focus on the primal-
dual splitting methods. An interesting relevant paper is [Necoara, Nesterov, and Glineur
2019], where linear convergence of first order methods in the non-strongly convex case is
discussed.

A large-scale convex optimization problems can often be solved efficiently using full split-
ting methods, i.e. the terms in the problem are splitted into subproblems and the involved
operators are used separately. The approach with operators is especially desirable for
non-smooth optimization.

Splitting methods are iterative methods that evaluate the operators available in the
problem separately. Some examples of these methods are: Forward–Backward split-
ting method (FBS) [Combettes and Wajs 2005] which generalizes the proximal gradient
algorithm, Douglas–Rachford splitting method (DRS) [Eckstein and Bertsekas 1992]: Al-
ternating Direction method of Multipliers (ADMM) [Boyd, Parikh, and Chu 2011].

For our Problem 1 an algorithm has three operators available: gradient operator, prox-
imable operator, and linear operator. As mentioned earlier, f this class has a linear
composite term Ib ◦M which couples primal variable x ∈ X with the dual variable y ∈ Y .
This is an obstacle in achieving full splitting because the composite Ib ◦M couples the
operators. This coupling would complicate the workings of the algorithm by introducing
implicit inefficient operations like the inverse of a linear operator. Indeed, some optimiza-
tion tasks can’t be immediately solved with the efficient splitting approach.

Oftentimes, splitting can be attained by exploiting the dual structure of the problem.
Primal-dual methods achieve full splitting and concurrently solve the primal problem
and dual problem [Komodakis and J. Pesquet 2015], thus providing the dual solution in
addition to the primal solution. Fortunately, in our case we can use the dual formulation
and primal-dual splitting methods to uncouple Ib and M . Therefore, full splitting is
achievable and we can potentially leverage all the three operators individually.
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Important examples of methods from the class of primal-dual algorithms are: the foun-
dational primal-dual hybrid gradient algorithm (PDHG) [Chambolle and Pock 2011b],
Condat [Condat 2013], and Vu [Vu 2013].

Vu’s method will be described in detail in the Chapter 3. Condat’s method is actually a
very similar algorithm to Vu’s one. Both researchers proposed the methods independently,
while using similar approach and the same proof strategy. Condat’s article is slightly more
practical: the considered problem belongs to the class like the Problem 2, while Vu took
a wider class of problems and took a more abstract approach with more heavy use of
operators. We will be mostly working with Vu’s method, but both methods are similar
enough, that are sometimes being called Condat-Vu (perhaps even Vu-Condat).

Lastly, there exist a body of work on stochastic derivatives of these algorithms. A no-
table few recent examples are: Stochastic PDHG [Chambolle, Ehrhardt, et al. 2018;
Alacaoglu, Fercoq, and Cevher 2019], PURE-CD [Alacaoglu, Fercoq, and Cevher 2020],
TriPD [Latafat, N. M. Freris, and Patrinos 2019].

2.4 Lower complexity bounds literature

In the Chapter 4 we will propose a new lower bound. Here, we review the iteration
lower complexity bounds established in the literature. All of these results are placed
in the framework of the black-box optimization with an oracle, which was described in
the Section 1.2.1. The concept of the lower bound from the Definition 7 is especially
important.

2.4.1 Unconstrained optimization problems

In the simplest case of convex optimization without constraints, the classical results
indicate a sublinear lower complexity bound in the non-strongly convex, smooth case,
and linear in the case of strongly convex, smooth optimization problems.

The most common proofs of lower bounds are based on constructing the function which
is difficult in terms of the information transfer. For instance, to show the lower bound
in the smooth, strongly convex case, one chooses a smooth, strongly convex function
which reveals very little information for each oracle call. This way, the obtained number
of iterations required to minimize this function constitutes a lower bound of number of
iterations that will be needed to solve any other (easier) function in this class. Further-
more, once we determined the lower bound, it can serve as a benchmark for algorithms.
If a given method attains the ε-solution in the same order of iterations as lower bound
indicates, it guarantees that no other method can perform better for any function in the
considered class of problems (i.e. this method is optimal).

An example of an information-difficult smooth strongly-convex function is:

f(x) =
1

2
(x1 − 1)2 +

1

2

n−1∑
i=1

(xi+1 − xi)2 +
µ

2

n∑
i=1

x2i (2.12)

where µ > 0. We can check any algorithm’s performance on it. Note that this function
is a quadratic which we can solve directly in a straightforward way. The difficulty of
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(2.12) doesn’t imply that it’s difficult to solve analytically, but that it’s difficult for an
iterative, first-order black-box algorithm that verify the Assumption 2. Typically in the
lower bound proofs [Nesterov 2018], we also impose the linear span assumption:

Assumption 2. For all k = 1, . . . , n, the point x(k) generated by an algorithm A is a
linear combination of x(0),∇f

(
x(0)
)
,∇f

(
x(1)
)
, . . . ,∇f

(
x(k−1)

)
, i.e.

x(k) ∈ x(0) + span
{
∇f

(
x(`)
)}

∀` ∈ [0, k).

This assumption narrows down the class of first-order algorithms in which the bounds
hold. However, most algorithms do verify this assumption. The lower bound analysis
could be performed without the linear span assumption altogether, by using techniques
such as ones in [Nemirovsky 1992], but we won’t follow this direction.

The gradient of the particular function (2.12) is (A + µI)x− e1, where A (Hessian of f)
turns out to be a specific matrix with a tridiagonal structure:

A =



2 −1 0 · · · · · · · · · 0
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0
...

...
...

...
...

...
...

0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 1


(2.13)

This brings us to the bottom of the informational difficulty of f . Whenever an oracle
provides information O(x(k)), the gradient ∇f(x(k)) furnished by an oracle has at most
3 non-null components. Given that most of the coordinates are null, the vector ∇f(x(k))
won’t contribute towards finding the corresponding components in the next iterate x(k+1),
thus slowing down the convergence to the solution x∗.

We will now show an important Lemma regarding the iterates produced by any method
satisfying the Assumption 2 during the optimization of f (2.12).

Lemma 2. Let x(0) = 0 ∈ Rn. Any k-th iterate x(k) produced by an algorithm A satisfying
the Assumption 2 has at most k non-null components, i.e. for all k ∈ [0, n] and for each

i > k, x
(k)
i = 0.

Proof. We proceed with mathematical induction. The base case for k = 0 holds auto-
matically by the initialization x(0) = 0. All the components are null hence the statement
that the 0-th iterate has at most 0 non-null elements is true.

In the induction step we will take some k < n and assume that each `-th iterate with
` ∈ [0, k] has only null components after `-th element, i.e. ∀` ≤ k, ∀i > `, x

(`)
i = 0. This

assumption is Lemma’s statement for the chosen k. Now, we need to show that this
implies that the statement holds for k + 1. If the chosen k = 0:

∇f(x(0)) = Ax(0) + µx(0) − e1 = −e1 =⇒ ∀i > 1,∇f(x(0))i = 0 (2.14)

Which implies that ∀i > 1, x
(1)
i = 0 because x

(1)
i are linear combinations of uniquely null

elements
(
∇f

(
x(0)
))
i
. That is, given k = 0, k + 1 verifies Lemma’s statement.
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If the chosen k > 0, the tridiagonal matrix A results in

∇f(x(k)) = (A+ µI)x(k) − e1 =⇒ ∀i > k + 1,
(
∇f(x(k))

)
i

= 0 (2.15)

Which implies that for all i > k + 1, x
(k+1)
i = 0 because x

(k+1)
i are linear combinations

of null elements
(
∇f

(
x(k)
))
i
. Overall, (2.14) for k = 0 and (2.15) for k > 0 show that

the iterate x(k+1) has at most k + 1 non-null elements, which completes the proof by
induction.

Briefly, this Lemma ensures null x
(k)
i coordinates of the iterate x(k) for i > k. This has

major importance in the lower bound proofs based on the construction of the difficult
function. A similar technique will be used in the lower bound analysis conducted in the
Chapter 4. The theorems that establish state-of-art lower bounds for classical optimiza-
tion problems rely on the types of techniques describe above. We will now provide some
of the crucial lower bound results for the unconstrained optimization.

Theorem 2 (Lower complexity bounds for unconstrained convex smooth optimization).
For any k ∈

[
1, 1

2
(n− 1)

]
and any initial point x0 ∈ Rn, there exists a problem with a

convex, L-smooth objective function f for which any first-order method A satisfying the
Assumption 2 produces points x(k) with the objective lower bounded by O

(
1
k2

)
:

f
(
x(k)
)
− f ∗ ≥

3L
∥∥x(0) − x∗∥∥2
32(k + 1)2

and the (disappointing) bound on the minimizing iterates:∥∥x(k) − x∗∥∥ ≥ 1

8

∥∥x(0) − x∗∥∥
Proof in [Nesterov 2018, Section 2.1.2].

Theorem 3 (Lower complexity bounds for unconstrained smooth strongly convex opti-
mization). For any k ∈

[
1, 1

2
(n− 1)

]
, any initial point x0 ∈ Rn, and any constants µ > 0,

L
µ

= Qf > 1, there exists a problem with a µ-strongly convex, L-smooth objective function

f for which any first-order method A satisfying the Assumption 2 produces points x(k)

such that:

∥∥x(k) − x∗∥∥ ≥ (√Qf − 1√
Qf + 1

)k ∥∥x(0) − x∗∥∥ (2.16)

f
(
x(k)
)
− f (x∗) ≥ µ

2

(√
Qf − 1√
Qf + 1

)2k ∥∥x(0) − x∗∥∥2 (2.17)

Proof in [Nesterov 2018, Section 2.1.4].

The corresponding oracle complexities for the smooth problems are Ω(1/
√
ε) for the

convex case and Ω(
√
Q log(1/ε)) in the strongly convex case.

For the convex, non-smooth cases (only Lipschitzian f , without continuous gradient) the

lower bounds are sublinear: O
(

1√
k

)
in the non-strongly convex case and O

(
1
k

)
in the

strongly convex case [Bubeck 2015].
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Beyond the lower bound results described so far, we could talk about the lower bounds
for the constrained optimization problems. There are two types of constrained problems:
set constrained problems and problems with functional constraints. The set-constrained
problems, such as Euclidean ball constraint, are relatively easy compared to general
functional constraints. We focus on the particular type of functional constraints, namely
affine constraints, whose ”difficulty” lies in-between set-constraints and general functional
constraints.

2.4.2 Affinely constrained optimization problems

There aren’t many articles that analyze the lower bound for affinely constrained opti-
mization problems. In [Ouyang and Xu 2019], authors considered the deterministic lower
complexity bounds of first-order methods for convex-concave bilinear saddle-point prob-
lems. As a special instance, they cover lower bounds under linear span assumption for
affinely constrained problems. They state that the convergence rate O(1/t) is optimal
for affinely constrained convex problems. Moreover, they claim that O(1/t2) is the best
possible rate for the strongly convex problems under affine constraints. Accordingly, they
found out that the linear convergence of unconstrained strongly convex problems doesn’t
carry over into the strongly convex case with affine constraints. This confirms that the
case with affine constraints is indeed more complex. Still, in this paper no other prop-
erties were considered, and by no means it indicates that under metric subregularity the
linear rate is unattainable.

In [J. Zhang, Hong, and S. Zhang 2019], the minimax saddle point problem was con-
sidered. This class includes cases of affinely constrained smooth convex optimization
problems as ours. The deterministic lower iteration complexity bounds for µx-strongly
convex and µy-strongly concave saddle point problems found in [J. Zhang, Hong, and S.
Zhang 2019] is

Ω

(√
Lx
µx

+
L2
xy

µxµy
·+Ly

µy
ln

(
1

ε

))
, (2.18)

which amounts to the linear rate. Interestingly, strong convexity turned out to be insuf-
ficient for a linear bound in [Ouyang and Xu 2019] (affinely constrained problem), but
strong convexity with strong concavity of the minimax reformulation of the same problem
led to a linear bound for Zhang et al.

Xie et al. [Xie et al. 2020] analyzed the stochastic lower bounds for convex-convave min-
imax optimization problem as ours. They didn’t consider metric subregularity, but a lin-
ear iteration complexity Ω ((n+Q) log (1/ε)) was obtained for strongly-convex, strongly-
concave case. Hence, the deterministic linear lower bounds from Zhang et al. followed
into the stochastic case as long as the minimax optimization problem is strongly-convex,
strongly-concave.

In [Woodworth and Srebro 2016], authors used another method of the lower bound anal-
ysis that doesn’t utilize the tridiagonal matrix like in Nesterov, but leverages the concept
of the resisting oracle. They considered both deterministic and stochastic cases, as well as
performed the analysis using the prox operator in the oracle calls. Still, the problem con-
sidered there is a minimization of the sum of smooth or non-smooth terms. They didn’t
include the linear composition term and the dual variable isn’t incorporated. Hence, the
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considered class of composite objectives doesn’t include the case of affinely constrained
optimization.
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3 Linear upper bound of Vu’s
primal-dual splitting algorithm

In [Liang, Fadili, and Peyré 2016], authors developed a framework to analyze the con-
vergence of monotone operator splitting methods. They obtained results on global and
local convergence rates for the inexact Krasnoselskii-Mann iteration, which is the basis
to analyze numerous operator splitting methods casted as the Krasnoselskii-Mann fixed-
point iteration. For instance, primal-dual splitting methods can be analyzed in that way.
A crippled version of the framework will be presented in the Section 3.1. It will be used
in the Section 3.2 in the context of a primal-dual splitting method designed by Vu [Vu
2013]. We will show that Vu’s method attain an upper complexity bound for affinely
constrained convex optimization problems under metric subregularity.

3.1 Linear convergence under metric subregularity

We introduce a framework to analyze the convergence rates through a Krasnosel’skii-
Mann fixed point iteration. This section relies on the key paper for this work: Convergence
Rates with Inexact Non-expansive Operators [Liang, Fadili, and Peyré 2016]. One of the
main differences between our scenario and theirs is that we assume exact iterations, rather
than inexact ones. That is, there is no error of approximating Tzk and εk = 0. We justify
it by the fact that in our case we have exact quantities of all the operators, no estimations
are required.

Recall that X ,Y are the real Euclidean spaces with the dot product 〈·, ·〉 and the norm
‖·‖. Let Z be a product space X × Y , with the scalar product 〈(x1, y1), (x2, y2)〉 =
〈x1, x2〉 + 〈y1, y2〉. Denote elements from Z as z = (x, y), in particular an iterate at k is
zk = (xk, yk) ∈ Z and its norm is ||zk|| =

√
〈zk, zk〉 =

√
〈xk, xk〉+ 〈yk, yk〉.

As mentioned, the convergence rates of the splitting methods can be analyzed using the
Krasnoselskii-Mann iteration, denoted zk. We can cast numerous splitting methods as
the Krasnoselskii-Mann fixed-point iteration and investigate the rate of convergence at
which the Krasnoselskii-Mann iterates approach the fixed point. Then, this results can
be linked with the solution x∗ of the original interest (since zk = (xk, yk)).

The Krasnosnel’skii-Mann iteration [Krasnosel’skiı 1955], [Mann 1953] is a classic result
on the convergence of a non-expansive operator via averages to a fixed point, although
today we simply describe these operators as averaged operators.

Definition 22 (Krasnosnel’skii-Mann iteration). Let λk ∈]0, 1], and let T : X → X
be an λk-averaged operator Tλk = λkT + (1 − λk)I such that the set of fixed points
fixT = {z ∈ X : z = Tz} is non-empty. Then the (exact) Krasnosel’skii-Mann iteration
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3 Linear upper bound of Vu’s primal-dual splitting algorithm

of T is given by
zk+1 = zk + λk (Tzk − zk) = Tλkzk. (3.1)

Moreover, define the error of the iteration

ek = (I− T ) zk =
zk − zk+1

λk
(3.2)

and notions

T ′ = I− T (3.3)

τk = λk(1− λk). (3.4)

Note that ek = T ′zk.

The sequence zk converges to some fixed point z∗ of T . Based on averaged operator
T , one can analyze the convergence in terms of the global pointwise iteration-complexity
bound and the ergodic iteration-complexity bounds. For instance, global pointwise bound
for gradient descent has T ′ = ∇f and the optimal rate O(k−2) is obtained (ε-solution
in O(1/

√
ε) iterations). Then, the ergodic iteration bound is optimal O(1/k) ((1/ε)

iterations).

Oftentimes, splitting methods like DRS have sub-linear global convergence, but local
linear convergence [Demanet and X. Zhang 2016]. With an assumption that T ′ is metri-
cally subregular (according to the Definition 21), Krasnosel’skii-Mann iteration analysis
is useful to show this linear convergence within the neighborhood of subregularity. Our
primary concern is the class of affinely constraints problems, for which we know that
global metric subregularity holds. Hence, in our case we can automatically benefit the
global linear convergence.

Applying the Definition 21 of metric subregularity for the metrically subregular operator
T ′ (i.e. F there is T ′ here) at some z∗ ∈ fixT (zerT ′ = fixT ) for 0 amounts to

d(z, fixT ) ≤ κ ‖T ′z‖ , ∀z ∈ N (z̄) (3.5)

We will provide a particular version of the [Liang, Fadili, and Peyré 2016, Theorem 3
(Local convergence rate)]. Firstly, notice that they define a ball Ba(z∗) which is contained
in the neighborhood of metric subregularity N (z∗). Yet, here N = Z, hence any initial
point is metrically sub-regular at z∗ and no ball is necessary. As mentioned, we consider
the exact case and can drop the εk-related terms from the Theorem. Lastly, we assume
that fixT is a singleton, contrary to a general set in the original theorem.

Theorem 4. [Global linear convergence rate] Let z∗ ∈ fixT with singleton fixT . Assume
T ′ is globally metrically subregular at z∗ for 0 with the constant of metric subregularity
κ ∈ (0,+∞). Then, for any initial point z0 ∈ Z, for all k ∈ N we have

‖zk+1 − z∗‖2 ≤ ζk‖zk − z∗‖2, where ζk =

{
1− τk

κ2
, if τk

κ2
∈]0, 1]

κ2

κ2+τk
, otherwise

∈ [0, 1[. (3.6)

1. ‖zk − z∗‖ → 0 if the sequence (τk)k∈N isn’t a summable sequence in [0,+∞[.

2. limk→+∞‖zk − x∗‖−k < 1, which is R-linear convergence.
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3 Linear upper bound of Vu’s primal-dual splitting algorithm

3. If 0 < infk∈N λk ≤ supk∈N λk < 1, then there exists ζ ∈ (0, 1) such that

‖zk+1 − z∗‖2 ≤ ζk‖z0 − z∗‖2 (3.7)

Proof. Simplified version of the proof of the Theorem 3 in [Liang, Fadili, and Peyré
2016]

3.2 Applicability of Vu’s algorithm

Consider a general monotone inclusion problem:

Problem 3 ([Vu 2013]). Let m > 0, let each of H,G1, . . . ,Gm be a real Hilbert space, let
z ∈ H, bi ∈ Gi, and let (ωi)1≤i≤m ∈ (0, 1] such that

∑m
i=1 ωi = 1. Moreover, let

• A : H → 2H and Bi : Gi → 2Gi be maximally monotone,

• C : H → H be µ-cocoercive for µ ∈ (0,+∞),

• Di : Gi → 2Gi be maximally monotone and vi-strongly monotone for vi ∈ (0,+∞) ,

• Mi : H → Gi is a nonzero bounded linear operator

The primal inclusion problem is:

find x̄ ∈ H such that z ∈ Ax̄+
m∑
i=1

ωiM
∗
i ((Bi�Di) (Mix̄− bi)) + Cx̄ (3.8)

While the dual inclusion is:

find ȳ1 ∈ G1, . . . , ȳm ∈ Gm such that

(∃x ∈ H)

{
z −

∑m
i=1 ωiM

∗
i ȳi ∈ Ax+ Cx

(∀i ∈ {1, . . . ,m})ȳi ∈ (Bi�Di) (Mix− bi)
(3.9)

The primal-dual splitting method by Vu was designed to solve the inclusion Problem 3
involving cocoercive operators. This problem is very general and allows different struc-
tures such as the parallel sum �. In our case, the parallel sum won’t be used because it’s
only relevant to block-diagonal constraints.

In Section 5.3 of [Liang, Fadili, and Peyré 2016], the same Problem 3 was considered, only
with z = 0 and renamed operators: A to C, C to B, and Bi to Ai. The closest setting
to the problem 3 is found in [Combettes and J.-C. Pesquet 2012], where instead of the
cocoercive operator, C is a single-valued monotone Lipschitzian operator and also instead
of the maximally monotone and strongly monotone Di, monotone operator Di such that
D−1i is a single-valued Lipschitzian is considered. Both these problems are remarkably
general and cover numerous other, more specialized problems. Some of these particular
problems are listed in [Vu 2013; Combettes and J.-C. Pesquet 2012].
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3 Linear upper bound of Vu’s primal-dual splitting algorithm

Originally, Vu’s algorithms requires that we let τ, (σi)1≤i≤m > 0 such that

η = min
{
τ−1, σ−11 , . . . , σ−1m

}1−

√√√√τ

m∑
i=1

σiωi‖Mi‖2


β = min {µ, ν1, . . . , νm}
2ηβ > 1

λk ∈
]
0,

4ηβ − 1

2ηβ

]
∀k ∈ N.

(3.10)

Moreover, that one lets (ε1,k)k∈N and (ε2,k)k∈N be absolutely summable sequences in H,
and (ε3,i,k)k∈N and (ε4,i,k)k∈N be absolutely summable sequences in Gi for i ∈ {1, . . . ,m}.

Then, Vu’s primal-dual splitting routine generates sequences (xk)k∈N and (y1,k, . . . , ym,k)k∈N
according to below rules for any k ∈ N :

pk+1 = JτA (xk − τ (
∑m

i=1 ωiM
∗
i yi,k + Cxk + ε1,k − z)) + ε2,k

yk+1 = 2pk+1 − xk
xk+1 = xk + λk (pk+1 − xk)
for i = 1, . . . ,m[
qi,k+1 = JσiB−1

i

(
yi,k + σi

(
Miyk+1 −D−1i yi,k − ε3,i,k − ri

))
+ ε4,i,k

yi,k+1 = yi,k + λk (qi,k+1 − yi,k)

(3.11)

Recall that JA is a resolvent of the operator A (Definition 18).

3.2.1 The inclusion problem as a saddle point search

Vu’s primal-dual splitting algorithm can be applied to solve convex minimization under
affine constraints. To show that, we need to show that the monotone inclusion Problem
3 considered by Vu can be specialized into our inclusion problem (2.11), i.e. the later is
a particular case of the former.

Lemma 3. The general inclusion Problem 3 includes the affinely constrained convex
optimization Problem 1.

Proof. Recall the primal inclusions from the original Vu’s Problem 3:

find x̄ ∈ H such that z ∈ Ax̄+
m∑
i=1

ωiM
∗
i ((Bi�Di) (Mix̄− bi)) + Cx̄

and the dual inclusion

find ȳ1 ∈ G1, . . . , ȳm ∈ Gm such that

(∃x ∈ H)

{
z −

∑m
i=1 ωiM

∗
i ȳi ∈ Ax+ Cx

(∀i ∈ {1, . . . ,m})ȳi ∈ (Bi�Di) (Mix− bi)
(3.12)

We narrow down this inclusion class as follows. We set z = 0, m = 1 (subscript i
takes only 1 hence is dropped), and ω = 1. The operator A is eliminated by setting
A : x 7→ {0}.
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3 Linear upper bound of Vu’s primal-dual splitting algorithm

The operator C is chosen to be the subdifferential ∂f . Since f is smooth, ∂f(x) =
{∇f(x)}. The gradient ∇f is cocoercive by Baillon–Haddad Theorem 1, which implies
that ∂f is cocoercive too and we preserve the cocoercivity required for C.

Furthermore, let B = D = ∂I0, i.e. both B and D map to the whole space G at 0 and
to an empty set everywhere else (see Example 4). This choice entails that the parallel

sum B � D (Definition 20) becomes ∂I0 � ∂I0 =
(
∂I−10 + ∂I−10

)−1
, which amounts to ∂I0

because a sum of null operators (see Example 7 for ∂I−10 ) is still an operator which maps
any element to 0, and inverse ∂I−10 recovers ∂I0. Then, the primal and dual inclusions
become:

find x̄ ∈ H such that 0 ∈ ∂f(x̄) +M∗ (∂I0 (Mx̄− b))

find ȳ ∈ G such that (∃x ∈ H)

{
−M∗ȳ ∈ ∂f(x)
ȳ ∈ I0 (Mx− b)

The first inclusion requires −∂f(x̄) ∈M∗ (I0 (Mx̄− b)), but no element can be contained
in an empty set hence Mx̄ − b = 0. There must exists y ∈ ∂I0 (Mx̄− b) such that
−∂f(x̄) ∈M∗y has some solution x̄. We rewrite the primal inclusion accordingly:

find x̄ ∈ H such that (∃y ∈ G)

{
Mx̄− b = 0
0 ∈ ∂f(x̄) +M∗y

(3.13)

For the dual inclusion, the same reasoning leads to

find ȳ ∈ G such that (∃x ∈ H)

{
−M∗ȳ ∈ ∂f(x)
Mx− b = 0

(3.14)

Note the similarity of the primal and dual inclusion. More importantly, the similarity
with the inclusion formulation of the saddle search problem (2.11), which stated

find (x∗, y∗) ∈ X × Y such that

(
0
0

)
∈
(
∂f(x∗) +M∗y∗

Mx∗ − {b}

)
We conclude that if some (x̄, ȳ) is the solution to the Vu’s general inclusion Problem 3
then it’s a solution to the inclusion problem (2.11) corresponding to the affine constrained
convex minimization Problem 1.

3.2.2 Iterates and the fixed point operator

The Lemma 3 showed that the iterates produced by Vu’s algorithm can solve convex
optimization problems under affine constraints. Towards that goal, we modify the original
constants (3.10) and iterations (3.11). We follow the same simplifications as before, thus
we set z = 0, m = 1 (subscript i dropped), ω = 1, A : x 7→ {0}, B = D = ∂I0, and
C = ∇f . Therefore, Vu’s algorithm requires that we let τ, σ > 0 such that

η = min
{
τ−1, σ−1

}(
1−

√
τσ‖M‖2

)
β = min {µ, ν}

2ηβ > 1

λk ∈
]
0,

4ηβ − 1

2ηβ

]
∀k ∈ N.

(3.15)

28



3 Linear upper bound of Vu’s primal-dual splitting algorithm

Moreover, we have the error-free case with all the sequences (ε1,k, ε2,k, ε3,k, ε4,k)k∈N = 0
because we need not approximate anything. Then, the simplified Vu’s routine generates
primal and dual sequences (xk)k∈N, (vk)k∈N according to rules below for any k ∈ N :

pk+1 = xk − τ (M∗yk +∇f(xk))
yk+1 = 2pk+1 − xk
xk+1 = xk + λk (pk+1 − xk)
qk+1 = yk + σ (Myk+1 − b)
yk+1 = yk + λk (qk+1 − yk)

(3.16)

Remark. The resolvents disappeared from the algorithm because both JτA and Jσ∂I−1
0

amount to J{0} = (I + {0})−1 = I−1 = I.

Following Vu’s paper, supplementary operators need to be derived. Firstly, let K = H⊕G
be the Hilbert direct sum endowed with the scalar product 〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉+
〈y1, y2〉 and define operators on K for the original version of the algorithm:

C : K → 2K, (x, y) 7→ (Ax)×
(
b1 +B−11 y1

)
× · · · × (bm +B−1m ym)

D : K → K, (x, y) 7→ (
∑

i ωiM
∗
i yi,−M1x, · · · ,−Mmx)

E : K → K, (x,y) 7→
(
Cx,D−11 y1, · · · , D−1m ym

)
F : K → K, (x,y) 7→

(
1
τ
x−

∑
i ωiM

∗
i yi,

1
σ1
y1 −M1x, · · · , 1

σm
ym −Mmx

)
,

while in our simplified case we obtain

C :K → 2K, (x, y) 7→ {0} × b (3.17)

D :K → K, (x, y) 7→ (M∗y,−Mx) (3.18)

E :K → K, (x, y) 7→ (∇f(x), 0) (3.19)

F :K → K, (x, y) 7→ (τ−1x−M∗y, σ−1y −Mx). (3.20)

Using matrix notation, operator D can be rewritten as Dz and operator E as Ez
with

F =

[
τ−1I −M∗

−M σ−1I

]
D =

[
0 M∗

−M 0

]
E =

[
∇f 0
0 0

]
(3.21)

Where 0 was used instead of {0}. Operator F is self-adjoint, operator D is maximally
monotone and operator E is L−1-cocoercive (recall that ∇f is L-Lipschitz continuous
and the Baillon–Haddad Theorem 1). Then, casting as Krasnoselskii-Mann iteration
yields

zk+1 =
(
I + F−1D

)−1 (
I− F−1E

)
zk (3.22)

That is,
zk+1 = zk + λk

(
JF−1(C+D)

(
zk − F−1Ezk

)
− zk

)
(3.23)

And the fixed point operator T is averaged with 2ηβ
4ηβ−1 constant by the Lemma 1:

T = JF−1(C+D) ◦ (Id− F−1E) ∈ ηβ

ηβ −
(3.24)

Therefore, (3.23) is a special instance of the Krasnosels’kii-Mann iteration from the Def-
inition 22. We successfully casted the iterates into a Krasnoselskii-Mann iteration, thus
Vu’s algorithm can by applied to solve Problem 1. Moreover, the Theorem 4 guaran-
tees the linear convergence because T ′ = I − T is metrically subregular given T from
(3.24).
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4 Lower bound analysis

In this section we estabilish the lower bound for affinely constrained convex problems
under metric subregularity. The primary tasks accomplished in this analysis consist of a
formulation of the minimax problem with difficult affine constraints Mx = b, bounding
the eigenvalues of the matrix MᵀM in the Lemma 4, establishing the constant of metric
subregularity of∇L in the Lemma 5, finding the explicit solution in Lemma 6, and finding
the linear lower bound in the Theorem 6.

4.1 Problem with difficult constraints Mx = b

For the lower bound analysis, we will consider an instance of the minimax problem (2.9)
with f(x) = µ

2
‖x‖22, that is:

min
x ∈ X

max
y ∈ Y

µ

2
‖x‖2 + 〈Mx− b, y〉. (4.1)

The corresponding primal formulation is:

min
x∈X

µ

2
‖x‖2 + Ib(Mx) (4.2)

Which corresponds to the minimization of µ
2
‖x‖2 under constraints Mx = b, where the

affine constraints are expressed by the linear composite term Ib(Mx).

The dual problem is
min
y ∈ Y
‖ −Mᵀy‖2∗ + 〈b, y〉 ,

where ‖ · ‖∗ is the dual norm of the euclidean norm ‖ · ‖ employed in the primal prob-
lem.

The f(x) = µ
2
‖x‖22 part of the problem is µ-strongly convex for µ > 0 (see Example 3).

Moreover, Ib is convex (Example 2) so (4.2) is strongly convex (sum of a convex term
and strongly convex term is a strongly convex function Proposition 2). Thus, for µ > 0,
the minmax problem (4.1) is strongly convex, non-strongly concave. Still, we keep the
ability to set µ = 0, in which case the f term disappears and the minmax problem is
non-strongly convex non-strongly concave.

The affine constraints Mx = b are ought to be made deliberately difficult by imposing a
specific matrix M . Crucially, we need M which makes the optimization problem difficult
and suitable for the lower bound analysis.

Let ρ > 0 be a constant and let M ∈ Rn×n be a constraints matrix that verifies

(Mx)1 = (ρ+ 1)x1

(Mx)i = (ρ+ 1)xi − xi−1 for 1 < i ≤ n
(4.3)
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That is,

M =



ψ 0 0
−1 ψ 0
0 −1 ψ 0

. . .
. . .

. . .
. . .

0 −1 ψ 0
0 0 −1 ψ


(4.4)

Where we defined
ψ := ρ+ 1 (4.5)

Let b ∈ Rn be a vector with the constants

b1 = 1

bi = 0 for 1 < i ≤ n
(4.6)

From (Mx)i = bi = 0 and (Mx)i = ψxi − xi−1 we notice that ψxi = xi+1. This indicates
that the components of x decrease as i increases, i.e. for large i, the components of x are
negligible. We can also look at the constraints (4.3) row-wise: (Mx)i =

∑n
j=1Mijxj =

mᵀi x with mᵀi ∈ R1×n being the i-th row of the matrix M . The difficulty of the constraints
M has its source in the fact that for any row mᵀi , the constrains allow at most 2 non-null
components.

We are going to work with the matrices MᵀM and MMᵀ.

MᵀM =



ψ2 + 1 −ψ 0 · · ·
−ψ ψ2 + 1 −ψ 0 · · ·
0 −ψ ψ2 + 1 −ψ 0 · · ·

. . .
. . .

. . .
. . .

. . .

· · · 0 −ψ ψ2 + 1 −ψ
· · · 0 −ψ ψ2


(4.7)

MMᵀ =



ψ2 −ψ 0 · · ·
−ψ ψ2 + 1 −ψ 0 · · ·
0 −ψ ψ2 + 1 −ψ 0 · · ·

. . .
. . .

. . .
. . .

. . .

· · · 0 −ψ ψ2 + 1 −ψ
· · · 0 −ψ ψ2 + 1


(4.8)

Matrices with such tridiagonal structure, described briefly as constraints Aij = 0 for
|i− j| > 1, are known as Jacobi matrices (operators). In terms of null and non-null com-
ponents, both matrices MᵀM and MMᵀ have exactly the same structure as Nesterov’s
symmetric tridiagonal matrix AN defined in [Nesterov 2018, Section 2.1], as well as the
matrix A(η, ω) in [Xie et al. 2020]. The only difference lies in the values of the non-null
elements.

Remark. The matrixMMᵀ is related to the matrixMᵀM viaMMᵀ = (UV ᵀ)MᵀM(V Uᵀ),
assuming that the singular value decomposition is written as M = UDV ᵀ.
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4 Lower bound analysis

4.2 Characterization of the eigenvalues of MᵀM

The spectrum of MᵀM has an important role in this lower bound analysis. In the next
Section 4.3, we will see that the smallest eigenvalue of MᵀM indirectly determines the
value of the constant of metric subregularity in the optimization Problem (2.9).

Proposition 4. Let ρ, n > 0. The matrices M , MᵀM are invertible. Proof. The matrix
M has lower triangular structure, hence it’s determinant is the product of the elements
on its diagonal. By detM = (ρ+ 1)n > 0, M is invertible, which implies invertible MᵀM .

Proposition 5 (If the real matrix M is invertible, then MᵀM is a positive definite
matrix). For any non-zero vector x ∈ Rn, Mx 6= 0 by the invertibility of M and

xᵀMᵀMx = (Mx)ᵀMx = ‖Mx‖2 > 0

Proposition 6 (If ρ > 0, matrix MᵀM is positive definite.). By the application of the
Propositions 4 and 5, i.e. by the fact that M is invertible, MᵀM is positive definite.

Proposition 7. Positive definite matrix A has positive eigenvalues. Proof. Let v be a
non-zero eigenvector of A, i.e. Av = λv holds. By the positive definiteness of A, the
vector v must verify vᵀAv ≥ 0. Thus, vᵀ(λv) ≥ 0 =⇒ vᵀvλ > 0. As vᵀv = ‖vᵀv‖2 > 0,
the eigenvalues λ are required to be positive by vᵀvλ > 0.

By Proposition 4, we get that MᵀM is invertible hence it has only non-null eigenval-
ues. By the Proposition 6 stating the positive definiteness of MᵀM , we obtain that its
eigenvalues are positive (Proposition 7), which also excludes null eigenvalues. This first
characterization allows us to simply say that the smallest eigenvalue interests us, rather
than the eigenvalue that is smallest in the absolute value. We will use Gershgorin circles
(discs) to bound λmin and λmax. These discs define the intervals in which the eigenvalues
must lie:

Definition 23 (Gershgorin disc). Let A be an n × n real square matrix with entries
aij. Let Ri be the sum of the absolute values of off-diagonal entries in the i-th row, i.e.
Ri =

∑
i 6=j|aij|. The i-th Gershgorin disc associated with the i-th row of A is a closed

disc centered at aii with radius Ri, i.e.

Di = D(aii, Ri) = {z ∈ R : |z − aii| ≤ Ri}

Theorem 5 (Gershgorin circle theorem). Let A be an n × n real square matrix with
entries aij, and let Ri be the absolute sum of off-diagonal elements in the i-th row. Then,
each eigenvalue of A lies in at least one of the Gershgorin discs D(aii, Ri) of A.

Remark. Gershgorin disc and Gershgorin circle theorem are originally stated for a square
complex matrix [Varga 2010]. Here, a simplification for square real matrices was made
because we will only deal with matrices whose eigenvalues are real.

Lemma 4. The eigenvalues λ1, . . . , λn of MᵀM from (4.7) with some ρ > 0 are lower
bounded by ρ2 and upper bounded by ρ2+4ρ+4, i.e. for all the eigenvalues λ ∈ {λ1, . . . , λn},

ρ2 ≤ λ ≤ ρ2 + 4ρ+ 4
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Proof. For the matrix MᵀM , we can find n Gershgorin discs (Definition 23):

D1 := D
(
(ρ+ 1)2 + 1, |−ρ− 1|

)
Di := D((ρ+ 1)2 + 1, |−ρ− 1|+ |−ρ− 1|) 1 < i < n

Dn := D((ρ+ 1)2, |−ρ− 1|)

The Gershgorin circle Theorem 5 only asserts that an eigenvalue must be in at least one
of the discs, hence we must consider all of them. We can reject the first disc D1 because
it’s contained in the Di discs as 2|−ρ− 1| > |−ρ− 1|. This leaves either the last disc
Dn or the identical Di discs to dictate the largest possible range for eigenvalues. The
intervals associated with these discs are

Di =
[
ρ2, ρ2 + 4ρ+ 4

]
Dn =

[
ρ2 + ρ, ρ2 + 3ρ+ 2

]
We identify the bounds on the eigenvalues as

λmax ≤ max
{
ρ2 + 4ρ+ 4, ρ2 + 3ρ+ 2

}
= ρ2 + 4ρ+ 4

λmin ≥ min
{
ρ2, ρ2 + ρ

}
= ρ2 > 0

Finding the analytical expression for the exact eigenvalues of a general n×n matrix with
n >> 1 is not simple and demands lengthy, abstruse formulations. However, this task
can sometimes be drastically simplified if the matrix is known to possess some special
structure. As mentioned earlier, MᵀM is a Jacobi matrix, i.e. it has the tridiagonal
structure. The mathematical literature on Jacobi matrices is rich, which puts questions
whether there exists an analytical formula for the exact eigenvalues of MᵀM .

Proposition 8. [Kulkarni, Schmidt, and Tsui 1999, Theorem 2.2.] Let Tn(a, b, c) be an
n× n Toeplitz tridiagonal matrix defined by

Tn(a, b, c) =


a c 0

b
. . .

. . .
. . .

. . . c
0 b a


The eigenvalues of Tn(a, b, c) are

a− 2
√
bc cos(kπ/(n+ 1)) for k = 1, 2, . . . , n (4.9)

In the case of Toeplitz tridiagonal matrices Tn(a, b, c), the eigenvalues are determined
completely by the Proposition 8. Unfortunately, our matrix MᵀM doesn’t have the
Toeplitz structure due to the last element on the diagonal. Yet, the n− 1× n− 1 matrix
created by taking the upper left block of MᵀM (MᵀM without the last row and the last
column) has the Toeplitz structure. This shows that MᵀM has so-called pseudo-Toeplitz
structure [Kulkarni, Schmidt, and Tsui 1999]. The location of the eigenvalues of these
matrices can be determined via the comparison of the graphs [Fonseca 2006], but it seems
that a convenient closed-form solution isn’t available.
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If we parametrized M ’s last element and make its diagonal equal to [ρ+1 · · · ρ+1 ω]
with ω =

√
ρ2 + 1, we would obtain a matrix MᵀM with constant elements on the

diagonal. However, this would change the last element on the diagonal above and below
the principal diagonal, breaking the constant elements. Hence, we cannot obtain MᵀM
with a Toeplitz structure by the changes of the values of non-null elements of M . We
would still have a pseudo-Toeplitz matrix.

We cannot use the Propostion 8 to find the eigenvalues of the pseudo-Toeplitz MᵀM
matrix, but we can use it to evaluate the bounds found in Lemma 4. Let M ′ᵀM ′ be a
tridiagonal Toeplitz matrix obtained by adding 1 to the last element on the diagonal of
MᵀM . We view the original matrix MᵀM as perturbed M ′ᵀM ′, where the perturbation
is the 1 subtracted from the last element of the diagonal of M ′ᵀM ′.

Generally, the eigenvalues of tridiagonal Toeplitz matrices can be very sensitive to per-
turbations of the matrix, which suggests that the spectrum of M ′ᵀM ′ can be far off the
spectrum of MᵀM . However, the sensitivity varies depending on the structure of the
tridiagonal Toeplitz matrix. In particular, the sensitivity of the eigenvalues grows ex-
ponentially with the ratio of the absolute values of the sub- and super-diagonal matrix
entries [Noschese, Pasquini, and Reichel 2013]. Matrix M ′ᵀM ′ has the same elements
on the sub- and super-diagonal, i.e. unit ratio. This suggests that actually, M ′ᵀM ′ isn’t
highly sensitive. Moreover, the perturbation itself is very small because it affects only
one element. The relative change of this element depends on ρ. For ρ < 1 subtract-
ing 1 has quite a significant effect, with the relative change up to ≈ 50%. For ρ ≥ 1,
the relative change quickly gets insignificant as ρ grows, and the perturbation becomes
negligible.

By the application of (4.9) with a = ρ2 + 2ρ + 2 and b = c = −ρ − 1, we obtain the
eigenvalues of M ′ᵀM ′:

ρ2 + (2ρ+ 2)− (2ρ− 2) cos

(
kπ

n+ 1

)
for k = 1, . . . , n (4.10)

From −1 ≤ cos ≤ 1, we get the bounds for the eigenvalues λ of M ′ᵀM ′ :

ρ2 ≤ λM ′ᵀM ′ ≤ ρ2 + 4ρ+ 4 (4.11)

Which coincide with the bound obtained in Lemma 4. Notice that the eigenvalues (4.10)
depend on n, but this dependence is eliminated when taking the −1 ≤ cos ≤ 1. This
is a simplification which hides n from the bounds (4.11). Perhaps we can find bounds
which include n, but this isn’t crucial because we reasonably expect that the dependence
disappears as n grows. After all,

for k = 1 lim
n→∞

π

n+ 1
= 0 and lim

n→∞
cos

(
kπ

n+ 1

)
= 1

for k = n lim
n→∞

nπ

n+ 1
= π and lim

n→∞
cos

(
nπ

n+ 1

)
= −1

(4.12)

Thus, for large n, the bounds (4.11) are optimal for eigenvalues of M ′ᵀM ′ and if indeed
M ′ᵀM ′ is robust to the considered perturbation, then these bounds are also optimal for
the eigenvalues of MᵀM . We shall verify this numerically.

Since we have the closed-form solution, we can compute the eigenvalues of M ′ᵀM ′ exactly.
We can also compute the eigenvalues of MᵀM numerically. In Figure 4.1, we can see an
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example for ρ = 3 and n = 15. The eigenvalues of the perturbed matrix are very
close to the eigenvalues obtained via the closed-form solution for the tridiagonal Toeplitz
matrix, which confirms the previous speculations about the sensitivity of the eigenvalues
of M ′ᵀM ′. Also, the lower bound ρ2 and the upper bound ρ2 + 4ρ+ 4 already seem tight
even for relatively small n.

Figure 4.1: The eigenvalues for ρ = 3 and n = 15. The green Toeplitz is M ′ᵀM ′ matrix,
while the red Perturbed is MᵀM matrix.

We want to confirm the optimally of the bounds for larger n and more values of ρ. In
Figure 4.2, we can observe the largest eigenvalues of MᵀM and M ′ᵀM ′ for 3 different
values of ρ, plotted for the increasing matrix size n.
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Figure 4.2: The smallest eigenvalues of MᵀM and M ′ᵀM ′

for varying ρ and n.

Similar plots were made for the largest eigenvalues of MᵀM and M ′ᵀM ′ and analogical
results were obtained (plot omitted because it’s like Figure 4.2, only flipped vertically).
For large n, the perturbation turns out to have negligible effect even for small ρ.

Overall, for large matrices the largest eigenvalue of MᵀM coincides with the largest eigen-
value of M ′ᵀM ′, the smallest eigenvalue of MᵀM coincide with the smallest eigenvalue
of M ′ᵀM ′. Moreover, the lower bound ρ2 and the upper bound ρ2 + 4ρ + 4 proposed by
Lemma 4 are not only reasonable, but the best ones for sufficiently large n.

4.3 The constant of metric subregularity

The property of metric subregularity described in Section 2.1 will be employed in the
analysis. Our main task in this section is determining the constant of metric subregularity.
We begin with a necessary result that relates the Euclidean norm of a symmetric matrix
and its smallest absolute eigenvalue:

Proposition 9 (Symmetric matrix norm inequality). Let A ∈ Rn×n be a real symmetric
matrix and let λ1, ..., λn ∈ R be its eigenvalues. We have that for all x ∈ Rn and for all
λ ∈ λ1, ..., λn,

‖Ax‖2 ≥ |λ| ‖x‖2 (4.13)

That is, denoting the smallest eigenvalue as λs = minλ∈{λ1,...,λn}|λ|, ‖Ax‖2 ≥ λs‖x‖2.

Proof. Since A is symmetric, spectral theorem applies and there exists a unique orthonor-
mal basis formed by eigenvectors v1, . . . , vn of A. We obtain the spectral decomposition
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of A:

A =
n∑
i=1

λiviv
ᵀ
i (4.14)

The outer products viv
ᵀ
i are the orthogonal projections onto one-dimensional λi-eigenspace.

Note that

‖Ax‖2 =

(
n∑
i=1

λiviv
ᵀ
i x

)ᵀ( n∑
i=1

λiviv
ᵀ
i x

)

=
n∑
i=1

λixᵀvivᵀi
λivivᵀi x+

n∑
j=1
j 6=i

λjvjv
ᵀ
jx




=
n∑
i=1

λ2ix
ᵀvi v

ᵀ
i vi︸︷︷︸
1

vᵀi x+
n∑
j=1
j 6=i

λiλjx
ᵀvi v

ᵀ
i vj︸︷︷︸
0

vᵀjx

=
n∑
i=1

λ2i (x
ᵀvi)(v

ᵀ
i x) =

n∑
i=1

λ2i (v
ᵀ
i x)2

Also, given that any x can by expressed as
∑n

i=1(v
ᵀ
i x)vi in the orthonormal base formed

by eigenvectors v1, . . . , vn (i.e. as vector projections of x onto vi),

‖x‖2 = xᵀx =

(
n∑
i=1

vi(v
ᵀ
i x)

)ᵀ( n∑
i=1

vi(v
ᵀ
i x)

)

=
n∑
i=1

(xᵀvi)v
ᵀ
i

vi(vᵀi x) +
n∑
j=1
j 6=i

vj(v
ᵀ
jx)




=
n∑
i=1

(xᵀvi) v
ᵀ
i vi︸︷︷︸
1

(vᵀi x) +
n∑
j=1
j 6=i

(xᵀvi) v
ᵀ
i vj︸︷︷︸
0

(vᵀjx)

=
n∑
i=1

(xᵀvi)(v
ᵀ
i x) =

n∑
i=1

(vᵀi x)2

Now, we get an inequality

‖Ax‖2 =
n∑
i=1

λ2i (v
ᵀ
i x)2 ≥ min

j∈{1,..,n}
λ2j

n∑
i=1

(vᵀi x)2 = min
j∈{1,..,n}

λ2j‖x‖
2 (4.15)

Which after taking the square root finishes the proof.

Remark. In matrix notation, (4.14) is equivalent toA = QΛQ−1, where Λ = diag(λ1, . . . , λn)
is a similar matrix to A, but in the basis formed by eigenvectors v1, . . . , vn of A, and Q
is the orthogonal n× n matrix of whose i-th column is the eigenvector vi of A.
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Recall that the primal optimization problem is minx
µ
2
‖x‖22 + I{b}(Mx), which has met-

rically subregular gradient of Lagrangian, i.e.

‖x− x∗‖ ≤ κ‖∇L(x)‖.

Our goal now is to establish the constant of metric subregularity κ for our difficult
minimax optimization problem. The Lagrangian can be found analytically as:

L(x, y) =
µ

2
‖x‖22 + 〈y,Mx− b〉 (4.16)

The gradients of Lagrangian with respect to the primal variable x and dual variable y
are respectively:

∇xL(x, y) = µx+M∗y (4.17)

∇yL(x, y) = Mx− b (4.18)

Together, we write
∇L(x, y) = (µx+Mᵀy,Mx− b). (4.19)

Define a block matrix

B :=

[
µI Mᵀ

M 0

]
. (4.20)

Proposition 10. Matrix B is symmetric. This can be seen by inspecting the block
structure of B:

Bᵀ =

[
µI Mᵀ

M 0

]ᵀ
=

[
µI Mᵀ

(Mᵀ)ᵀ 0

]
= B.

Proposition 11. B is invertible.

Proof. We use an identity for determinants of block matrices

det

[
A B
C D

]
= det(A) det

(
D − CA−1B

)
, (4.21)

which holds when A is invertible. This identity is the counterpart to the case with
invertible D (Schur’s determinant identity). The block matrix B has invertible upper left
matrix µI, hence the property (4.21) applies:

det (B) = det

[
µI Mᵀ

M 0

]
= det(µI) det

(
−MµI−1Mᵀ

)
(4.22)

By det (AB) = det(A) det(B), we write

det
(
−MµI−1Mᵀ

)
= det (−M) det

(
µI−1

)
det (Mᵀ) (4.23)

The inverse of the identity matrix is invertible. Matrix M is invertible by the Proposition
4, which also asserts that Mᵀ is invertible. An invertible matrix has non-zero determinant,
hence det (B) is equal to the product of 4 non-zero determinants. Thus, det(B) 6= 0, which
shows that B is invertible.
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Lemma 5. Let M ∈ Rn×n be a matrix from (4.4) with some ρ > 0, let b ∈ Rn be a vector
from (4.6). Consider the Lagrangian (4.16) of the optimization problem minx

µ
2
‖x‖22 +

I{b}(Mx). Then, the gradient of the Lagrangian ∇L(x, y) = (µx+Mᵀy,Mx− b) is met-
rically subregular at its saddle point (x∗, y∗) for (0, 0) with metric subregularity constant
given by

κ =
2√

µ2 + 4ρ2 − µ

Proof. Using the fact that ∇L at a saddle point (x∗, y∗) is necessarily 0, we obtain

∇L(x, y) = ∇L(x, y)−∇L(x∗, y∗)

= (µx+Mᵀy − µx∗ −Mᵀy∗,Mx−Mx∗)

=

[
µI Mᵀ

M 0

]
(x− x∗, y − y∗)

= B(x− x∗, y − y∗)

(4.24)

As B is symmetric (Proposition 10), we can use the inequality from the Proposition 9
to bound the Euclidean norm of B. Let λ1, ..., λ2n be the eigenvalues of B. For all
λ ∈ λ1, ..., λ2n the inequality holds:

‖Bu‖ ≥ |λ| ‖u‖ (4.25)

This inequality requires us to know the smallest eigenvalue in absolute value. If B con-
tained null eigenvalues, the task would be more difficult because we would need to seek the
smallest absolute eigenvalue which is non-zero. Fortunately, B is invertible (Proposition
11), which guarantees that it only contains non-null eigenvalues.

Ideally, we would find all the eigenvalues and take the smallest one in absolute value to use
the inequality. The eigenvalues are roots of the characteristic polynomial det(B − λI2n),
but solving the characteristic equation analytically is cumbersome given the dimension
2n× 2n of the matrix

B − λI =

[
(µ− λ)I Mᵀ

M −λI

]
whose determinant would need to be found. It appears that there is no simple, straight-
forward way to find the eigenvalues of B without dealing with abstruse analytical for-
mulations. Fortunately, we can leverage the block structure of B and the structure of
matrices M and Mᵀ that B contains.

Suppose v ∈ R2n is a nontrival eigenvector of B with eigenvalue λ, hence Bv = λv holds.
Decompose v into 2 blocks such that v = (v1 v2)

ᵀ, where v1, v2 ∈ Rn. We obtain[
µI Mᵀ

M 0

] [
v1
v2

]
= λ

[
v1
v2

]
Which amounts to

µv1 +Mᵀv2 = λv1

Mv1 = λv2.

Thus, with v2 = λ−1Mv1 we have

MᵀMv1 = (λ2 − µλ)v1.
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Crucially, the tridiagonal matrix MᵀM from (4.7) appears. We obtain that finding the
eigenvalues of B amounts to determining the eigenvalues of MᵀM ∈ Rn×n via relations

λMᵀM = λ2B − µλB ⇐⇒ λB =
µ

2
±
√
µ2 + 4λMᵀM

2
(4.26)

In other words, the eigenvalues of MᵀM are a reasonable proxy to the eigenvalues of B.
Taking the largest eigenvalue of MᵀM , (4.26) gives

µ

2
−
√
µ2 + 4 maxλMᵀM

2
≤ λB ≤

µ

2
+

√
µ2 + 4 maxλMᵀM

2
(4.27)

Notice that the smallest eigenvalue of B is guaranteed to be negative because eigenvalues
λMᵀM are bounded away from zero. For the sake of use in the inequality (4.25), we need
the smallest eigenvalue of B in the absolute value. As B has some negative eigenvalues,
we know that minλB and min|λB| are different quantities.

Fortunately, we can bound |λB| too. From (4.26) we deduce two intervals in which the
eigenvalues λB must lie:

µ

2
−
√
µ2 + 4 maxλMᵀM

2
≤λB ≤

µ

2
−
√
µ2 + 4 minλMᵀM

2
(4.28)

µ

2
+

√
µ2 + 4 minλMᵀM

2
≤λB ≤

µ

2
+

√
µ2 + 4 maxλMᵀM

2
(4.29)

All we need is a property that |a| ≥ b ⇐⇒ a ≤ −b or a ≥ b. From the upper bound

in (4.28), we get |λB| ≥
√
µ2+4minλMᵀM

2
− µ

2
. From the lower bound in (4.29), we get

|λB| ≥ µ
2

+

√
µ2+4minλMᵀM

2
. Therefore

min |λB| = min

{√
µ2 + 4 minλMᵀM

2
− µ

2
,

√
µ2 + 4 minλMᵀM

2
+
µ

2

}

=

√
µ2 + 4 minλMᵀM

2
− µ

2

The Section 4.2 discussed the eigenvalues of MᵀM . In particular, Lemma 4 provided
minλMᵀM = ρ2, hence

λs := min|λB| =
√
µ2 + 4ρ2

2
− µ

2
(4.30)

As shown in the Section 4.2, for large n (e.g. above 100 which is typical) the bounds
are precise hence the actual smallest absolute eigenvalue of B coincide with λs. The
symmetric matrix norm inequality (4.13) (‖Bu‖ ≥ λs ‖u‖) can be used now. Let z =
(x, v), z∗ = (x∗, v∗) and substitute u = z − z∗ hence

‖B(z − z∗)‖ ≥ λs‖z − z∗‖ (4.31)

Using that B(z − z∗) = ∇L(x, v) from (4.24),

‖∇L(z)‖ ≥ λs‖z − z∗‖ (4.32)

After rearranging we obtain that gradient of Lagrangian ∇L is metrically subregular at
saddle point z∗ for 0:

‖z − z∗‖ ≤ λ−1s ‖∇L(z)‖ ∀z ∈ K (4.33)
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Which is precisely the Definition 21 of metric subregularity with the operator F = ∇L
at x̄ = z∗ for ȳ = 0, with the constant of metric subregularity κ = λ−1s depending on ρ
and given by

κ =
2√

µ2 + 4ρ2 − µ
The original definition is expressed locally for points x in some neighborhood N (x̄). Here,
the neighborhood of regularity is the whole space K = H⊕G to which z∗ belongs, hence
∇L has global metric subregularity at z∗ for 0.

Both ρ (in the constraints matrix M) and µ are characteristics of the problem and we
don’t choose them. However, we have that µ > 0 and assumption ρ > 0 is reasonable,
in which case we note the range of the metric subregularity constant κ ∈ (0,∞). In
Figure 4.3 we can observe how does κ change in function of ρ. For most of the possible
values of ρ, the constant of metric subregularity is either huge (approaching ∞) or tiny
(approaching 0). Moreover, the plot indicates that the constant of strong convexity µ
doesn’t impact κ greatly.

Figure 4.3: The constant of metric subregularity across ρ and various µ.

4.4 Explicit solution

Lemma 6. The optimal solution of the optimization Problem (2.9) is

x∗ =
[
ψ−1 ψ−2 · · · ψ−i · · · ψ−n

]ᵀ
y∗ =

[
Ctψ

−1 + ψCu Ctψ
−2 + ψ2Cu · · · Ctψ

−i + ψiCu · · · Ctψ
−n + ψnCu

]ᵀ
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Where

Ct =
µψn+1

−2( 1
ψ

)n−2 + ψn + ψn+2

Cu =
µ( 1

ψ
)n+1

2( 1
ψ

)n−2 − ψn − ψn+2

ψ = ρ+ 1

Proof. Define a function r based on the considered Problem (2.9)

r(x, y) :=
µ

2
‖x‖2 + 〈Mx− b, y〉

The gradients of r can be found as:

∇xr(x, y) =
µ

2
∇x‖x‖2 +∇x 〈Mx− b, y〉 = µx+Mᵀy

∇yr(x, y) = ∇y 〈Mx− b, y〉 = Mx− b

Letting the gradient to be 0, we obtain that

µx+Mᵀy = 0 (4.34)

Mx− b = 0 (4.35)

Hence, the solution x∗ verifies Mx∗ = b and µx∗+Mᵀy∗ = 0. Recall M from (4.4), b from
(4.6), and ψ = ρ+ 1. Solving the linear system Mx∗ = b amounts to solving equations

ψx1 = 1

−xi−1 + ψxi = 0 for 2 ≤ i ≤ n

The solution to this system is x∗ with components x∗i = ψ−i for 1 ≤ i ≤ n.

Towards the dual solution y∗, substitute x = −µ−1Mᵀy from (4.34) into (4.35) to get

MMᵀy = −µb (4.36)

Therefore, the solution y∗ we look for must solve the set of linear equations (4.36). Recall
the tridiagonal matrix MMᵀ from (4.8) and b from (4.6). We write MMᵀy = −µb in the
coordinate form as:

ψ2y1 − ψy2 = −µ
−ψyi−1 + (ψ2 + 1)yi − ψyi+1 = 0 for 1 < i < n

−ψyn−1 + (ψ2 + 1)yn = 0

(4.37)

Which we solve to find y∗. Consider a quadratic equation

−ψq2 + (ψ2 + 1)q − ψ = 0

Denote the roots of this quadratic as t and u. As the discriminant is
√

(ψ2 + 1)2 − 4ψ2 =√
(ψ2 − 1)2 = ψ2 − 1, we find the roots

t =
−(ψ2 + 1) + (ψ2 − 1)

−2ψ
=

1

ψ

u =
−(ψ2 + 1)− (ψ2 − 1)

−2ψ
= ψ

(4.38)
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We chose y such that the i-th coordinate is:

yi = tiCt + uiCu for i = 1, . . . , n (4.39)

Knowing the coefficients Ct and Cu, the roots t and u can be used to find all the coordi-
nates yi of solution y∗. Developing the middle equations from (4.37) according to (4.39)
gives

−ψ(ti−1Ct + ui−1Cu) + (ψ2 + 1)(tiCt + uiCu)− ψ(ti+1Ct + ui+1Cu) = 0

Which for i = 2 states that

tCt(−ψt2 + (ψ2 + 1)t− ψ) + uCu(−ψu2 + (ψ2 + 1)u− ψ) = 0

As −ψt2 + (ψ2 + 1)t− ψ = 0 and −ψu2 + (ψ2 + 1)u− ψ = 0 by the fact that t and u are
the roots of the quadratic −ψq2 + (ψ2 + 1)q−ψ = 0, we obtain that for any values of the
coefficients Ct and Cu, the equation for i = 2 is satisfied. The same reasoning and results
apply for all the equations with i such that 1 < i < n, thus there remains a system of 2
linear equations:

ψ2y1 − ψy2 = −µ
−ψyn−1 + (ψ2 + 1)yn = 0

Again, expanding with yi = tiCt + uiCu

−ψ2(tCt + uCu)− ψ(t2Ct + u2Cu) = −µ
−ψ(tn−1Ct + un−1Cu) + (ψ2 + 1)(tnCt + unCu) = 0

We have a system of 2 equations, which we solve for Ct and Cu.[
−ψ2t− ψt2 −ψ2u− ψu2

−ψtn−1 + (ψ2 + 1)tn −ψun−1 + (ψ2 + 1)un

] [
Ct
Cu

]
=

[
−µ
0

]
Expanding the roots t and u according to (4.38), we obtain the system:[

−ψ − 1
ψ
−2ψ3

( 1
ψ

)n ψn+2

] [
Ct
Cu

]
=

[
−µ
0

]
Which has the solution

Ct =
µψn+1

−2( 1
ψ

)n−2 + ψn + ψn+2
(4.40)

Cu =
µ( 1

ψ
)n+1

2( 1
ψ

)n−2 − ψn − ψn+2
(4.41)

As n goes to ∞, the constant Cu tends to 0, while Ct tends to a positive constant:

Ct
n→∞−−−→ µψ

1 + ψ2
(4.42)

The Lemma 6 gives the explicit solution for a problem where f(x) = µ
2
‖x‖2 is minimized

under affine constraints. We can consider the applicability of the Lemma in the case
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without the f term, i.e. the minimization of Ib(Mx). The primal solution x∗ doesn’t
depend on µ and would remain the same. On the other hand, the dual solution y∗ would
vanish altogether. To see this, consider the equation corresponding to (4.34), but in the
case without the f term. It requires that the dual solution y∗ verify Mᵀy∗ = 0. As Mᵀ

is invertible, Mᵀy∗ = 0 has only the trivial solution y∗ = 0. Another way to see it, y∗

depends on µ through the coefficients Ct and Cu, but these coefficients tend to 0 when µ
goes to 0, a case which corresponds to the disappearing f term. Hence, y∗ goes to 0 as
well.

4.5 Complexity Lower Bound

We extend the Assumption 2 to take the dual variable into account, as well as the
additional matrix multiplication operations.

Assumption 3. For all k = 1, . . . , n, each point x(k) and y(k) generated by an algorithmA
is a linear combination of x(0), y(0),∇f

(
x(0)
)
, . . . ,∇f

(
x(k−1)

)
, and matrix multiplications

Mx(0), . . . ,Mx(k−1) and Mᵀy(0), . . . ,Mᵀy(k−1), i.e. for all ` ∈ [0, k):

x(k) ∈ x(0) + span
{
∇f

(
x(`)
)
,Mᵀy(`)

}
y(k) ∈ y(0) + span

{
Mx(`)

}
The extension of the assumption is a result of the extended oracle. Instead of the vanilla
first-order oracle O(x) = (∇f(x)), we have

O(x, y) = (∇f(x),Mx,Mᵀy) . (4.43)

Remark. The oracle (4.43) doesn’t include the information from proximal operators. As
we don’t consider the g term, we cannot have proxg. As f is smooth and oracle already
has ∇f , the additional information from proxf is unlikely to provide faster algorithms.
We could consider the additional information from proxh∗ , but we choose not to.

Lemma 7. Let x(0) = 0 ∈ Rn and y(0) = 0 ∈ Rm. Any k-th iterate produced by an
algorithm A satisfying the Assumption 3 has at most k non-null components, i.e. for all
k ∈ [0, n] and for each i > k, x

(k)
i = 0 y

(k)
i = 0.

Proof. We proceed with mathematical induction. The base case for k = 0 holds auto-
matically by the initialization x(0) = 0, y(0) = 0. All the components are null hence the
statement that the 0-th iterates have at most 0 non-null elements is true.

In the induction step we will take some k < n and assume that each `-th iterate with
` ∈ [0, k] has only null components after `-th element, i.e. ∀` ≤ k,∀i > `, x

(`)
i = 0, y

(`)
i = 0.

This assumption is Lemma’s statement for the chosen k. Now, we need to show that this
implies that the statement holds for k + 1.

If the chosen k = 0, ∇f(x(0)) = 0, Mx(0) = 0, Mᵀy(0) = 0, which implies that ∀i >
1, x

(1)
i = 0 and y

(i)
i = 0 because these points are linear combinations of uniquely null

elements. That is, given k = 0, k + 1 verifies Lemma’s statement.
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4 Lower bound analysis

If the chosen k > 0,

∇f(x(k)) = µx(k) =⇒ ∀i > k,
(
∇f

(
x(k)
))
i

= 0(
Mx(k)

)
i

= −x(k)i−1 + (ρ+ 1)x
(k)
i =⇒ ∀i > k + 1,

(
Mx(k)

)
i

= 0(
Mᵀy(k)

)
i

= −y(k)i+1 + (ρ+ 1)y
(k)
i =⇒ ∀i > k,

(
Mᵀy(k)

)
i

= 0

(4.44)

Which implies that for all i > k + 1, x
(k+1)
i and y

(k+1)
i are null because they are linear

combinations of null elements
(
∇f

(
x(k)
))
i
,
(
Mx(k)

)
i
,
(
Mᵀy(k)

)
i

(which we know are null

for i > k + 1 by (4.44)). Overall, the iterates x(k+1), y(k+1) have at most k + 1 non-null
elements, which completes the proof by induction.

Note that the formula for the geometric series starting at the index m is:

n∑
i=m

ari =
a (rm − rn+1)

1− r
. (4.45)

Proposition 12. Let x ∈ Rn and k ∈ {0, . . . , n}.
n∑
i=1

(xi)
2 ≥

n∑
i=k+1

(xi)
2 (4.46)

Holds because n non-negative terms are greater or equal to the n − k subset of these
terms.

Theorem 6 (Lower bound). Let ρ > 0. For any k ∈
[
1, 1

2
(n− 1)

]
, and any x(0) ∈

Rn, there exists an affinely constrained convex problem whose gradient of Lagrangian is
metrically subregular with constant κ, such that any algorithm satisfying Assumption 3,
we have: ∥∥x∗ − x(k)∥∥ ≥ O

((
κ

κ+
√
µκ+ 1

)k)
. (4.47)

Proof. We assume x(0) = 0. If it weren’t the case, we could shift all the objects in the
space of variables and obtain x(0) = 0 without loss of generality. Then,∥∥x(0) − x∗∥∥2 =

n∑
i=1

(x∗i )
2 =

n∑
i=1

(
ψ−2

)i
(Lemma 6)

=
ψ−2

1− ψ−2
− ψ−2(n+1)

1− ψ−2
(Geometric progression (4.45))

≤ ψ−2

1− ψ−2
=

1

ψ2 − 1
.

(4.48)

Also, ρ > 0 =⇒ ψ > 1 and ψ < ψ2 < · · · < ψk < · · · < ψ
n
2 implies that

1−
(
ψ

ψn

)2

> 1−
(
ψ2

ψn

)2

> · · · > 1−
(
ψk

ψn

)2

> · · · > 1−
(
ψ

n
2

ψn

)2

= 1− ψ−n.

Hence, for all k ≤ n
2

we have

1− ψ−2(n−k) = 1− ψ2k−2n = 1−
(
ψk

ψn

)2

> 1− ψ−n. (4.49)

45



4 Lower bound analysis

The main part of the proof is the following inequality:∥∥x∗ − x(k)∥∥2 =
n∑
i=1

(
x∗i − x

(k)
i

)2
≥

n∑
i=k+1

(
x∗i − x

(k)
i

)2
(Proposition 12)

=
n∑

i=k+1

(x∗i )
2 (Lemma 7)

=
n∑

i=k+1

ψ−2i (Lemma 6)

= ψ−2(k+1)1− ψ−2(n−k)

1− ψ−2
(Geometric progression (4.45))

≥ ψ−2(k+1)1− ψ−n

1− ψ−2
(Using (4.49))

= ψ−2k
(
ψ−2 − ψ−2−n

1− ψ−2

)
= ψ−2k

(
1− ψ−n

ψ2 − 1

)
= ψ−2k

1

ψ2 − 1

(
1− ψ−n

)
≥ ψ−2k

∥∥x(0) − x∗∥∥2 (1− ψ−n) (Using (4.48)).

Taking the square root of both sides of the inequality leads to∥∥x∗ − x(k)∥∥ ≥ ψ−k
∥∥x(0) − x∗∥∥√1− ψ−n.

Expanding ψ, we get∥∥x∗ − x(k)∥∥ ≥ ( 1

1 + ρ

)k ∥∥x(0) − x∗∥∥√1− (ρ+ 1)−n.

From Lemma 5, the constant of metric subregularity is

κ =
2√

µ2 + 4ρ2 − µ
.

The dependence of κ on positive ρ allows us to deduce

ρ =

√
µκ+ 1

κ
.

Hence, the bound amounts to∥∥x∗ − x(k)∥∥ ≥ ( κ

κ+
√
µκ+ 1

)k ∥∥x(0) − x∗∥∥√1−
(

κ

κ+
√
µκ+ 1

)n
.

Overall, we obtain an exponential lower bound∥∥x∗ − x(k)∥∥ ≥ O

((
κ

κ+
√
µκ+ 1

)k)
,

which proves that for the considered class of problems, the best possible rate of conver-
gence for any algorithm is linear with the constant κ

κ+
√
µκ+1

∈ (0, 1) depending on the

constant of metric subregularity κ and the constant of strong convexity µ (which can be
0 ).
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4 Lower bound analysis

4.6 Comparisons and discussion

For non-strongly convex problems with µ = 0, the bound (4.47) is still linear:

∥∥x∗ − xk∥∥ ≥ O

((
κ

κ+ 1

)k)
. (4.50)

Hence 0 < κ
κ+1

< 1 and the convergence is indeed linear even for non-strongly convex,
non-strongly concave problems.

Comparing this with the papers on lower bound analysis for affinely constrained problems
(Section 2.4.2), we notice that in literature, the linear lower bound was possible only for
strongly-convex, strongly-concave case of the minimax problem, whereas our exponential
bound (4.50) hold for non-stronly convex, non-strongly concave problems, at the condition
that ∇L is metrically subregular.

The complexity bounds given in the Theorem 6 hold only if the number of steps k verifies
k ≤ n

2
. This condition is easily satisfied if the problem is large and the number of

dimensions n is sufficiently high. If n weren’t large, other methods than dimension-free
first order methods would likely be better, hence the assumption is reasonable. Moreover,
similar condition on k are sometimes made in literature, as for instance in the Nesterov’s
theorem 2 where k ∈

[
1, 1

2
(n− 1)

]
.

Our lower bound analysis relies on the metric subregularity in the problem. Besides
the iteration count k and the constant of strong convexity of f (which could be 0), the
obtained bound (4.47) depends on the metric subregularity constant κ. This is quite
different from the other lower bounds in the literature. None of the papers mentioned in
the Section 2.4 leverages metric subregularity for the lower bound analysis, nor its bound
depends on the constant of metric subregularity. Typically, the obtained bounds depend
on the iteration count k and either the condition number Q = L

µ
(for strongly convex,

smooth problems as e.g. in the Theorem 3), or only µ, or only L.

The constant of metric subregularity is inherent to a given particular problem, not chosen
by us. In general, finding the closed-form representation of κ is unfeasible and even the
estimation of it is difficult. In the analysis, we deliberately chosen a specific problem,
which not only is difficult in terms of the information transfer, but also allowed us to
obtain the κ analytically. Notice that any tridiagonal matrix would satisfy the first of
these conditions (the difficulty in terms of the information transfer), but we didn’t pick
an arbitrary tridiagonal matrix. We defined it as MᵀM with consciously structured M
(4.4) to preserve the tridiagonality of MᵀM , while getting the characteristic enabling the
second of these conditions (to obtain κ). Namely, this characteristic was a high, tight
lower bound on the spectrum of MᵀM depending on M’s parametrized entries, which
then related to the spectrum of the matrix B linked to the gradient of Lagrangian whose
constant κ we found. Also, the very representation of ∇L via matrix B was possible
because ∇L happened to be linear for the considered Problem 1. For the more difficult
problems (e.g. non-smooth term extension), the gradient of Lagrangian would no longer be
linear hence the representation ∇L(x, y) = B(x−x∗, y−y∗) fails and the whole technique
would need to be rethought. On the whole, the use of metric subregularity in the lower
bound analysis for problems whose gradient of Lagrangian is metrically subregular can
work well and yield tight lower bounds, but finding κ is challenging and the technique
we used to establish it is unlikely to easily extend to other problems.
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4 Lower bound analysis

An interesting extension of the Theorem 6 would be adding the lower bound on ‖Mx− b‖.
Finally, note that the performed lower bound analysis was done only in the deterministic
case. A natural extension would be covering the stochastic case, as for instance Xie et
al. [Xie et al. 2020] have done for the minimax optimization problems.
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5 Numerical experiments

In this chapter, we choose a particular simple optimization problem to verify the theo-
retical results obtained in Chapters 3 and 4. We will apply Vu’s primal-dual splitting
algorithm to evaluate its convergence on the chosen problem, and compare it with the the-
oretical upper and lower bound guarantees. The discussed problem will be a simple one,
but there are relevant applications linked to Machine Learning. These aren’t considered,
but only mentioned for the sake of motivation of the considered simple problem.

The task of basis pursuit is formulated as minx ‖x‖1 under constrains Mx = b is a special
case of LASSO

min
x

1

2
‖Mx− b‖22 + λ‖x‖1 (5.1)

with λ = 0. Another possible application are SVM. In fact, notice that minβ f(Xβ)+R(β)
can be written as

min
β,z

f(z) +R(β) s.c. z = Xβ, (5.2)

which is an affinely constrained problem which corresponds to the sparse SVM if R is the
first norm. Another example is regression with complex regularizers.

In all these cases we have a non-smooth term. An extension with the g term in the
Problem 2 would be required to handle these applications. In terms of algorithms and
computations, not much would change because the primal-dual splitting methods were
designed to work on non-smooth problems. They work on operators and there would
be no big issue to have them operate on subdifferential operator rather than gradient.
However, estimating the constant of metric subregularity would be challenging.

5.1 Efficient minimum norm solution

Let M ∈ Rm×n with m < n and b ∈ Rm. Consider a system of linear equations Mx = b
with infinitely many solutions (underdetermined system). We seek the smallest norm
solution which verifies these linear constraints. That is, our norm-minimization problem
is:

min
x∈Rn
‖x‖22 subject to Mx = b (5.3)

More abstractly, this problem can be formulated as minimization of f(x) + h ◦M with
the affine constraints covered in the linear composition term, i.e. min ‖x‖2 + I{b}(Mx).

Thus, (5.3) corresponds to the Problem 1 with f = ‖x‖22.

On principle, this is an extremely simple problem which has a closed-form solution avail-
able. For instance, given

M =

[
1 1 1
1 1 2

]
b =

[
1
3

]
(5.4)
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5 Numerical experiments

We find that the analytical solution to the set of constraints Mx = b take the form with
x = −y − 1, z = 2, and arbitrary z. Indeed, the system has 2 equations in 3 variables
which corresponds to 2 planes whose intersection creates a line. Any of the points on
this line satisfies the constraints, but the function f(x) = ‖x‖22 is minimized only for one
such point. Namely, the point x∗ which is the smallest solution of Mx = b.

From optimality condition we get that the solution to (5.3) is

x∗ = MT (MMT )−1b = M+b, (5.5)

where M+ is the Moore–Penrose inverse.

The prime instance of 5.3 which we consider is the constraints in an exact way as described
in the Section 4.1, i.e. we use the exact difficult problem that was used for the lower
bound analysis, with square matrix M from (4.4) and b from (4.6). We typically fix
the dimensions n = m = 200 for square M . We also test non-square M with n = 200,
m = 150.

We split the experiments into two parts: the algorithmic part related to the upper bound
and lower bound part.

5.1.1 Vu’s algorithm and upper bounds

The iterates produced by the algorithm are indexed with k ∈ [0, . . . , K]. The problem
(5.3) is a strongly convex optimization problem, with f term 2-strongly convex. Indeed,
the constant of strong convexity of f is hidden, but it necessarily is µ = 2. For the
Lipschitz constant L, we have globally L ≥ 2 (it follows from the Definition 9 of Lipschitz
continuity of ∇f). It implies that ∇f is 1

2
-cocoercive.

Originally, ν-strongly monotone operator D from the general inclusion Problem 3 intro-
duced constant ν, but since we simplified this inclusion problem (see Lemma 3), there
is no longer ν. In practice, we fixed ν = 10500 to have something very close to infinity,
but not the infinity itself because technically Vu’s method requires that ν ∈ (0,+∞).
Consequently, β = 1

L
. We had to choose the parameters τ, σ > 0 such that

η = min
{
τ−1, σ−1

}(
1−

√
τσ ‖M‖2

)
2ηβ > 1

(5.6)

We also needed to pick a sequence of K positive relaxation parameters with θk such that
for all k

0 < θk ≤
4ηβ − 1

2ηβ
. (5.7)

In total, we faced with the choice of K + 2 hyperparameters: K relaxation parameters
θk, τ , and σ. The choice of these values is active research, and there are no certain values
that are the best.

In general, θk > 1 indicates overrelaxation and it could be beneficial, but we didn’t
explore this direction. We took θk = 1 for all k, which indicates no relaxation. This is
a common choice - the same one has been made e.g. for the classic primal-dual hybrid
gradient method [Chambolle and Pock 2011a].
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5 Numerical experiments

Also, we choose τ, σ in a way such that 2ηβ wasn’t neighter of its extremes, i.e. neither
approaching 1, nor very high values. These extreme cases were leading to degenerate
behaviour associated with extreme values for the constant of averaging λ. Usually, we
found that that very small values of τ, σ in order of 10−2 (usully between 0.02 − 0.03)
worked best. In such cases 2ηβ was above 10.

We assumed a fixed number of iterations and initialized numpy arrays for all the sequences
involved in the inner workings of the algorithm: for any k ∈ N, there are x(k), y(k), p(k) ∈
Rn (primal space) and v(k), q(k) ∈ Rm (dual space). The k = 0-th iterates set to random
vectors.

The implemented routine to generate the sequences of primal and dual variables followed
the simplified algorithm from (3.16). The two sequences in our prime interest were (xk)k∈N
and (yk)k∈N.

We verified the output of Vu’s algorithm using the analytical solution (5.5). In each of
the three checked cases of ρ = 0.1, 1, 5, the iterates obtained with Vu were correct while
checking with 10−5 absolute tolerance in difference any of the n = 200 components.

In Figures 5.1, 5.2, and 5.3, we can observe the convergence of all the i-th components
of x

(k)
i across iterations k for ρ = 0.1, ρ = 1, and ρ = 5. As expected, the problem

was difficult for the minimization problem, especially the ρ = 0.1 case associated with
higher metric subregularity (which is bad). We can see that most of the components

decrease to 0, i.e. x
(k)
i ≈ 0 for most of i. Recalling the explicit solution x∗i = (1 + ρ)−i

(from Lemma 6) makes it clear why does the plot for ρ = 1 has significantly more rapid
decrease towards 0 for its components. The case for ρ = 5 decreased even more rapidly to
zero, having only a few non-null comopnents in the solution. Higher valued ρ = 5 slowed
down the convergence in comparision to the ρ = 1. Going back to Figure 4.3 representing
κ in function of ρ, we can see that small and large ρ are linked with degenerate cases of
κ.

Figure 5.1: The n = 200 coordinates across the iterations for ρ = 0.1, κ ≈ 200. The
10−4-solution attained after 5435 iterations.
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5 Numerical experiments

Figure 5.2: The n = 200 coordinates across the iterations for ρ = 1, κ ≈ 2.41. The
10−4-solution attained after 790 iterations.

Figure 5.3: The n = 200 coordinates across the iterations for ρ = 5, κ ≈ 0.24. The
10−4-solution attained after 4789 iterations.

For the theoretical upper bound, we needed to define two quantities related to the
Krasnoselskii-Mann iteration:

λk =
1

θmax

and
τk = λk(1− λk) (5.8)

Then, the Theorem 4 applies with the appropriate ζ ∈ [0, 1).

Consider the error defined as the norm of the distance from the iterate x(k) to the min-
imum x∗, i.e.

∥∥x(k) − x∗∥∥. In Figure 5.4 we see an examples of the theoretical linear
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5 Numerical experiments

convergence compared with the obtained algorithm’s rate. The gap between the lines is a
result of the generality of the theoretical bound. The theoretical result holds for a class of
problems where e.g. f is 2-strongly convex and ∇f is metrically subregular with constant
2.41. There are plenty of problems which belong to this class, and the theoretic line gives
an upper bound on all of them (on the worst case). In practice, particular problem with
these constants may be easier, thus it lies below the upper bound.

Figure 5.4: Practical Vu’s method performance and theoretical upper bound (ρ = 1,
κ ≈ 2.41).

Also, alternative error using ||ek|| was considered, where the error of iteration ek =
(z(k) − z(k+1))/θk. We chose θk = 1, hence ek = z(k) − z(k+1). This error has benefit of
describing the dual jointly with the primal, not only the x variable. The relevant plot
was omitted because it’s exactly like in Figure 5.4, only shifted.

5.1.2 Lower bound experiment

In Figure 5.5 we observe a significant gap between the lower bound (yellow) and the
upper bound (green), within which lies the line associated with the obtained practical
results (blue). We tested with different values of ρ (thus κ), to see if the result holds
and the answer is affirmative. Therefore, the lower bound determines the best possible
performance that could be attained. Both the theoretical results of the Vu algorithm,
as the practical result are in the same order as the lower bound (linear), which is a big
positive point. However, in terms of the slope, the method is far off from optimality.
Likely new methods need to be developed to close the gap apparent on the plot.
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5 Numerical experiments

Figure 5.5: The comparison between the bounds (ρ = 0.5, κ ≈ 8.47).

Only 50 iterations were showed without regard to the obtained accuracy ε of the solution
because more iterations scale the plot down (due to the lower bound continuing to decrease
rapidy) and the blue and green lines align.

The bound is decreasing rapidly and the gap appears big, which suggests that the lower
bound is tight. However, to judge the quality of the gap, more examples from the same
class would need to be constructed. Not only the class must be the same (i.e. Problem
1), but also when comparing problems we need to follow up on the constants that were
fixed. In particular, we fix ρ, which fixed κ. To confirm the bound, we would need to
construct a different problem from the same class with the same κ (and L and µ). For
instance, we could constructed another matrix M with some new dependence on κ. Still,
we suspect that the already proposed matrix M is as difficult as it can get, based on the
information transfer argument.

Lastly, we conducted a quick experiment regarding efficiency. The analytical solution has
a drawback of having a (pseudo) inverse, which is generally a costly operation. On the
other hand, first-order methods such as Vu’s algorithm are designed to perform well on
large scale. Unfortunately, some tests quickly revealed that the implemented algorithm
was slower than the inverse. This pitfall can be likely attributed to the use of Python
(despite numpy) and insufficient optimization of the code itself.
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6 Conclusions

In this work, a new lower bound was proposed, which holds for a class of affinely con-
strained convex optimization problems whose gradient of Lagrangian is metrically subreg-
ular. The novelty of this bound is its dependence on the constant of metric subregularity.
The proposed lower bound demonstrated the linear order of convergence. The primal-
dual splitting methods are known to match this linear convergence rate and we confirmed
this. A new observation was made on the significant gap between the upper and lower
bounds.

Four natural future direction would be possible:

• Closing the gap by the study of other splitting methods and proposing the new ones

• Extension of the problem class and incorporating non-smooth terms and establish-
ing the corresponding lower and upper bounds under metric subregularity. This
could be complemented with more practical applications such as sparse SVM.

• Improving the obtained exponential lower bound. Potentially there are more diffi-
cult problems, achievable by the change of f and M , which would lead to better
linear convergence rates.

• Lastly, reconsidering all the results in the stochastic context with huge-scale opti-
mization problems would be worthwhile.

55



Bibliography

Alacaoglu, A., O. Fercoq, and V. Cevher (2019). “On the convergence of stochastic primal-
dual hybrid gradient”. In: arXiv preprint arXiv:1911.00799 (cit. on p. 19).

– (2020). “Random extrapolation for primal-dual coordinate descent”. In: arXiv preprint
arXiv:2007.06528 (cit. on p. 19).

Bai, K., J. Ye, and J. Zhang (Jan. 2019). “Directional Quasi-/Pseudo-Normality as Suf-
ficient Conditions for Metric Subregularity”. In: SIAM Journal on Optimization 29,
pp. 2625–2649. doi: 10.1137/18M1232498 (cit. on p. 14).

Bauschke, H. H. and P. L. Combettes (2011). Convex Analysis and Monotone Opera-
tor Theory in Hilbert Spaces. 1st. Springer Publishing Company, Incorporated. isbn:
1441994661 (cit. on p. 16).

Boyd, S., N. Parikh, and E. Chu (2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers. Now Publishers Inc (cit. on p. 18).

Bubeck, S. (#nov# 2015). “Convex Optimization: Algorithms and Complexity”. In:
Found. Trends Mach. Learn. 8.3–4, pp. 231–357. issn: 1935-8237. doi: 10 . 1561 /

2200000050 (cit. on pp. 18, 21).
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